CN111189793A - 梯形气室及其气压补偿方法 - Google Patents

梯形气室及其气压补偿方法 Download PDF

Info

Publication number
CN111189793A
CN111189793A CN202010098617.7A CN202010098617A CN111189793A CN 111189793 A CN111189793 A CN 111189793A CN 202010098617 A CN202010098617 A CN 202010098617A CN 111189793 A CN111189793 A CN 111189793A
Authority
CN
China
Prior art keywords
air
trapezoidal
air chamber
air pressure
ants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010098617.7A
Other languages
English (en)
Inventor
王怀章
张娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai University of Engineering Science
Original Assignee
Shanghai University of Engineering Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai University of Engineering Science filed Critical Shanghai University of Engineering Science
Priority to CN202010098617.7A priority Critical patent/CN111189793A/zh
Publication of CN111189793A publication Critical patent/CN111189793A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/086Learning methods using evolutionary algorithms, e.g. genetic algorithms or genetic programming

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Analytical Chemistry (AREA)
  • Evolutionary Computation (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Physiology (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明提供一种梯形气室及其气压补偿方法,其中梯形气室包括一气室本体、和设置于气室本体内的一红外光源、一反光杯、一反光镜、两热释电探测器和一气压传感器;气室本体呈梯形且包括一顶面、一底面、两侧面、一进气口和一出气口;进气口和出气口分别位于气室本体的两侧;反光杯固定于一侧面,红外光源设置于反光杯内侧,两热释电探测器和气压传感器设置于另一侧面;两热释电探测器分别位于测量光路和参比光路上。本发明的一种梯形气室及其气压补偿方法,可有效缩小气室体积,保证传感器的小型化,且气压补偿过程简单、测量精度较高、稳定性较好。

Description

梯形气室及其气压补偿方法
技术领域
本发明涉及红外气体传感器领域,尤其涉及一种梯形气室及其气压补偿方法。
背景技术
红外气体传感器具有测量范围广、稳定性强、灵敏度高、寿命长等优点,已被广泛应用于化工、煤炭、冶金、电力、环境监测等众多场所,是保障生产与人员安全的重要工具。
非色散红外气体传感器具有结构简单、性能稳定、不易中毒、易于集成等特点,具有广阔的发展前景。上世纪八十年代初,国内便开始使用红外气体分析方法,初期红外光源采用电机机械进行调制,采用薄膜电容微音器作为探测器。现阶段,主要采用电调制光源、新型探测器及低功耗单片机系统,使得仪器具有体积小、功耗低、性能好等特点。然而,在利用非色散红外气体传感器对气体浓度进行检测时,其精度受到环境压力因素的影响。在大气压力变化范围较大的特殊场所,单位体积内的气体被压缩,导致气体的分子间距发生改变,从而使红外辐射被吸收的能量增多,但气体检测的浓度并未发生改变,因此,测出的浓度值和真值相比,有较大的偏差。
目前,为了减少环境中气压变化对传感器测量精度的影响,主要采用的方法是公式模型法以及硬件电路补偿法。前者是在数据采集后利用系数标定的方法进行补偿,计算过程繁杂,效果不佳。后者采用硬件电路模块使检测环境温气压保持动态平衡,大大增加电路负担,不利于传感器小型化。这两种方法在实际的测量中都具有很大的局限性。
发明内容
针对上述现有技术中的不足,本发明提供一种梯形气室及其气压补偿方法,可有效缩小气室体积,保证传感器的小型化,且气压补偿过程简单、测量精度较高、稳定性较好。
为了实现上述目的,本发明提供一种梯形气室及其气压补偿方法,包括一气室本体、和设置于所述气室本体内的一红外光源、一反光杯、一反光镜、两热释电探测器和一气压传感器;所述气室本体呈梯形且包括一顶面、一底面、两侧面、一进气口和一出气口;所述进气口和所述出气口分别位于所述气室本体的两侧,且所述进气口位于所述顶面,所述出气口位于所述底面;所述反光镜固定于所述气室本体内并与所述顶面平行;所述反光杯固定于一所述侧面,所述红外光源设置于所述反光杯内侧,两所述热释电探测器和所述气压传感器设置于另一所述侧面;所述红外光源、所述反光杯、所述顶面和所述反光镜配合形成一测量光路和一参比光路,两所述热释电探测器分别位于所述测量光路和所述参比光路上。
优选地,还包括一数据处理器和一显示器,所述数据处理器连接所述显示器、两所述热释电探测器和所述气压传感器。
优选地,所述进气口设置有一疏水防尘膜。
优选地,所述气室本体的内壁黄铜镀金处理。
优选地,两所述侧面与水平面呈45度夹角。
本发明的一种基于本发明所述梯形气室的气压补偿方法,包括步骤:
S1:采集两所述热释电探测器和所述气压传感器的输出电压并进行归一化处理,获得归一化数据;
S2:将所述归一化数据送至一ACO-BP算法模型的输入端作为输入向量X=(x1,x2,x3),其中x1表示位于所述测量光路的所述热释电探测器的输出电压归一化处理后的数据;x2表示位于所述参比光路的所述热释电探测器的输出电压归一化处理后的数据;x3表示所述气压传感器的输出电压归一化处理后的数据;
S3:所述ACO-BP算法模型输出气压补偿后的气体浓度;
S4:所述显示器显示所述气体浓度。
优选地,所述S2步骤之前还包括步骤:
S5:建立一BP神经网络;
S6:用蚁群算法对所述BP神经网络进行优化,获得所述ACO-BP算法模型。
优选地,所述S6步骤进一步包括步骤:
S61:初始化;令集合Ipi(1≤i≤m)中的元素j的信息元素是τj(Ipi)(t)=C,(1≤j≤N),蚂蚁的数量为M,所有蚂蚁开始在蚁巢,最大迭代次数为Nmax
S62:释放蚂蚁;所有蚂蚁由集合Ipi出发,遵循以下路径规则在所有集合中按顺序查找元素,最终找到食物源,满足概率公式
Figure BDA0002386095260000031
Figure BDA0002386095260000032
其中,所有蚂蚁k以一定概率任意挑选第j个元素;
S63:信息素更新;当所有蚂蚁在各个集合中挑选了其中一个元素,把所有蚂蚁选择出的权值作为神经网络参数,可算出训练样本的输出误差,记录所选参数中的最优解;此过程所用时间是m,对于集合Ipi(1≤i≤m)中每个元素的信息素按公式(2)进行调整:
τj(Ipi)(t+m)=ρτ(Ipi)(t)+Δτj(Ipi) (2);
其中,τj(Ipi)(t)表示集合Ipi中的元素j的信息元素,t表示时间;参数p(0≤p≤1)表示信息素的持久性,1-p表示在t至t+m时间段信息素的降低程度;式中,
Figure BDA0002386095260000033
表示此次循环中第k只蚂蚁在集合Ipi中的第j个元素余下的信息素,满足公式(3):
Figure BDA0002386095260000034
其中Q是常量,代表蚂蚁完成一次循环后产生的信息素之和,e表示蚂蚁k挑选的元素当成神经网络的权值之和;
训练样本最大输出误差ek满足公式(4):
Figure BDA0002386095260000041
其中On表示神经网络的实际输出,Oq表示神经网络的期望输出值;
S64:重复步骤S62至S63,直至全部蚂蚁收敛至相同路径,迭代次数完成,获得最优解;
S65:将蚁群算法找到的最好权值作为BP算法的初始权值,采用BP算法进一步训练所述BP神经网络,采用验证样本对所述BP神经网络泛化能力检验,如满足误差要求,则结束,否则返回步骤S61。
本发明由于采用了以上技术方案,使其具有以下有益效果:
1.本发明提出一种新型梯形反射式气室,红外光源、探测器以及反光镜的特殊放置角度,可以使红外光在气室中经过多次反射,最终被热释电探测器接收,可有效的延长光程,并控制气室体积,有利于传感器小型化。
2.本发明采样气室进气口设置有疏水防尘膜,避免小水滴与灰尘进入气室影响传感器的正常工作,可提高传感器测量精度,延长传感器寿命。
3.本发明中采样气室的进气口与出气口分别设置于气室两侧,可避免待测气体在进入采样气室后发生局部堆积,保证气体的充分混合,使气体的实时测量浓度更为精确。
4.本发明中传感器采用了单光源双光路的结构,该结构能够在一定程度上消除光源抖动、光学器件污染等外界因素对测量精度带来的影响。
5.本发明采用ACO-BP算法进行气压补偿,弥补了现有的经验公式补偿法、电路补偿法的多项缺点,使补偿过程更加简便、精确,与现有技术相比具有精度高、成本低,结构小等特点。
附图说明
图1为本发明实施例的梯形气室的结构示意图;
图2为本发明实施例的气压补偿方法的流程图;
图3为本发明实施例的ACO-BO算法的流程图。
具体实施方式
下面根据附图1~图3,给出本发明的较佳实施例,并予以详细描述,使能更好地理解本发明的功能、特点。
请参阅图1,本发明实施例的一种梯形气室,包括一气室本体1、和设置于气室本体1内的一红外光源2、一反光杯3、一反光镜4、两热释电探测器5和一气压传感器6;气室本体1呈梯形且包括一顶面11、一底面12、两侧面13、一进气口14和一出气口15;进气口14和出气口15分别位于气室本体1的两侧,且进气口14位于顶面11,出气口15位于底面12;反光镜4固定于气室本体1内并与顶面11平行;反光杯3固定于一侧面13,红外光源2设置于反光杯3内侧,两热释电探测器5和气压传感器6设置于另一侧面13;红外光源2、反光杯3、顶面11和反光镜4配合形成一测量光路7和一参比光路8,两热释电探测器5分别位于测量光路7和参比光路8上。
还包括一数据处理器和一显示器,数据处理器连接显示器、两热释电探测器5和气压传感器6。
本实施例中,进气口14设置有一疏水防尘膜9,来避免小水滴与灰尘进入气室本体1影响传感器的正常工作。
气室本体1的内壁黄铜镀金处理,保证气室本体1内壁足够光滑。两侧面13与水平面呈45度夹角。
请参阅图1~图3,本发明实施例的一种基于本实施例梯形气室的气压补偿方法,包括步骤:
S1:采集两热释电探测器5和气压传感器6的输出电压并进行归一化处理,获得归一化数据;
S2:将归一化数据送至一ACO-BP算法模型的输入端作为输入向量X=(x1,x2,x3),其中x1表示位于测量光路7的热释电探测器5的输出电压归一化处理后的数据;x2表示位于参比光路8的热释电探测器5的输出电压归一化处理后的数据;x3表示气压传感器6的输出电压归一化处理后的数据;
S3:ACO-BP算法模型输出气压补偿后的气体浓度;
S4:显示器显示气体浓度。
优选地,S2步骤之前还包括步骤:
S5:建立一BP神经网络;
S6:用蚁群算法对BP神经网络进行优化,获得ACO-BP算法模型。
优选地,S6步骤进一步包括步骤:
S61:初始化;令集合Ipi(1≤i≤m)中的元素j的信息元素是τj(Ipi)(t)=C,(1≤j≤N),蚂蚁的数量为M,所有蚂蚁开始在蚁巢,最大迭代次数为Nmax
S62:释放蚂蚁;所有蚂蚁由集合Ipi出发,遵循以下路径规则在所有集合中按顺序查找元素,最终找到食物源,满足概率公式
Figure BDA0002386095260000061
Figure BDA0002386095260000062
其中,所有蚂蚁k以一定概率任意挑选第j个元素;
S63:信息素更新;当所有蚂蚁在各个集合中挑选了其中一个元素,把所有蚂蚁选择出的权值作为神经网络参数,可算出训练样本的输出误差,记录所选参数中的最优解;此过程所用时间是m,对于集合Ipi(1≤i≤m)中每个元素的信息素按公式(2)进行调整:
τj(Ipi)(t+m)=ρτ(Ipi)(t)+Δτj(Ipi) (2);
其中,τj(Ipi)(t)表示集合Ipi中的元素j的信息元素,t表示时间;参数p(0≤p≤1)表示信息素的持久性,1-p表示在t至t+m时间段信息素的降低程度;式中,
Figure BDA0002386095260000063
表示此次循环中第k只蚂蚁在集合Ipi中的第j个元素余下的信息素,满足公式(3):
Figure BDA0002386095260000064
其中Q是常量,代表蚂蚁完成一次循环后产生的信息素之和,e表示蚂蚁k挑选的元素当成神经网络的权值之和;
训练样本最大输出误差ek满足公式(4):
Figure BDA0002386095260000071
其中On表示神经网络的实际输出,Oq表示神经网络的期望输出值;
S64:重复步骤S62至S63,直至全部蚂蚁收敛至相同路径,迭代次数完成,获得最优解;
S65:将蚁群算法找到的最好权值作为BP算法的初始权值,采用BP算法进一步训练BP神经网络,采用验证样本对BP神经网络泛化能力检验,如满足误差要求,则结束,否则返回步骤S61,重新训练。使用蚁群算法优化BP神经网络结束,以此确定微处理器中的ACO-BP算法模型;
本发明实施例的一种基于本实施例梯形气室的气压补偿方法,在基于ACO-BP算法气压补偿的红外气体传感器的实际气体浓度测量中,通过数据处理器对热释电探测器5和气压传感器6的测量数据进行归一化处理,并将之作为ACO-BP算法输入层的输入向量,经过ACO-BP算法处理后,得到压力补偿后的气体浓度信息,最终在显示器上显示气体浓度信息。
本发明相较于经验公式,无需进行大量实验以标定模型参数,相较于电路补偿法,免除了繁琐电路的设计引入。过程结构简单、简化了气压补偿的过程,本发明在整个气体检测范围都进行了气压补偿,具有更好的适配性。
以上结合附图实施例对本发明进行了详细说明,本领域中普通技术人员可根据上述说明对本发明做出种种变化例。因而,实施例中的某些细节不应构成对本发明的限定,本发明将以所附权利要求书界定的范围作为本发明的保护范围。

Claims (8)

1.一种梯形气室,其特征在于,包括一气室本体、和设置于所述气室本体内的一红外光源、一反光杯、一反光镜、两热释电探测器和一气压传感器;所述气室本体呈梯形且包括一顶面、一底面、两侧面、一进气口和一出气口;所述进气口和所述出气口分别位于所述气室本体的两侧,且所述进气口位于所述顶面,所述出气口位于所述底面;所述反光镜固定于所述气室本体内并与所述顶面平行;所述反光杯固定于一所述侧面,所述红外光源设置于所述反光杯内侧,两所述热释电探测器和所述气压传感器设置于另一所述侧面;所述红外光源、所述反光杯、所述顶面和所述反光镜配合形成一测量光路和一参比光路,两所述热释电探测器分别位于所述测量光路和所述参比光路上。
2.根据权利要求1所述的梯形气室及其气压补偿方法,其特征在于,还包括一数据处理器和一显示器,所述数据处理器连接所述显示器、两所述热释电探测器和所述气压传感器。
3.根据权利要求2所述的梯形气室及其气压补偿方法,其特征在于,所述进气口设置有一疏水防尘膜。
4.根据权利要求3所述的梯形气室及其气压补偿方法,其特征在于,所述气室本体的内壁黄铜镀金处理。
5.根据权利要求3所述的梯形气室及其气压补偿方法,其特征在于,两所述侧面与水平面呈45度夹角。
6.一种基于权利要求2~5任一项所述梯形气室的气压补偿方法,包括步骤:
S1:采集两所述热释电探测器和所述气压传感器的输出电压并进行归一化处理,获得归一化数据;
S2:将所述归一化数据送至一ACO-BP算法模型的输入端作为输入向量X=(x1,x2,x3),其中x1表示位于所述测量光路的所述热释电探测器的输出电压归一化处理后的数据;x2表示位于所述参比光路的所述热释电探测器的输出电压归一化处理后的数据;x3表示所述气压传感器的输出电压归一化处理后的数据;
S3:所述ACO-BP算法模型输出气压补偿后的气体浓度;
S4:所述显示器显示所述气体浓度。
7.根据权利要求6所述的梯形气室及其气压补偿方法,其特征在于,所述S2步骤之前还包括步骤:
S5:建立一BP神经网络;
S6:用蚁群算法对所述BP神经网络进行优化,获得所述ACO-BP算法模型。
8.根据权利要求7所述的梯形气室及其气压补偿方法,其特征在于,所述S6步骤进一步包括步骤:
S61:初始化;令集合Ipi(1≤i≤m)中的元素j的信息元素是τj(Ipi)(t)=C,(1≤j≤N),蚂蚁的数量为M,所有蚂蚁开始在蚁巢,最大迭代次数为Nmax
S62:释放蚂蚁;所有蚂蚁由集合Ipi出发,遵循以下路径规则在所有集合中按顺序查找元素,最终找到食物源,满足概率公式
Figure FDA0002386095250000021
Figure FDA0002386095250000022
其中,所有蚂蚁k以一定概率任意挑选第j个元素;
S63:信息素更新;当所有蚂蚁在各个集合中挑选了其中一个元素,把所有蚂蚁选择出的权值作为神经网络参数,可算出训练样本的输出误差,记录所选参数中的最优解;此过程所用时间是m,对于集合Ipi(1≤i≤m)中每个元素的信息素按公式(2)进行调整:
τj(Ipi)(t+m)=ρτ(Ipi)(t)+Δτj(Ipi) (2);
其中,τj(Ipi)(t)表示集合Ipi中的元素j的信息元素,t表示时间;参数p(0≤p≤1)表示信息素的持久性,1-p表示在t至t+m时间段信息素的降低程度;式中,
Figure FDA0002386095250000023
表示此次循环中第k只蚂蚁在集合Ipi中的第j个元素余下的信息素,满足公式(3):
Figure FDA0002386095250000031
其中Q是常量,代表蚂蚁完成一次循环后产生的信息素之和,e表示蚂蚁k挑选的元素当成神经网络的权值之和;
训练样本最大输出误差ek满足公式(4):
Figure FDA0002386095250000032
其中On表示神经网络的实际输出,Oq表示神经网络的期望输出值;
S64:重复步骤S62至S63,直至全部蚂蚁收敛至相同路径,迭代次数完成,获得最优解;
S65:将蚁群算法找到的最好权值作为BP算法的初始权值,采用BP算法进一步训练所述BP神经网络,采用验证样本对所述BP神经网络泛化能力检验,如满足误差要求,则结束,否则返回步骤S61。
CN202010098617.7A 2020-02-18 2020-02-18 梯形气室及其气压补偿方法 Pending CN111189793A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010098617.7A CN111189793A (zh) 2020-02-18 2020-02-18 梯形气室及其气压补偿方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010098617.7A CN111189793A (zh) 2020-02-18 2020-02-18 梯形气室及其气压补偿方法

Publications (1)

Publication Number Publication Date
CN111189793A true CN111189793A (zh) 2020-05-22

Family

ID=70708795

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010098617.7A Pending CN111189793A (zh) 2020-02-18 2020-02-18 梯形气室及其气压补偿方法

Country Status (1)

Country Link
CN (1) CN111189793A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109696413A (zh) * 2018-12-20 2019-04-30 南京信息工程大学 采样气室、基于qpso算法的红外气体传感器及气压补偿方法
CN110057773A (zh) * 2019-05-05 2019-07-26 南京信息工程大学 一种红外气体传感器系统及基于AACA-Elman算法的温度补偿方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109696413A (zh) * 2018-12-20 2019-04-30 南京信息工程大学 采样气室、基于qpso算法的红外气体传感器及气压补偿方法
CN110057773A (zh) * 2019-05-05 2019-07-26 南京信息工程大学 一种红外气体传感器系统及基于AACA-Elman算法的温度补偿方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
章晓英: "基于蚁群算法优化 BP 神经网络的数控机床热误差补偿", 《组 合 机 床 与 自 动 化 加 工 技 术》 *

Similar Documents

Publication Publication Date Title
CN106153567B (zh) 基于bp神经网络压力补偿的红外气体传感器及检测方法
CN110146460B (zh) 一种带恒温控制功能的高灵敏多气体浓度检测系统及控制方法
CN109839364A (zh) 一种基于多点反射螺旋光路的气体传感器探头及检测装置
CN201331493Y (zh) 一种红外气体分析仪
CN105352583B (zh) 一种测量超声波声压和声强的光学方法和装置及其应用
CN106500911B (zh) 一种基于气体吸收谱线压力展宽效应的压力计校准方法
CN102755167A (zh) 非侵入式血糖监测装置与方法以及生化分子的分析方法
CN1260481A (zh) 自动检测和自动控制风洞风速的方法及装置
CN103712914A (zh) 同时检测气溶胶消光和散射系数的激光光腔衰荡光谱仪
CN108955877A (zh) 驱动方法以及分光测定方法
CN113640203B (zh) 一种多参数复杂极端环境模拟装置
US11635396B2 (en) Sensing device with drive sense circuit and particle sensor and methods for use therewith
CN109072163A (zh) 低功耗的细胞培养监测系统
CN109061330A (zh) 基于低频噪声与加速老化试验相结合的vcsel预筛选方法
CN114993990A (zh) 一种一体式小型开路温室气体通量监测方法
CN106124407A (zh) 一种光腔、具有该光腔的气溶胶消光仪及气溶胶消光系数的测量方法
Eichinger et al. Development of a scanning, solar-blind, water Raman lidar
CN111189793A (zh) 梯形气室及其气压补偿方法
Ishaku et al. Temperature effects on photoacoustic carbon dioxide sensor developed using mid-IR LED
CN108680527B (zh) 一种测量放射性碳14c的光腔衰荡光谱仪
CN105784606A (zh) 一种基于光学特性的水质监控系统
CN1971248A (zh) 高精度薄膜应力实时测量装置及测量方法
CN203745361U (zh) 同时检测气溶胶消光和散射系数的激光光腔衰荡光谱仪
CN105717048A (zh) 一种基于养殖水体光学特性的水质采集处理系统
CN206772801U (zh) 一种串联式气体光谱分析双气室

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200522