CN111189783B - A kind of detection method and application of D-glucose - Google Patents
A kind of detection method and application of D-glucose Download PDFInfo
- Publication number
- CN111189783B CN111189783B CN202010013434.0A CN202010013434A CN111189783B CN 111189783 B CN111189783 B CN 111189783B CN 202010013434 A CN202010013434 A CN 202010013434A CN 111189783 B CN111189783 B CN 111189783B
- Authority
- CN
- China
- Prior art keywords
- glucose
- cysteine
- detecting
- chiral
- molybdenum dioxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 title claims abstract description 95
- 238000001514 detection method Methods 0.000 title claims abstract description 41
- QXYJCZRRLLQGCR-UHFFFAOYSA-N dioxomolybdenum Chemical compound O=[Mo]=O QXYJCZRRLLQGCR-UHFFFAOYSA-N 0.000 claims abstract description 104
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 claims abstract description 26
- 235000018417 cysteine Nutrition 0.000 claims abstract description 26
- 108010015776 Glucose oxidase Proteins 0.000 claims abstract description 12
- 239000004366 Glucose oxidase Substances 0.000 claims abstract description 12
- 229940116332 glucose oxidase Drugs 0.000 claims abstract description 12
- 235000019420 glucose oxidase Nutrition 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims description 36
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 claims description 32
- 239000000243 solution Substances 0.000 claims description 28
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 22
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 claims description 22
- 238000002360 preparation method Methods 0.000 claims description 21
- 238000001142 circular dichroism spectrum Methods 0.000 claims description 16
- 229930195710 D‐cysteine Natural products 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 8
- XUJNEKJLAYXESH-UWTATZPHSA-N D-Cysteine Chemical compound SC[C@@H](N)C(O)=O XUJNEKJLAYXESH-UWTATZPHSA-N 0.000 claims description 7
- 239000011259 mixed solution Substances 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 6
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 239000004201 L-cysteine Substances 0.000 claims description 3
- 235000013878 L-cysteine Nutrition 0.000 claims description 3
- 229960003638 dopamine Drugs 0.000 claims description 3
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052982 molybdenum disulfide Inorganic materials 0.000 claims description 3
- PWKSKIMOESPYIA-UHFFFAOYSA-N 2-acetamido-3-sulfanylpropanoic acid Chemical group CC(=O)NC(CS)C(O)=O PWKSKIMOESPYIA-UHFFFAOYSA-N 0.000 claims description 2
- 125000000028 D-cysteine group Chemical group [H]N([H])[C@@]([H])(C(=O)[*])C(S[H])([H])[H] 0.000 claims description 2
- 238000002983 circular dichroism Methods 0.000 claims description 2
- 238000001727 in vivo Methods 0.000 claims description 2
- 238000002604 ultrasonography Methods 0.000 claims 1
- 235000000346 sugar Nutrition 0.000 abstract description 5
- 230000035945 sensitivity Effects 0.000 abstract description 4
- 230000004044 response Effects 0.000 abstract description 3
- 239000008103 glucose Substances 0.000 description 11
- 230000008859 change Effects 0.000 description 7
- 239000003446 ligand Substances 0.000 description 7
- 239000002105 nanoparticle Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000011056 performance test Methods 0.000 description 6
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000002086 nanomaterial Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- WQZGKKKJIJFFOK-ZZWDRFIYSA-N L-glucose Chemical compound OC[C@@H]1OC(O)[C@@H](O)[C@H](O)[C@H]1O WQZGKKKJIJFFOK-ZZWDRFIYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 3
- 238000005557 chiral recognition Methods 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 238000000978 circular dichroism spectroscopy Methods 0.000 description 2
- 238000006911 enzymatic reaction Methods 0.000 description 2
- 238000000024 high-resolution transmission electron micrograph Methods 0.000 description 2
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical compound Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 description 2
- HWYHZTIRURJOHG-UHFFFAOYSA-N luminol Chemical compound O=C1NNC(=O)C2=C1C(N)=CC=C2 HWYHZTIRURJOHG-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- -1 oxygen anions Chemical class 0.000 description 2
- 239000012224 working solution Substances 0.000 description 2
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- CKLJMWTZIZZHCS-UHFFFAOYSA-N Aspartic acid Chemical compound OC(=O)C(N)CC(O)=O CKLJMWTZIZZHCS-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- XOJVVFBFDXDTEG-UHFFFAOYSA-N Norphytane Natural products CC(C)CCCC(C)CCCC(C)CCCC(C)C XOJVVFBFDXDTEG-UHFFFAOYSA-N 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000000701 chemical imaging Methods 0.000 description 1
- UBEWDCMIDFGDOO-UHFFFAOYSA-N cobalt(II,III) oxide Inorganic materials [O-2].[O-2].[O-2].[O-2].[Co+2].[Co+3].[Co+3] UBEWDCMIDFGDOO-UHFFFAOYSA-N 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000002189 fluorescence spectrum Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052961 molybdenite Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000008450 motivation Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000005408 paramagnetism Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 238000011895 specific detection Methods 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 230000000707 stereoselective effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/19—Dichroism
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
技术领域technical field
本发明属于手性信号检测技术领域,涉及一种D-葡萄糖的检测方法和应用。The invention belongs to the technical field of chiral signal detection, and relates to a detection method and application of D-glucose.
背景技术Background technique
手性识别对映异构体中的手性分子非常重要,特别是在立体选择性合成、生物传感、生物成像、医药领域等方面。因此,开发有效识别和定量对映纯分子的有效方法已成为现代纳米材料设计的主要动机。Chiral recognition of chiral molecules in enantiomers is very important, especially in the fields of stereoselective synthesis, biosensing, bioimaging, and medicine. Thus, the development of efficient methods for the efficient identification and quantification of enantiopure molecules has become a major motivation for the design of modern nanomaterials.
迄今为止,已经对表面修饰的金属纳米颗粒、半导体以及碳基纳米材料等进行了深入研究,以用于生物分子的手性识别。但是,当前的方法主要依靠通过表面修饰(例如化学键合和静电引力)来调节纳米材料表面和手性配体之间的相互作用。尽管已经取得了很大的进步,但是纳米材料的稳定性和手性识别的敏感性仍然不能令人满意。So far, surface-modified metal nanoparticles, semiconductors, and carbon-based nanomaterials have been intensively studied for chiral recognition of biomolecules. However, current methods mainly rely on tuning the interactions between nanomaterial surfaces and chiral ligands through surface modifications such as chemical bonding and electrostatic attraction. Although great progress has been made, the stability and sensitivity of chiral recognition of nanomaterials are still unsatisfactory.
具有吸收波长可调的配体诱导的手性过渡金属氧化物因其广泛的潜在应用而引起了广泛的兴趣,包括生物传感、高光谱成像和光检测等。例如,Kotov等公开的用手性配体(如脯氨酸,天冬氨酸和半胱氨酸)修饰的手性WO3-x和Co3O4纳米颗粒表现出很强的光学手性,当存在顺磁性时甚至会增强。在这种情况下,这种手性是由金属-配体电荷转移(MLCT)效应引起的,这是由于未配对电子从金属δ轨道过渡到基于配体的π和π*轨道而引起的,表明金属原子的价态对于此类原子非常重要。目前对于MLCT手性起源的研究仍然很少。Ligand-induced chiral transition metal oxides with tunable absorption wavelengths have attracted widespread interest due to their wide range of potential applications, including biosensing, hyperspectral imaging, and photodetection. For example, Kotov et al. disclosed that chiral WO3 -x and Co3O4 nanoparticles modified with chiral ligands such as proline, aspartic acid and cysteine exhibited strong optical chirality , even enhanced when paramagnetism is present. In this case, this chirality is caused by the metal-ligand charge transfer (MLCT) effect, which results from the transition of unpaired electrons from metal delta orbitals to ligand-based π and π* orbitals, show that the valence state of metal atoms is very important for such atoms. There are still few studies on the origin of chirality in MLCT.
对于葡萄糖的检测一般基于紫外或荧光光谱分析,由于紫外、荧光的普适性,即大量物质存在紫外吸收或荧光发射光谱,检测特异性较低,无法直接识别手性葡萄糖(D-葡萄糖和L-葡萄糖)。The detection of glucose is generally based on ultraviolet or fluorescence spectral analysis. Due to the universality of ultraviolet and fluorescence, that is, a large number of substances have ultraviolet absorption or fluorescence emission spectra, the detection specificity is low, and chiral glucose (D-glucose and L-glucose) cannot be directly identified. -glucose).
CN110231486A公开了一种葡萄糖的检测方法,包括一种葡萄糖检测试剂盒,包括葡萄糖氧化酶溶液、碱性水溶液、MnO2 NPs和鲁米诺工作液;一种葡萄糖的检测方法,它包括:1)待测样品与浓度为0.8~1.5mg/mL的葡萄糖氧化酶溶液混合,在30~37℃下反应6-10min;2)取100μL反应后溶液与100μL NaOH水溶液、10μL浓度为0.01-1.0mg/mL MnO2 NPs和鲁米诺工作液混合;3)测量CL信号,根据回归方程计算葡萄糖浓度。该专利虽然可以检测葡萄糖的浓度,但是并无法区分手性葡萄糖的浓度。CN110231486A discloses a glucose detection method, including a glucose detection kit, including glucose oxidase solution, alkaline aqueous solution, MnO 2 NPs and luminol working solution; a glucose detection method, which includes: 1) The sample to be tested is mixed with glucose oxidase solution with a concentration of 0.8-1.5 mg/mL, and reacted at 30-37 °C for 6-10 min; 2) Take 100 μL of the reaction solution and 100 μL of NaOH aqueous solution, and 10 μL with a concentration of 0.01-1.0 mg/mL mL MnO 2 NPs and luminol working solution were mixed; 3) CL signal was measured, and the glucose concentration was calculated according to the regression equation. Although this patent can detect the concentration of glucose, it cannot distinguish the concentration of chiral glucose.
因此,需要提供一种可以识别检测手性葡萄糖的检测方法。Therefore, there is a need to provide a detection method that can identify and detect chiral glucose.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种D-葡萄糖的检测方法和应用。本发明提供的检测方法利用手性半胱氨酸封端的二氧化钼与葡萄糖氧化酶(Gox)配合使用,可以实现对D-葡萄糖的检测,对于其他非D-葡萄糖的糖分子样品无响应,具有高的选择性;同时检测灵敏度高且D-葡萄糖检测限(LOD)较低。The object of the present invention is to provide a detection method and application of D-glucose. The detection method provided by the present invention utilizes chiral cysteine-terminated molybdenum dioxide and glucose oxidase (Gox) in combination to detect D-glucose, but has no response to other non-D-glucose sugar molecule samples. It has high selectivity; at the same time, it has high detection sensitivity and low D-glucose detection limit (LOD).
为达到此发明目的,本发明采用以下技术方案:In order to achieve this object of the invention, the present invention adopts the following technical solutions:
第一方面,本发明提供了一种D-葡萄糖的检测方法,所述检测方法包括利用手性半胱氨酸封端的二氧化钼进行检测。In a first aspect, the present invention provides a method for detecting D-glucose, which comprises detecting by using chiral cysteine-terminated molybdenum dioxide.
在本发明中,由于过氧化氢可以使二氧化钼的化学价发生变化,进而使手性半胱氨酸封端的二氧化钼的手性信号发生变化,而葡萄糖氧化酶只能特异性的催化D-葡萄糖氧化生成过氧化氢,因此,利用手性半胱氨酸封端的二氧化钼可以特异性的识别检测D-葡萄糖。In the present invention, since hydrogen peroxide can change the chemical valence of molybdenum dioxide, thereby changing the chiral signal of chiral cysteine-terminated molybdenum dioxide, glucose oxidase can only specifically catalyze D-glucose is oxidized to generate hydrogen peroxide. Therefore, D-glucose can be specifically identified and detected by using chiral cysteine-terminated molybdenum dioxide.
在本发明中,所述检测方法包括如下步骤:In the present invention, the detection method comprises the following steps:
(1)绘制标准曲线;(1) draw a standard curve;
(2)将待测样品与手性半胱氨酸封端的二氧化钼混合,检测混合溶液的圆二色光谱;(2) mixing the sample to be tested with chiral cysteine-terminated molybdenum dioxide, and detecting the circular dichroism spectrum of the mixed solution;
(3)通过步骤(2)中得到的圆二色光谱的CD峰绝对值,对应标准曲线,确定待测样品中D-葡萄糖的浓度。(3) According to the CD peak absolute value of the circular dichroism spectrum obtained in step (2), corresponding to the standard curve, determine the concentration of D-glucose in the sample to be tested.
在本发明中,所述标准曲线以D-葡萄糖的浓度为横坐标,以手性半胱氨酸封端的二氧化钼的圆二色光谱的CD峰绝对值为纵坐标。In the present invention, the standard curve takes the concentration of D-glucose as the abscissa, and the CD peak absolute value of the circular dichroism spectrum of chiral cysteine-terminated molybdenum dioxide as the ordinate.
由于手性半胱氨酸封端的二氧化钼的圆二色光谱的CD峰变化值与过氧化氢浓度变化值呈线性关系,而葡萄糖氧化酶对D-葡萄糖催化生成过氧化氢也呈线性关系,因此,标准曲线为一次线性关系,每一种D-葡萄糖的浓度均对应唯一的CD峰绝对值。Because the CD peak change value of the circular dichroism spectrum of chiral cysteine-terminated molybdenum dioxide has a linear relationship with the hydrogen peroxide concentration change value, and the glucose oxidase has a linear relationship with the catalysis of D-glucose to generate hydrogen peroxide , therefore, the standard curve is a linear relationship, and each concentration of D-glucose corresponds to a unique CD peak absolute value.
即测试待测样品中的手性半胱氨酸封端的二氧化钼的圆二色光谱的CD峰值,即可得到待测样品中D-葡萄糖的浓度。That is, by testing the CD peak of the circular dichroism spectrum of the chiral cysteine-terminated molybdenum dioxide in the sample to be tested, the concentration of D-glucose in the sample to be tested can be obtained.
优选地,所述标准曲线的绘制方法包括如下步骤:Preferably, the method for drawing the standard curve comprises the following steps:
(A)分别配置不同浓度的D-葡萄糖溶液,所述D-葡萄糖溶液中包括葡萄糖氧化酶;(A) D-glucose solutions of different concentrations are respectively configured, and the D-glucose solution includes glucose oxidase;
(B)将D-葡萄糖溶液与手性半胱氨酸封端的二氧化钼混合,利用圆二色光谱检测手性半胱氨酸封端的二氧化钼的CD峰绝对值;(B) D-glucose solution is mixed with chiral cysteine-terminated molybdenum dioxide, and the CD peak absolute value of chiral cysteine-terminated molybdenum dioxide is detected by circular dichroism spectroscopy;
(C)以D-葡萄糖的浓度为横坐标,以CD峰绝对值为纵坐标,绘制标准曲线。(C) Draw the standard curve with the concentration of D-glucose as the abscissa and the absolute value of the CD peak as the ordinate.
优选地,步骤(A)所述D-葡萄糖溶液中D-葡萄糖的浓度为0-100000μM,例如1μM、50μM、100μM、600μM、800μM、1000μM、5000μM、10000μM、50000μM、80000μM等,优选200-1000μM,例如400μM、600μM、800μM等。Preferably, the concentration of D-glucose in the D-glucose solution in step (A) is 0-100000 μM, such as 1 μM, 50 μM, 100 μM, 600 μM, 800 μM, 1000 μM, 5000 μM, 10000 μM, 50000 μM, 80000 μM, etc., preferably 200-1000 μM , such as 400 μM, 600 μM, 800 μM, etc.
优选地,步骤(A)中至少配制3种以上(例如4种、5种、6种、7种、8种等)不同浓度的D-葡萄糖溶液,进一步优选5种以上。Preferably, in step (A), at least 3 or more (
优选地,所述D-葡萄糖溶液中,所述葡萄糖氧化酶的浓度为50-400U/mL,例如100U/mL、150U/mL、200U/mL、250U/mL、300U/mL、350U/mL等,进一步优选100U/mL。Preferably, in the D-glucose solution, the concentration of the glucose oxidase is 50-400U/mL, such as 100U/mL, 150U/mL, 200U/mL, 250U/mL, 300U/mL, 350U/mL, etc. , more preferably 100U/mL.
优选地,步骤(B)中的混合溶液中,所述手性半胱氨酸封端的二氧化钼的浓度为0.1-100mmol/L,例如0.2mmol/L、0.5mmol/L、1mmol/L、2mmol/L、5mmol/L、10mmol/L、12mmol/L、20mmol/L、50mmol/L、80mmol/L、90mmol/L等,进一步优选10mmol/L。Preferably, in the mixed solution in step (B), the concentration of the chiral cysteine-terminated molybdenum dioxide is 0.1-100mmol/L, such as 0.2mmol/L, 0.5mmol/L, 1mmol/L, 2mmol/L, 5mmol/L, 10mmol/L, 12mmol/L, 20mmol/L, 50mmol/L, 80mmol/L, 90mmol/L, etc., more preferably 10mmol/L.
优选地,步骤(B)所述混合的时间为10-120min,例如20min、30min、50min、100min、110min等,进一步优选30min。Preferably, the mixing time in step (B) is 10-120 min, such as 20 min, 30 min, 50 min, 100 min, 110 min, etc., more preferably 30 min.
优选地,所述手性半胱氨酸封端的二氧化钼包括L-半胱氨酸封端的二氧化钼和/或D-半胱氨酸封端的二氧化钼。Preferably, the chiral cysteine-terminated molybdenum dioxide comprises L-cysteine-terminated molybdenum dioxide and/or D-cysteine-terminated molybdenum dioxide.
优选地,所述手性半胱氨酸封端的二氧化钼的制备方法如下:Preferably, the preparation method of the chiral cysteine-terminated molybdenum dioxide is as follows:
利用手性半胱氨酸与三氧化钼反应,得到手性半胱氨酸封端的二氧化钼。The chiral cysteine-terminated molybdenum dioxide is obtained by reacting chiral cysteine with molybdenum trioxide.
优选地,所述手性半胱氨酸和所述三氧化钼的摩尔比为(50-200):3,例如60:3、70:3、80:3、85:3、90:3、95:3、100:3、120:3、150:3、180:3等,进一步优选100:3。Preferably, the molar ratio of the chiral cysteine and the molybdenum trioxide is (50-200):3, such as 60:3, 70:3, 80:3, 85:3, 90:3, 95:3, 100:3, 120:3, 150:3, 180:3, etc., more preferably 100:3.
优选地,所述反应包括超声5min后在避光反应下孵育1周。Preferably, the reaction includes sonication for 5 min followed by incubation in the dark for 1 week.
优选地,所述三氧化钼以溶液的形式参与反应。Preferably, the molybdenum trioxide participates in the reaction in the form of a solution.
优选地,所述三氧化钼的制备方法包括如下步骤:Preferably, the preparation method of the molybdenum trioxide comprises the steps:
将二硫化钼与过氧化氢混合反应,得到所述三氧化钼。The molybdenum disulfide and hydrogen peroxide are mixed and reacted to obtain the molybdenum trioxide.
优选地,所述手性半胱氨酸包括L-半胱氨酸和/或D-半胱氨酸;Preferably, the chiral cysteine includes L-cysteine and/or D-cysteine;
优选地,所述手性半胱氨酸为L-半胱氨酸,所述手性半胱氨酸封端的二氧化钼为L-半胱氨酸封端的二氧化钼(L-Cys-MoO2 NP)。Preferably, the chiral cysteine is L-cysteine, and the chiral cysteine-terminated molybdenum dioxide is L-cysteine-terminated molybdenum dioxide (L-Cys-MoO 2NP ).
优选地,所述手性半胱氨酸为D-半胱氨酸,所述手性半胱氨酸封端的二氧化钼为D-半胱氨酸封端的二氧化钼(D-Cys-MoO2)。Preferably, the chiral cysteine is D-cysteine, and the chiral cysteine-terminated molybdenum dioxide is D-cysteine-terminated molybdenum dioxide (D-Cys-MoO 2 ).
为了保证Cys-MoO2 NP在溶液中分散良好,水溶液中的样品均通过离心3分钟进行纯化,以8000rpm的转速除去沉淀物(如有沉淀),并在使用前保持在20℃。To ensure the Cys-MoO 2 NPs were well dispersed in the solution, the samples in the aqueous solution were purified by centrifugation for 3 min, the precipitate (if any) was removed at 8000 rpm, and kept at 20 °C before use.
第二方面,本发明提供了根据第一方面所述的D-葡萄糖的检测方法在生物体内活性氧自由基或多巴胺的检测中的应用。In the second aspect, the present invention provides the application of the D-glucose detection method according to the first aspect in the detection of reactive oxygen radicals or dopamine in vivo.
由于半胱氨酸封端的二氧化钼对外界环境中的氧化剂具有灵敏响应,因此在生物细胞内的新陈代谢中所产生的氧负离子、羟基自由基、多巴胺、次氯酸根、过氧化氢等氧化剂的传感与检测都是可以通过该方法实现。Since cysteine-terminated molybdenum dioxide has a sensitive response to oxidants in the external environment, oxygen anions, hydroxyl radicals, dopamine, hypochlorite, hydrogen peroxide and other oxidants generated in the metabolism of biological cells are Both sensing and detection can be achieved by this method.
相对于现有技术,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
(1)在本发明中,由于过氧化氢可以使二氧化钼的化学价发生变化,进而使手性半胱氨酸封端的二氧化钼的手性信号发生变化,而葡萄糖氧化酶只能特异性的催化D-葡萄糖氧化生成过氧化氢,因此,利用手性半胱氨酸封端的二氧化钼可以特异性的识别检测D-葡萄糖。(1) In the present invention, because hydrogen peroxide can change the chemical valence of molybdenum dioxide, and then change the chiral signal of chiral cysteine-terminated molybdenum dioxide, and glucose oxidase can only be specific Therefore, the use of chiral cysteine-terminated molybdenum dioxide can specifically recognize and detect D-glucose.
(2)由于手性半胱氨酸封端的二氧化钼的圆二色光谱的CD峰变化值与过氧化氢浓度变化值呈线性关系,而葡萄糖氧化酶对D-葡萄糖催化生成过氧化氢也呈线性关系,因此,D-葡萄糖的浓度与CD峰绝对值同样呈线性关系,即可以利用待测样品中的手性半胱氨酸封端的二氧化钼的圆二色光谱的CD峰值得到待测样品中D-葡萄糖的浓度。(2) Because the CD peak change value of the circular dichroism spectrum of chiral cysteine-terminated molybdenum dioxide has a linear relationship with the change value of hydrogen peroxide concentration, and glucose oxidase catalyzes D-glucose to generate hydrogen peroxide. Therefore, the concentration of D-glucose has a linear relationship with the absolute value of the CD peak, that is, the CD peak of the circular dichroism spectrum of the chiral cysteine-terminated molybdenum dioxide in the sample to be tested can be used to obtain the desired value. Measure the concentration of D-glucose in the sample.
附图说明Description of drawings
图1是制备例1合成的D-Cys-MoO2 NP的HRTEM图。FIG. 1 is an HRTEM image of D-Cys-MoO 2 NP synthesized in Preparation Example 1. FIG.
图2是基于HRTEM的制备例1合成的D-Cys-MoO2 NP的粒径尺寸分布图。FIG. 2 is a particle size distribution diagram of D-Cys-MoO 2 NPs synthesized in Preparation Example 1 based on HRTEM.
图3是制备例1的圆二色光谱图。3 is a circular dichroism spectrum diagram of Preparation Example 1. FIG.
图4是制备例1提供的样品的XPS能谱图。4 is the XPS spectrum of the sample provided in Preparation Example 1.
图5为制备例1提供的样品的Mo 3d区域的高分辨率XPS光谱及拟合结果图。FIG. 5 is a high-resolution XPS spectrum and fitting result of the
图6是实施例1中拟合的标准曲线图。FIG. 6 is a graph of the standard curve fitted in Example 1. FIG.
图7是实施例2中拟合的标准曲线图。FIG. 7 is a graph of the standard curve fitted in Example 2. FIG.
图8是D-Cys-MoO2 NP与各种糖的选择性研究结果图。Figure 8 is a graph showing the results of a study on the selectivity of D-Cys-MoO 2 NPs with various sugars.
图9是性能测试中对于D-葡萄糖的检测限的拟合曲线图。Figure 9 is a fitted graph of detection limits for D-glucose in a performance test.
具体实施方式Detailed ways
下面通过具体实施方式来进一步说明本发明的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。The technical solutions of the present invention are further described below through specific embodiments. It should be understood by those skilled in the art that the embodiments are only for helping the understanding of the present invention, and should not be regarded as a specific limitation of the present invention.
制备例1Preparation Example 1
一种D-半胱氨酸封端的二氧化钼纳米颗粒(D-Cys-MoO2 NP),制备方法如下:A D-cysteine-terminated molybdenum dioxide nanoparticle (D-Cys-MoO 2 NP), the preparation method is as follows:
(1)MoO3溶液的制备:( 1 ) Preparation of MoO3 solution:
剧烈搅拌下,将0.8g原始黑色MoS2粉(5mmol)溶解在462.5mL去离子水中,之后,将37.5mL的30wt%的H2O2添加至所制备的溶液中;然后,黑色混合物变成透明的黄色,将溶液加热到80℃,除去过量的H2O2。待混合后的分散液变为透明,停止热处理。Under vigorous stirring, 0.8 g of pristine black MoS2 powder ( 5 mmol) was dissolved in 462.5 mL of deionized water, after which 37.5 mL of 30 wt% H2O2 was added to the prepared solution ; then, the black mixture became Clear yellow, the solution was heated to 80°C to remove excess H2O2 . The dispersion liquid to be mixed becomes transparent, and the heat treatment is stopped.
(2)制备D-Cys-MoO2 NP:(2) Preparation of D-Cys-MoO 2 NPs:
将60mg D-半胱氨酸(D-Cys)添加到1.5mL(10mM)步骤(1)得到的MoO3溶液,将混合物超声处理5分钟,然后在黑暗中孵育1周,得到D-Cys-MoO2 NP。60 mg D-cysteine (D-Cys) was added to 1.5 mL (10 mM) of the MoO solution obtained in step ( 1 ), the mixture was sonicated for 5 min, and then incubated in the dark for 1 week to obtain D-Cys- MoO 2 NPs.
制备例2Preparation Example 2
一种L-半胱氨酸封端的二氧化钼纳米颗粒(L-Cys-MoO2 NP),制备方法参考制备例1,区别在于将D-Cys替换为L-Cys。An L-cysteine-terminated molybdenum dioxide nanoparticle (L-Cys-MoO 2 NP), the preparation method refers to Preparation Example 1, the difference is that D-Cys is replaced by L-Cys.
性能测试1performance test 1
对制备例1-2提供的手性半胱氨酸封端的二氧化钼纳米颗粒进行性能测试,方法如下:The performance test of the chiral cysteine-terminated molybdenum dioxide nanoparticles provided in Preparation Example 1-2 is as follows:
(1)粒径分布:利用高分辨透射电子显微镜(HRTEM)观察其粒径大小;(1) Particle size distribution: observe the particle size by high-resolution transmission electron microscope (HRTEM);
图1为制备例1合成的D-Cys-MoO2 NP的HRTEM图,图2是基于HRTEM的制备例1合成的D-Cys-MoO2 NP的粒径尺寸分布图,其观察并统计了100个单个纳米颗粒,由图1和图2可知,其手性半胱氨酸封端的二氧化钼纳米颗粒的粒径大小在24.9±0.8mm范围内。Fig. 1 is the HRTEM image of D-Cys-MoO 2 NP synthesized in Preparation Example 1, and Fig. 2 is the particle size distribution diagram of D-Cys-MoO 2 NP synthesized in Preparation Example 1 based on HRTEM, which was observed and counted 100 It can be seen from Figures 1 and 2 that the size of the chiral cysteine-terminated molybdenum dioxide nanoparticles is in the range of 24.9±0.8mm.
(2)圆二色光谱测试:使用JASCO J-1500圆二色谱仪器进行圆二色光谱测试;(2) Circular dichroism spectrum test: use JASCO J-1500 circular dichroism instrument to conduct circular dichroism spectrum test;
图3为制备例1的圆二色光谱图,由图可知,可以观测到很强的CD信号。分别记录了在376nm和580nm处的两个CD谱带,以下记作峰(I)和峰(II),配体的手性对映异构体显示相反的线形,而纯L-或D-半胱氨酸具有CD谱带在220nm处,表明本发明制备得到了手性半胱氨酸封端的二氧化钼纳米颗粒。FIG. 3 is a circular dichroism spectrum diagram of Preparation Example 1. As can be seen from the diagram, a strong CD signal can be observed. Two CD bands were recorded at 376 nm and 580 nm, hereinafter referred to as peak (I) and peak (II), the chiral enantiomer of the ligand showed opposite linearity, while pure L- or D- Cysteine has a CD band at 220 nm, indicating that the chiral cysteine-terminated molybdenum dioxide nanoparticles are prepared by the present invention.
(3)样品元素分析:利用X射线光电子能谱(XPS)进行分析;(3) Elemental analysis of samples: analysis by X-ray photoelectron spectroscopy (XPS);
图4为制备例1提供的样品的XPS能谱图,图5为Mo 3d区域的高分辨率XPS光谱及拟合结果图,图4中证实了半胱氨酸以及钼和氧的存在,图5中对Mo 3d的高分辨率XPS光谱进行拟合时,Mo 3d5/2-Mo 3d3/2双峰的拆分能量约为3.15eV,固定面积比为3:2,拟合需要在钼的3d5/2峰上使用两个位置,一个用于Mo(IV),一个用于Mo(VI),分别在229.2eV和232.5eV位置,这与文献报道吻合;Mo(Mo VI)的这种较高氧化态的贡献(<5%)可能是由于MoO2纳米颗粒的部分表面氧化所致。根据XPS结果得出的Mo IV比率约为94.8%。既证明了二氧化钼的存在;226.9eV处的肩峰可能是由于嫁接在NP上的半胱氨酸配体的S 2s贡献,这也可以通过161.8eV的S 2p峰证实。Figure 4 is the XPS spectrum of the sample provided in Preparation Example 1, and Figure 5 is the high-resolution XPS spectrum of the
实施例1Example 1
一种D-葡萄糖的检测方法如下:A kind of detection method of D-glucose is as follows:
(1)绘制标准曲线:(1) Draw the standard curve:
a.制备0.5mL的Gox和D-葡萄糖的水溶液,其中包含80μL的Gox(5U/μL)和不同浓度的D-葡萄糖,酶促反应系统孵化30min;a. Prepare 0.5mL aqueous solution of Gox and D-glucose, which contains 80μL of Gox (5U/μL) and D-glucose of different concentrations, and incubate the enzymatic reaction system for 30min;
其中,D-葡萄糖浓度分别为200μM、400μM、600μM、800μM和1000μM。Among them, the D-glucose concentrations were 200 μM, 400 μM, 600 μM, 800 μM and 1000 μM, respectively.
b.将1.5mL D-Cys-MoO2溶液(400μL,10mM)添加到上述溶液中,将反应体系连续搅拌30min,利用圆二色光谱检测手性半胱氨酸封端的二氧化钼的CD峰绝对值。b. 1.5 mL of D-Cys-MoO 2 solution (400 μL, 10 mM) was added to the above solution, the reaction system was continuously stirred for 30 min, and the CD peak of chiral cysteine-terminated molybdenum dioxide was detected by circular dichroism spectroscopy absolute value.
c.以D-葡萄糖的浓度为横坐标,以CD峰绝对值为纵坐标,绘制标准曲线。c. Draw a standard curve with the concentration of D-glucose as the abscissa and the absolute value of the CD peak as the ordinate.
(2)将待测样品、D-Cys-MoO2和溶剂混合,检测混合溶液的圆二色光谱;(2) mixing the sample to be tested, D-Cys-MoO 2 and the solvent, and detecting the circular dichroism spectrum of the mixed solution;
(3)通过步骤(2)中得到的圆二色光谱的CD峰绝对值,对应标准曲线,确定待测样品中D-葡萄糖的浓度。(3) According to the CD peak absolute value of the circular dichroism spectrum obtained in step (2), corresponding to the standard curve, determine the concentration of D-glucose in the sample to be tested.
图6为实施例1中拟合的标准曲线图,由图可知,相关系数R2=0.988>0.98,表明线性关系良好。FIG. 6 is a graph of the standard curve fitted in Example 1. It can be seen from the graph that the correlation coefficient R 2 =0.988>0.98, indicating a good linear relationship.
实施例2Example 2
与实施例1的区别在于,将D-Cys-MoO2替换为L-Cys-MoO2。The difference from Example 1 is that D-Cys-MoO 2 is replaced by L-Cys-MoO 2 .
图7为实施例2中得到的标准曲线,由图可知,相关系数R2=0.997>0.99,表明线性关系良好。FIG. 7 is the standard curve obtained in Example 2, and it can be seen from the figure that the correlation coefficient R 2 =0.997>0.99, indicating a good linear relationship.
性能测试2
对实施例提供的检测方法进行验证,方法如下:The detection method provided by the embodiment is verified, and the method is as follows:
(1)准确性验证:(1) Accuracy verification:
制备D-葡萄糖的待测液,其中包含80μL的Gox(5U/μL)和不同浓度的D-葡萄糖,酶促反应系统孵化30min;Prepare the test solution of D-glucose, which contains 80 μL of Gox (5U/μL) and D-glucose of different concentrations, and incubate the enzymatic reaction system for 30 minutes;
其中,D-葡萄糖浓度分别为385μM、560μM和937μM,Among them, the D-glucose concentrations were 385 μM, 560 μM and 937 μM, respectively,
然后利用实施例提供的检测方法进行检测,检测结果见表1:Then utilize the detection method that embodiment provides to detect, and the detection results are shown in Table 1:
表1Table 1
由实施例和性能测试可知,本发明提供的检测方法可以准确的进行D-葡萄糖的检测,检测准确度较高,误差较小,误差在6%以下。It can be known from the examples and performance tests that the detection method provided by the present invention can accurately detect D-glucose, with high detection accuracy and small error, and the error is less than 6%.
(2)选择性研究:利用该体系进行了不同糖的检测,果糖、麦芽糖、木糖、乳糖、蔗糖、L-葡萄糖和D-葡萄糖,研究表明只有D-葡萄糖有明显的响应,证明对D-葡萄糖的特异性识别;(2) Selectivity study: The system was used to detect different sugars, fructose, maltose, xylose, lactose, sucrose, L-glucose and D-glucose. - specific recognition of glucose;
图8为D-Cys-MoO2 NP对各种糖的选择性研究结果图。由图8可知,该体系内只对D-葡萄糖有响应,对L-葡萄糖及其他糖类均无响应。Figure 8 is a graph showing the results of studies on the selectivity of D-Cys-MoO 2 NPs to various sugars. It can be seen from Fig. 8 that the system only responded to D-glucose, and did not respond to L-glucose and other carbohydrates.
(3)检测限(LOD):分别配制D-葡萄糖浓度为0μM、1μM、3μM、5μM、10μM、30μM和50μM的混合溶液,其中含有80μL的Gox(5U/μL),参照绘制标准曲线的方法进行测试;(3) Limit of detection (LOD): Prepare mixed solutions with D-glucose concentrations of 0 μM, 1 μM, 3 μM, 5 μM, 10 μM, 30 μM and 50 μM, respectively, which contain 80 μL of Gox (5U/μL), referring to the method for drawing a standard curve carry out testing;
图9为检测限的拟合曲线图,由图可知,拟合曲线y=a+bx,a=0.455,b=0.218,R2=0.992;计算得到检测限(LOD)为0.446μM。Fig. 9 is a fitting curve diagram of detection limit. It can be seen from the figure that the fitting curve is y=a+bx, a=0.455, b=0.218, R 2 =0.992; the calculated limit of detection (LOD) is 0.446 μM.
由实施例和性能测试可知,本发明提供的检测方法可以实现对D-葡萄糖的特异性检测,检测准确度和灵敏度高,同时,对D-葡萄糖的检测限较低,在0.446μM以下。It can be seen from the examples and performance tests that the detection method provided by the present invention can realize the specific detection of D-glucose, with high detection accuracy and sensitivity, and at the same time, the detection limit of D-glucose is lower than 0.446 μM.
申请人声明,本发明通过上述实施例来说明本发明的D-葡萄糖的检测方法和应用,但本发明并不局限于上述工艺步骤,即不意味着本发明必须依赖上述工艺步骤才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明所选用原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。The applicant declares that the present invention illustrates the D-glucose detection method and application of the present invention through the above-mentioned embodiments, but the present invention is not limited to the above-mentioned process steps, that is, it does not mean that the present invention must rely on the above-mentioned process steps to be implemented. Those skilled in the art should understand that any improvement of the present invention, the equivalent replacement of the selected raw materials of the present invention, the addition of auxiliary components, the selection of specific methods, etc., all fall within the protection scope and disclosure scope of the present invention.
Claims (23)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010013434.0A CN111189783B (en) | 2020-01-07 | 2020-01-07 | A kind of detection method and application of D-glucose |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010013434.0A CN111189783B (en) | 2020-01-07 | 2020-01-07 | A kind of detection method and application of D-glucose |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111189783A CN111189783A (en) | 2020-05-22 |
CN111189783B true CN111189783B (en) | 2022-07-19 |
Family
ID=70708535
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010013434.0A Active CN111189783B (en) | 2020-01-07 | 2020-01-07 | A kind of detection method and application of D-glucose |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111189783B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111747449A (en) * | 2020-07-17 | 2020-10-09 | 武汉理工大学 | Electrode material with ultrafine MoO2 nanoparticles bridging uniformly inside a sheet-like carbon matrix and its preparation method and application |
CN114478597B (en) * | 2021-12-29 | 2023-08-29 | 宁波大学 | Reagent for rapidly identifying glucose chirality and preparation method and application thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109632732A (en) * | 2018-11-26 | 2019-04-16 | 山西大学 | A kind of near-infrared fluorescent enhanced sensitivity method measurement glucose |
CN110095444A (en) * | 2019-05-09 | 2019-08-06 | 南宁师范大学 | Utilize the method for carbon quantum dot detection glucose in solutions concentration |
CN110639015A (en) * | 2019-10-09 | 2020-01-03 | 中国医科大学 | Preparation method of chiral light-controllable oxygen-deficient molybdenum oxide nanoparticles and application of chiral light-controllable oxygen-deficient molybdenum oxide nanoparticles in tumor photothermal therapy |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6855556B2 (en) * | 2002-01-04 | 2005-02-15 | Becton, Dickinson And Company | Binding protein as biosensors |
-
2020
- 2020-01-07 CN CN202010013434.0A patent/CN111189783B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109632732A (en) * | 2018-11-26 | 2019-04-16 | 山西大学 | A kind of near-infrared fluorescent enhanced sensitivity method measurement glucose |
CN110095444A (en) * | 2019-05-09 | 2019-08-06 | 南宁师范大学 | Utilize the method for carbon quantum dot detection glucose in solutions concentration |
CN110639015A (en) * | 2019-10-09 | 2020-01-03 | 中国医科大学 | Preparation method of chiral light-controllable oxygen-deficient molybdenum oxide nanoparticles and application of chiral light-controllable oxygen-deficient molybdenum oxide nanoparticles in tumor photothermal therapy |
Non-Patent Citations (2)
Title |
---|
1,2-氧-异丙叉基-α-D-葡萄糖的合成与表征;官仕龙 等;《武汉工程大学学报》;20120331;第34卷(第3期);第1-4,10页 * |
A Visible- and NIR-light responsive Photothermal Therapy Agent by Chirality-Dependent MoO3-x Nanoparticles;Qiqi Zhang et al;《Advanced Functional Materials》;20191104;第30卷;第1-9页 * |
Also Published As
Publication number | Publication date |
---|---|
CN111189783A (en) | 2020-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Co 3 O 4 nanocrystals as an efficient catalase mimic for the colorimetric detection of glutathione | |
Kong et al. | MnO 2-induced synthesis of fluorescent polydopamine nanoparticles for reduced glutathione sensing in human whole blood | |
Li et al. | Synergistic effect enhances the peroxidase-like activity in platinum nanoparticle-supported metal—Organic framework hybrid nanozymes for ultrasensitive detection of glucose | |
Lu et al. | Engineering FeCo alloy@ N-doped carbon layers by directly pyrolyzing Prussian blue analogue: new peroxidase mimetic for chemiluminescence glucose biosensing | |
Zhu et al. | Carboxylic-group-functionalized single-walled carbon nanohorns as peroxidase mimetics and their application to glucose detection | |
Molaabasi et al. | Hydrogen peroxide sensitive hemoglobin-capped gold nanoclusters as a fluorescence enhancing sensor for the label-free detection of glucose | |
CN111189783B (en) | A kind of detection method and application of D-glucose | |
CN106987245B (en) | Manganese dioxide nanosheet modified up-conversion luminescent nanomaterial, preparation method thereof, detection method of hydrogen peroxide or choline and application thereof | |
Zhao et al. | Mixed-solvent liquid exfoliated MoS 2 NPs as peroxidase mimetics for colorimetric detection of H 2 O 2 and glucose | |
Wen et al. | Cesium-doped graphene quantum dots as ratiometric fluorescence sensors for blood glucose detection | |
Zhao et al. | Photothermal-enhanced tandem enzyme-like activity of Ag2-xCuxS nanoparticles for one-step colorimetric glucose detection in unprocessed human urine | |
CN107573933A (en) | A kind of carbon quantum dot copper ion fluorescence probe and its preparation method and application | |
CN107300544B (en) | Detection method of ferrous ions | |
CN105692719B (en) | Preparation of cobalt sulfide nanomaterial and method for detecting hydrogen peroxide | |
Wang et al. | A fluorescence “off–on–off” sensing platform based on bimetallic gold/silver nanoclusters for ascorbate oxidase activity monitoring | |
CN112362646B (en) | A nanozyme-based glutathione sensor and its preparation method and application | |
Chen et al. | Signal-on bimodal sensing glucose based on enzyme product-etching MnO2 nanosheets for detachment of MoS2 quantum dots | |
CN105866083A (en) | Peroxynitrite ion detection probe as well as preparation method and application thereof | |
Zhang et al. | In situ polymerization of aniline on carbon quantum dots: a new platform for ultrasensitive detection of glucose and hydrogen peroxide | |
Nishan et al. | Investigation of silver-doped iron oxide nanostructures functionalized with ionic liquid for colorimetric sensing of hydrogen peroxide | |
Guo et al. | Ultra-sensitive dopamine sensor using stable black phosphorus quantum dots | |
CN106370634A (en) | Application of CdTe QD@ZIF-8 core-shell nano composite material in detection of oxidase activity | |
Bai et al. | A ratiometric fluorescence platform composed of MnO 2 nanosheets and nitrogen, chlorine co-doped carbon dots and its logic gate performance for glutathione determination | |
CN111122554B (en) | Method for detecting concentration of hydrogen peroxide and application | |
Liu et al. | Ratiometric fluorescence determination of hydrogen peroxide using carbon dot-embedded Ag@ EuWO 4 (OH) nanocomposites |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |