CN111185906A - 一种基于Leap Motion的灵巧手主从控制方法 - Google Patents

一种基于Leap Motion的灵巧手主从控制方法 Download PDF

Info

Publication number
CN111185906A
CN111185906A CN202010024898.1A CN202010024898A CN111185906A CN 111185906 A CN111185906 A CN 111185906A CN 202010024898 A CN202010024898 A CN 202010024898A CN 111185906 A CN111185906 A CN 111185906A
Authority
CN
China
Prior art keywords
hand
dexterous
fingers
matrix
cartesian space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010024898.1A
Other languages
English (en)
Other versions
CN111185906B (zh
Inventor
徐昱琳
徐弘�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Transpacific Technology Development Ltd
Original Assignee
Beijing Transpacific Technology Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Transpacific Technology Development Ltd filed Critical Beijing Transpacific Technology Development Ltd
Priority to CN202010024898.1A priority Critical patent/CN111185906B/zh
Publication of CN111185906A publication Critical patent/CN111185906A/zh
Application granted granted Critical
Publication of CN111185906B publication Critical patent/CN111185906B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1612Programme controls characterised by the hand, wrist, grip control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0009Gripping heads and other end effectors comprising multi-articulated fingers, e.g. resembling a human hand
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Abstract

本发明公开了一种基于Leap Motion的灵巧手主从控制方法,在五指伸展的状态下获取人手和灵巧手的五指指尖和指掌关节位置信息,由这些信息执行映射算法,计算出实现人手与灵巧手之间精确的运动映射所需要的变换矩阵;接下来通过Leap Motion视觉传感器实时获取人手五指指尖在参考坐标系下的笛卡尔空间坐标,通过变换矩阵变换到灵巧手的笛卡尔空间,实现重映射,重映射得到的空间坐标就是灵巧手对应五指指尖的目标位置,然后根据重映射得到的灵巧手指尖的目标位置,对灵巧手五指进行逆运动学解算,得到五指各关节的角度值,最后通过灵巧手的驱动机构驱动五指各关节运动对应的角度值,使灵巧手指尖运动到目标位置,完成基于人手运动映射的灵巧手抓持规划。

Description

一种基于Leap Motion的灵巧手主从控制方法
技术领域
本发明属于人机交互技术领域,具体涉及一种基于Leap Motion的灵巧手主从控制方法。
背景技术
灵巧手的抓持规划是灵巧手相关技术研究中的关键技术。由于灵巧手所处的工作环境具有高度复杂性、动态性和不可预测性,且灵巧手对于环境的感知也存在不可靠性,要求灵巧手实现完全自主的抓持规划是一项极具挑战性的课题。而主从控制则是通过人手直接控制灵巧手的一种抓持方案,该方案结合了人的经验智慧和灵巧手的智能,将人作为控制系统中的一个环节参与到灵巧手的控制中,利用人进行高层次的任务规划和命令设计,利用机器人完成任务执行工作,是目前较为成熟可行的方案。
主从控制中的一个关键问题是人手运动采集,传统的运动采集系统如数据手套,除了佩戴不方便以外,更严重的缺点是传感器采集的信息误差很大,而采用Kinect相机作为运动采集系统虽然摆脱了穿戴手套的不方便问题,但仍然存在精度低且对于手部的动作细节信息不够等问题。
主从控制中的一个关键问题是运动映射,即将人手的运动转换为灵巧手的运动。为了实现精确抓持,常采用基于笛卡尔空间的指尖位置映射。但由于人手和灵巧手在外形和结构尺寸上存在差异,导致二者指尖在笛卡尔空间的活动范围也存在差异,直接的运动映射无法实现精确的抓持规划,甚至出现目标位置不可解的情况。
因此,需要采用更为精确、方便的人手运动采集系统,同时也需要对运动映射的过程加以改进,以实现精确的抓持规划。
发明内容
本发明的目的在于克服现有技术的不足,提供一种基于Leap Motion的灵巧手主从控制方法,通过该方法对灵巧手进行主从控制,可以实现精确的人手与灵巧手之间的运动映射,完成精确的灵巧手抓持规划。
为达到上述目的,本发明构思如下:
本发明在五指伸展的状态下获取人手和灵巧手的五指指尖和指掌关节位置信息,由这些信息执行映射算法,计算出实现人手与灵巧手之间精确的运动映射所需要的变换矩阵;接下来通过Leap Motion视觉传感器实时获取人手五指指尖在参考坐标系下的笛卡尔空间坐标,通过变换矩阵变换到灵巧手的笛卡尔空间,实现重映射,重映射得到的空间坐标就是灵巧手对应五指指尖的目标位置,然后根据重映射得到的灵巧手指尖的目标位置,对灵巧手五指进行逆运动学解算,得到五指各关节的角度值,最后通过灵巧手的驱动机构驱动五指各关节运动对应的角度值,使灵巧手指尖运动到目标位置,完成基于人手运动映射的灵巧手抓持规划。
根据上述构思,本发明采用如下技术方案:
一种基于Leap Motion的灵巧手主从控制方法,包括以下步骤:
步骤1:获取人手和InMoov灵巧手的相关点坐标;
步骤2:执行映射算法,得到从人手空间到灵巧手空间映射的变换矩阵T(M);
步骤3:重映射:通过Leap Motion实时采集人手五指指尖相对于参考坐标系的笛卡尔空间坐标upds,根据步骤2映射算法得到的变换矩阵T(M),将upds变换到灵巧手的笛卡尔空间,变换后的笛卡尔空间坐标为
Figure BDA0002362113630000021
Figure BDA0002362113630000022
即为灵巧手指尖的目标位置;
步骤4:根据步骤3得到的灵巧手指尖的目标位置信息,对灵巧手五指进行逆运动学解算,得到五指各关节角度值θ,通过灵巧手的驱动机构驱动五指各关节运动对应的角度值,使灵巧手指尖运动到目标位置,完成基于人手运动映射的灵巧手抓持规划。
所述步骤1的具体过程如下:
步骤1.1:建立人手的参考坐标系;
步骤1.2:建立灵巧手的参考坐标系;
步骤1.3:使人手处于五指伸展状态,通过Leap Motion获取人手五指的指尖和指掌关节相对于参考坐标系的笛卡尔空间坐标,分别为updsupmc
步骤1.4:使灵巧手处于五指伸展的状态,获取灵巧手指尖和指掌关节相对于灵巧手参考坐标系的笛卡尔空间坐标,分别为rpdsrpmc
所述步骤2中,所述映射算法具体流程为:
步骤2.1:计算变换矩阵T(M):
从人手到灵巧手的运动映射包括笛卡尔空间的平移变换、旋转变换和线性比例缩放关系变换,定义运动映射参数矩阵:
M=[S Tx Ty Tz Rx Ry Rz]
参数矩阵M的初始值为M0=[1 0 0 0 0 0 0],在算法第一次迭代执行时使用,根据M中各参数具体值,计算从人手笛卡尔空间到灵巧手笛卡尔空间的变换矩阵T(M):
T(M)=Tscale(S)Ttrans(Tx,Ty,Tz)Trot(Rx,Ry,Rz)
其中Tscale(S)为在x,y,z方向进行线性缩放的齐次变换矩阵,Ttrans(Tx,Ty,Tz)为进行平移变换的齐次变换矩阵,Trot(Rx,Ry,Rz)为进行旋转变换的齐次变换矩阵;
步骤2.2:坐标变换:
根据步骤2.1得到的变换矩阵T(M),将人手笛卡尔空间的指尖和指掌关节坐标变换到灵巧手笛卡尔空间中,变换操作如下:
Figure BDA0002362113630000031
其中,
Figure BDA0002362113630000032
Figure BDA0002362113630000033
分别为变换后的指尖和指掌关节坐标;
步骤2.3:计算误差向量e:
根据步骤1和步骤2.2得到的信息,计算灵巧手指尖和指掌关节的笛卡尔空间坐标与变换后人手指尖和指掌关节的笛卡尔空间坐标之间的误差向量e:
Figure BDA0002362113630000034
步骤2.4:计算逆雅可比矩阵
Figure BDA0002362113630000038
根据步骤2.2得到的
Figure BDA0002362113630000035
对参数矩阵M求偏导,得到
Figure BDA0002362113630000036
相对参数矩阵M中各元素变化的雅可比矩阵J,由于J非方阵,其不存在逆矩阵,因此取J的伪逆矩阵
Figure BDA0002362113630000037
步骤2.5:计算参数矩阵M;
步骤2.6:回到步骤2.1,计算变换矩阵T(M),进行下一次迭代,映射算法的迭代终止条件是误差向量e为零向量。
与现有技术相比,本发明方法具有以下有益效果:
1.本发明采用Leap Motion视觉传感器作为人手运动采集系统来获取人手的运动信息,能够精确捕捉人手五指的运动状态和各关节的空间坐标,基于视觉的控制方式也更加方便高效。
2.本发明采用的映射算法能够准确计算出人手和灵巧手之间的运动映射的变换矩阵,通过此变换矩阵可以使人手指尖的运动范围与灵巧手之间的运动范围重合,完成精确的基于人手运动映射的灵巧手抓持规划。
附图说明
图1是本发明一种基于Leap Motion的灵巧手主从控制方法流程图。
图2是本发明采用的映射算法流程图。
图3是人手模型图。
图4是InMoov灵巧手模型图。
图5是人手骨骼图。
具体实施方式
下面结合附图对本发明的具体实施例进行进一步地描述。
本实施例需要采集指尖和指掌关节的笛卡尔空间坐标,其具体位置如图5所示。本实施例采用图4所示的InMoov灵巧手进行主从控制,映射算法和主从控制都在MatlabSimulink环境下实现,首先需要在Simulink环境下建立InMoov灵巧手仿真模型,并通过MatLeap接口实现Leap Motion与Matlab之间的通信。
如图1所示,一种基于Leap Motion的灵巧手主从控制方法,包括以下步骤:
步骤1:获取人手和InMoov灵巧手的相关点坐标。
步骤1.1:建立人手的参考坐标系,如图3所示,人手坐标系建立在手腕处,为右手坐标系,其y方向和z方向如图所示;
步骤1.2:建立InMoov灵巧手的参考坐标系,如图4所示,InMoov灵巧手坐标系建立在灵巧手的基座处,为右手坐标系,其y方向和z方向如图所示;
步骤1.3:使人手处于五指伸展状态,即图3所示状态,通过Leap Motion获取人手五指的指尖和指掌关节相对于参考坐标系的笛卡尔空间坐标,分别为updsupmc
步骤1.4:将Simulink环境下的InMoov灵巧手模型各关节角设为0°,即图2所示的五指伸展状态,通过Transform Sensor模块得到灵巧手指尖和指掌关节相对于灵巧手参考坐标系的笛卡尔空间坐标,分别为rpdsrpmc
步骤2:执行映射算法,得到从人手空间到灵巧手空间映射的变换矩阵T(M)。
根据步骤1获取的信息,执行映射算法,图2为映射算法流程图,结合图2对映射算法进行详细说明,具体包括以下步骤:
步骤2.1:计算变换矩阵T(M):
从人手到灵巧手的运动映射包括笛卡尔空间的平移变换、旋转变换和线性比例缩放关系变换,定义运动映射参数矩阵:
M=[S Tx Ty Tz Rx Ry Rz]
参数矩阵M的初始值为M0=[1 0 0 0 0 0 0],在算法第一次迭代执行时使用,根据M中各参数具体值,计算从人手笛卡尔空间到灵巧手笛卡尔空间的变换矩阵T(M):
T(M)=Tscale(S)Ttrans(Tx,Ty,Tz)Trot(Rx,Ry,Rz)
其中Tscale(S)为在x,y,z方向进行线性缩放的齐次变换矩阵,其具体形式为:
Figure BDA0002362113630000051
其中Ttrans(Tx,Ty,Tz)为进行平移变换的齐次变换矩阵,其具体形式为:
Figure BDA0002362113630000052
其中Trot(Rx,Ry,Rz)为进行旋转变换的齐次变换矩阵,其具体形式为:
Figure BDA0002362113630000053
式中
Figure BDA0002362113630000054
分别为绕x、y、z轴旋转Rx、Ry、Rz角度的齐次变换矩阵。
步骤2.2:坐标变换:
根据步骤2.1得到的变换矩阵T(M),将人手笛卡尔空间的指尖和指掌关节坐标变换到InMoov灵巧手笛卡尔空间中,变换操作如下:
Figure BDA0002362113630000055
其中,
Figure BDA0002362113630000056
Figure BDA0002362113630000057
分别为变换后的指尖和指掌关节坐标。
步骤2.3:计算误差向量e
根据步骤1和步骤2.2得到的信息,计算灵巧手指尖和指掌关节的笛卡尔空间坐标与变换后人手指尖和指掌关节的笛卡尔空间坐标之间的误差向量e:
Figure BDA0002362113630000058
步骤2.4:计算逆雅可比矩阵
Figure BDA0002362113630000064
根据步骤2.2得到的
Figure BDA0002362113630000061
对参数矩阵M求偏导,得到
Figure BDA0002362113630000062
相对参数矩阵M中各元素变化的雅可比矩阵J:
Figure BDA0002362113630000063
对于变换后的一点p=[px py pz]T,J中各元素的计算公式为:
J11=px cos Ry cos Rz-py cos Ry sin Rz+pz sin Ry+Tx
J16=-Spx sin Ry cos Rz+Spy sin Ry sin Rz+Spz cos Ry
J17=-Spx cos Ry sin Rz-Spy cos Ry cos Rz
J21=px(sin Rx sin Ry cos Rz+cos Rx sin Rz)
+py(cos Rx cos Rz-sin Rx sin Ry sin Rz)
-pz sin Rx cos Ry+Ty
J25=Spx(cos Rx sin Ry cos Rz-sin Rx sin Rz)
+Spy(-sin Rx cos Rz-cos Rx sin Ry sin Rz)
-Spz cos Rx cos Ry
J26=Spx sin Rx cos Ry cos Rz-Spy sin Rx sin Ry sin Rz+Spz sin Rx sin Ry
J27=Spx(-sin Rx sin Ry sin Rz+cos Rx cos Rz)
+Spy(-cos Rx sin Rz-sin Rx sin Ry cos Rz)
J31=px(sin Rx sin Rz-cos Rx sin Ry cos Rz)
+py(cos Rx sin Ry sin Rz+sin Rx cos Rz)
+pz cos Rx cos Ry+Tz
J35=Spx(cos Rx sin Rz+sin Rx sin Ry cos Rz)
+Spy(-sin Rx sin Ry sin Rz+cos Rx cos Rz)
-Spz sin Rx cos Ry
J36=-Spx cos Rx cos Ry cos Rz+Spy cos Rx cos Ry sin Rz-Spz cos Rx sin Ry
J37=Spx(sin Rx cos Rz+cos Rx sin Ry sin Rz)
+Spy(cos Rx sin Ry cos Rz-sin Rx sin Rz)
由于J非方阵,其不存在逆矩阵,因此这里取J的伪逆矩阵
Figure BDA0002362113630000065
步骤2.5:计算参数矩阵M:
根据步骤2.3和步骤2.4得到的信息,可以计算得到M的微分形式
Figure BDA0002362113630000071
因此对
Figure BDA0002362113630000072
进行积分就能得到M;
需要说明的是,当误差向量e对时间求导时,可以得到:
Figure BDA0002362113630000073
其中
Figure BDA0002362113630000074
为参数矩阵M的微分形式,当选择
Figure BDA0002362113630000075
按如下方式计算时:
Figure BDA0002362113630000076
可以使映射算法构成形式为
Figure BDA0002362113630000077
的闭环线性系统,其中K为正定矩阵,用于调节算法的收敛速度,该系统在K为正定矩阵时是渐进稳定的,误差沿轨迹趋于零,因此选择合适K,映射算法总是会收敛的。
步骤2.6:回到步骤2.1,计算变换矩阵T(M),进行下一次迭代;
需要说明的是,根据图2所示算法流程图可以看出,映射算法是一个迭代形式的算法,该算法迭代终止的条件是误差向量为零向量,即该算法最终会找到一个参数矩阵M,使得按照M计算得到的变换矩阵T(M)能保证变换后的人手五指指尖和指掌关节与InMoov灵巧手的五指指尖和指掌关节重合。
需要说明的是,该映射算法是应用于单根手指上的,即对于InMoov灵巧手来说,需要将该算法分别应用到拇指、食指、中指、无名指和小指上。
步骤3:重映射:通过Leap Motion实时采集人手五指指尖相对于参考坐标系的笛卡尔空间坐标,根据步骤2得到的变换矩阵T(M)变换到InMoov灵巧手的笛卡尔空间。
步骤4:控制InMoov灵巧手运动;根据步骤3得到的信息,可以确定InMoov灵巧手五指指尖此时应该达到的位置,对InMoov灵巧手五指进行逆运动学求解,可以得到每根手指的各关节角度值,将该值分别传给灵巧手各关节的执行机构,驱动执行机构运动相应角度,可使灵巧手指尖运动到指定位置,完成基于人手运动映射的灵巧手抓持规划。

Claims (3)

1.一种基于Leap Motion的灵巧手主从控制方法,其特征在于,包括以下步骤:
步骤1:获取人手和InMoov灵巧手的相关点坐标;
步骤2:执行映射算法,得到从人手空间到灵巧手空间映射的变换矩阵T(M);
步骤3:重映射:通过Leap Motion实时采集人手五指指尖相对于参考坐标系的笛卡尔空间坐标upds,根据步骤2映射算法得到的变换矩阵T(M),将upds变换到灵巧手的笛卡尔空间,变换后的笛卡尔空间坐标为
Figure FDA0002362113620000011
即为灵巧手指尖的目标位置;
步骤4:根据步骤3得到的灵巧手指尖的目标位置信息,对灵巧手五指进行逆运动学解算,得到五指各关节角度值θ,通过灵巧手的驱动机构驱动五指各关节运动对应的角度值,使灵巧手指尖运动到目标位置,完成基于人手运动映射的灵巧手抓持规划。
2.根据权利要求1所述的基于Leap Motion的灵巧手主从控制方法,其特征在于,所述步骤1的具体过程如下:
步骤1.1:建立人手的参考坐标系;
步骤1.2:建立灵巧手的参考坐标系;
步骤1.3:使人手处于五指伸展状态,通过Leap Motion获取人手五指的指尖和指掌关节相对于参考坐标系的笛卡尔空间坐标,分别为updsupmc
步骤1.4:使灵巧手处于五指伸展的状态,获取灵巧手指尖和指掌关节相对于灵巧手参考坐标系的笛卡尔空间坐标,分别为rpdsrpmc
3.根据权利要求1所述的基于Leap Motion的灵巧手主从控制方法,其特征在于,所述步骤2中,所述映射算法具体流程为:
步骤2.1:计算变换矩阵T(M):
从人手到灵巧手的运动映射包括笛卡尔空间的平移变换、旋转变换和线性比例缩放关系变换,定义运动映射参数矩阵:
M=[S Tx Ty Tz Rx Ry Rz]
参数矩阵M的初始值为M0=[1 0 0 0 0 0 0],在算法第一次迭代执行时使用,根据M中各参数具体值,计算从人手笛卡尔空间到灵巧手笛卡尔空间的变换矩阵T(M):
T(M)=Tscale(S)Ttrans(Tx,Ty,Tz)Trot(Rx,Ry,Rz)
其中Tscale(S)为在x,y,z方向进行线性缩放的齐次变换矩阵,Ttrans(Tx,Ty,Tz)为进行平移变换的齐次变换矩阵,Trot(Rx,Ry,Rz)为进行旋转变换的齐次变换矩阵;
步骤2.2:坐标变换:
根据步骤2.1得到的变换矩阵T(M),将人手笛卡尔空间的指尖和指掌关节坐标变换到灵巧手笛卡尔空间中,变换操作如下:
Figure FDA0002362113620000021
其中,
Figure FDA0002362113620000022
Figure FDA0002362113620000023
分别为变换后的指尖和指掌关节坐标;
步骤2.3:计算误差向量e:
根据步骤1和步骤2.2得到的信息,计算灵巧手指尖和指掌关节的笛卡尔空间坐标与变换后人手指尖和指掌关节的笛卡尔空间坐标之间的误差向量e:
Figure FDA0002362113620000024
步骤2.4:计算逆雅可比矩阵
Figure FDA0002362113620000027
根据步骤2.2得到的
Figure FDA0002362113620000025
对参数矩阵M求偏导,得到
Figure FDA0002362113620000026
相对参数矩阵M中各元素变化的雅可比矩阵J,由于J非方阵,其不存在逆矩阵,因此取J的伪逆矩阵
Figure FDA0002362113620000028
步骤2.5:计算参数矩阵M;
步骤2.6:回到步骤2.1,计算变换矩阵T(M),进行下一次迭代,映射算法的迭代终止条件是误差向量e为零向量。
CN202010024898.1A 2020-01-10 2020-01-10 一种基于Leap Motion的灵巧手主从控制方法 Active CN111185906B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010024898.1A CN111185906B (zh) 2020-01-10 2020-01-10 一种基于Leap Motion的灵巧手主从控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010024898.1A CN111185906B (zh) 2020-01-10 2020-01-10 一种基于Leap Motion的灵巧手主从控制方法

Publications (2)

Publication Number Publication Date
CN111185906A true CN111185906A (zh) 2020-05-22
CN111185906B CN111185906B (zh) 2023-04-18

Family

ID=70704665

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010024898.1A Active CN111185906B (zh) 2020-01-10 2020-01-10 一种基于Leap Motion的灵巧手主从控制方法

Country Status (1)

Country Link
CN (1) CN111185906B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113084848A (zh) * 2021-04-08 2021-07-09 河北省科学院应用数学研究所 主从式灵巧手跟随方法及终端设备
CN113561172A (zh) * 2021-07-06 2021-10-29 北京航空航天大学 一种基于双目视觉采集的灵巧手控制方法及装置

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63276607A (ja) * 1987-04-24 1988-11-14 Hitachi Ltd マニピュレータ装置
JPH05177563A (ja) * 1991-12-25 1993-07-20 Yaskawa Electric Corp マスタスレーブマニピュレータの制御方法
CN102363301A (zh) * 2011-10-19 2012-02-29 浙江工业大学 机器人拟人手指自适应指尖力跟踪控制方法
CN104440864A (zh) * 2014-12-04 2015-03-25 深圳先进技术研究院 一种主从式遥操作工业机器人系统及其控制方法
CN106903665A (zh) * 2017-04-18 2017-06-30 中国科学院重庆绿色智能技术研究院 一种基于立体视觉的主从式遥操作手术机器人控制系统
CN107717994A (zh) * 2017-11-08 2018-02-23 西安交通大学 基于主从空间映射的主从异构机器人通用控制方法及系统
CN107738255A (zh) * 2017-09-26 2018-02-27 山东工商学院 机械臂及基于Leap Motion的机械臂控制方法
CN108638054A (zh) * 2018-04-08 2018-10-12 河南科技学院 一种智能排爆机器人五指灵巧手控制方法
CN108673505A (zh) * 2018-05-28 2018-10-19 南昌大学 一种机械臂末端精确运动控制方法
CN109202848A (zh) * 2018-09-12 2019-01-15 西南大学 基于Leap Motion与机器视觉的人机协作采摘机器人及其控制方法
CN109514521A (zh) * 2018-12-18 2019-03-26 合肥工业大学 基于多信息融合的人手协同灵巧手的伺服操作系统及其方法
CN109746915A (zh) * 2019-01-18 2019-05-14 埃夫特智能装备股份有限公司 一种提升工业机器人绝对定位精度的运动学方法
CN110221687A (zh) * 2019-04-30 2019-09-10 国网江苏省电力有限公司常州供电分公司 基于三维空间映射的指尖运动跟踪方法
CN110587596A (zh) * 2019-07-30 2019-12-20 武汉恒新动力科技有限公司 多轴构型装置远程控制方法、装置、终端设备及存储介质

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63276607A (ja) * 1987-04-24 1988-11-14 Hitachi Ltd マニピュレータ装置
JPH05177563A (ja) * 1991-12-25 1993-07-20 Yaskawa Electric Corp マスタスレーブマニピュレータの制御方法
CN102363301A (zh) * 2011-10-19 2012-02-29 浙江工业大学 机器人拟人手指自适应指尖力跟踪控制方法
CN104440864A (zh) * 2014-12-04 2015-03-25 深圳先进技术研究院 一种主从式遥操作工业机器人系统及其控制方法
CN106903665A (zh) * 2017-04-18 2017-06-30 中国科学院重庆绿色智能技术研究院 一种基于立体视觉的主从式遥操作手术机器人控制系统
CN107738255A (zh) * 2017-09-26 2018-02-27 山东工商学院 机械臂及基于Leap Motion的机械臂控制方法
CN107717994A (zh) * 2017-11-08 2018-02-23 西安交通大学 基于主从空间映射的主从异构机器人通用控制方法及系统
CN108638054A (zh) * 2018-04-08 2018-10-12 河南科技学院 一种智能排爆机器人五指灵巧手控制方法
CN108673505A (zh) * 2018-05-28 2018-10-19 南昌大学 一种机械臂末端精确运动控制方法
CN109202848A (zh) * 2018-09-12 2019-01-15 西南大学 基于Leap Motion与机器视觉的人机协作采摘机器人及其控制方法
CN109514521A (zh) * 2018-12-18 2019-03-26 合肥工业大学 基于多信息融合的人手协同灵巧手的伺服操作系统及其方法
CN109746915A (zh) * 2019-01-18 2019-05-14 埃夫特智能装备股份有限公司 一种提升工业机器人绝对定位精度的运动学方法
CN110221687A (zh) * 2019-04-30 2019-09-10 国网江苏省电力有限公司常州供电分公司 基于三维空间映射的指尖运动跟踪方法
CN110587596A (zh) * 2019-07-30 2019-12-20 武汉恒新动力科技有限公司 多轴构型装置远程控制方法、装置、终端设备及存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘杰等: "人手到灵巧手指尖运动映射的实现", 《北京邮电大学学报》 *
李继婷等: "灵巧手主从抓持中的运动映射", 《北京航空航天大学学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113084848A (zh) * 2021-04-08 2021-07-09 河北省科学院应用数学研究所 主从式灵巧手跟随方法及终端设备
CN113561172A (zh) * 2021-07-06 2021-10-29 北京航空航天大学 一种基于双目视觉采集的灵巧手控制方法及装置

Also Published As

Publication number Publication date
CN111185906B (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
Jin et al. Multi-LeapMotion sensor based demonstration for robotic refine tabletop object manipulation task
Hu et al. Development of sensory-motor fusion-based manipulation and grasping control for a robotic hand-eye system
CN107943283B (zh) 基于手势识别的机械臂位姿控制系统
CN108958471B (zh) 虚拟空间中虚拟手操作物体的仿真方法及系统
CN108972494A (zh) 一种仿人机械手抓取控制系统及其数据处理方法
CN105291138B (zh) 一种增强虚拟现实浸入感的视觉反馈平台
CN108241339A (zh) 仿人机械臂的运动求解和构型控制方法
CN110815189B (zh) 基于混合现实的机器人快速示教系统及方法
CN107450376B (zh) 一种基于智能移动平台的服务机械臂抓取姿态角计算方法
CN105904457B (zh) 一种基于位置跟踪器及数据手套的异构型冗余机械臂控制方法
CN111185906B (zh) 一种基于Leap Motion的灵巧手主从控制方法
CN111645093B (zh) 一种用于遥操作的力觉反馈数据手套
Gioioso et al. Mapping Synergies from Human to Robotic Hands with Dissimilator Kinematics: an Object Based Approach
Hu et al. Calibrating human hand for teleoperating the HIT/DLR hand
CN113070877B (zh) 一种面向七轴机械臂视觉示教的可变姿态映射方法
Liu et al. Mapping human hand motion to dexterous robotic hand
CN108127667B (zh) 一种基于关节角增量的机械臂体感交互控制方法
He et al. The research and design of Smart mobile robotic arm based on gesture controlled
CN111300421A (zh) 一种应用于人形机器人双手动作模仿的映射方法
Meattini et al. Human to Robot Hand Motion Mapping Methods: Review and Classification
JP2003062775A (ja) 人間型ハンドロボット用教示システム
Zhao et al. Intuitive robot teaching by hand guided demonstration
CN110919650A (zh) 一种基于svm的低延时抓取遥操作系统
Gao et al. Task-Oriented Robotic Grasping for Intelligent Manufacturing
CN206501118U (zh) 一种机器人抓取装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant