CN111172310A - 黄曲霉致病基因fadA在筛选防治黄曲霉污染药物中的应用 - Google Patents

黄曲霉致病基因fadA在筛选防治黄曲霉污染药物中的应用 Download PDF

Info

Publication number
CN111172310A
CN111172310A CN202010013368.7A CN202010013368A CN111172310A CN 111172310 A CN111172310 A CN 111172310A CN 202010013368 A CN202010013368 A CN 202010013368A CN 111172310 A CN111172310 A CN 111172310A
Authority
CN
China
Prior art keywords
aspergillus flavus
fada
control group
tag
detection group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010013368.7A
Other languages
English (en)
Other versions
CN111172310B (zh
Inventor
杨坤龙
耿青如
宋凤琴
贺晓娜
赵炜
王雪薇
王娜
邓黄玥
马倩楠
田俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Normal University
Original Assignee
Jiangsu Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Normal University filed Critical Jiangsu Normal University
Priority to CN202010013368.7A priority Critical patent/CN111172310B/zh
Publication of CN111172310A publication Critical patent/CN111172310A/zh
Application granted granted Critical
Publication of CN111172310B publication Critical patent/CN111172310B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56961Plant cells or fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Mycology (AREA)
  • Zoology (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Food Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

黄曲霉致病基因fadA在筛选防治黄曲霉污染药物中的应用,包括:构建检测组黄曲霉菌培养体系和对照组黄曲霉菌培养体系,其中,检测组中添加待筛选药物;将检测组和对照组在相同条件下培养一段时间后,对比检测组和对照组中黄曲霉菌内的fadA基因或FadA蛋白的表达水平,若检测组中黄曲霉菌内的fadA基因或FadA蛋白的表达水平在一定程度上低于对照组,则待筛选药物为潜在抑制黄曲霉致病性药物。本发明的筛选方法,只需要在转录水平或者蛋白水平检测鉴定药物对黄曲霉的抑制效果,而不需要检测对黄曲霉毒素的含量,缩短了实验周期和时间,减少各种有机化学试剂的是用,减少对环境的污染,同时也大大减少可能对实验操作人员产生的毒害。

Description

黄曲霉致病基因fadA在筛选防治黄曲霉污染药物中的应用
技术领域
本发明涉及遗传工程,具体涉及黄曲霉致病基因fadA在筛选防治黄曲霉污染药物中的应用。
背景技术
黄曲霉是一种广泛存在的曲霉属真菌,作为植物动物的共同致病菌,不仅给农业生产、饲料工业、畜牧产业造成重大的危害,也给人类健康带来严重的威胁。黄曲霉能够感染许多重要的农作物,例如,花生、玉米、棉花等,其均可对收获前后的农作物进行污染,给世界各地的农业生产造成巨大的经济损失。根据联合国粮农组织统计,每年约有25%的谷物被真菌污染,其中最主要的就是黄曲霉。我国是黄曲霉污染的重灾区,我国多个省份储存的玉米和花生中都有检测到黄曲霉毒素的污染,此外,在酱油、水产饲料等加工产品中都检出黄曲霉毒素。因此黄曲霉的污染给人类造成重大经济损失和安全隐患,研究预防和控制黄曲霉的污染具有十分重要的意义。
黄曲霉的无性繁殖、毒素合成能力与其生长、扩散、和毒性有着密切的联系,影响黄曲霉的致病性。随着黄曲霉全基因组测序工作的完成,科学家围绕着黄曲霉致病相关的遗传因素展开大量的研究。
G蛋白信号途径是一种细胞跨膜信号传导途径,它普遍存在于真核生物体中。该信号途径能感应并响应许多种不同的胞外信号刺激。G蛋白作为一个异源三聚体,其α亚基对丝状真菌的生长发育、繁殖、致病性和真菌毒素等次级代谢产物的合成具有重要的调控作用。敲除构巢曲霉中Gα亚基FadA基因后,菌株的生长和分生孢子产量都明显受到了抑制。黄曲霉中还未见关于fadA基因的研究报道,及其对黄曲霉致病性和毒性的影响目前也未知。
发明内容
本发明的目的在于提供一种筛选抑制黄曲霉致病或防治黄曲霉污染的药物的方法。
作为本发明的第一个方面,提供了一种黄曲霉致病基因fadA在筛选防治黄曲霉污染药物中的应用。
进一步的,所述应用具体包括:
S1:构建检测组黄曲霉菌培养体系和对照组黄曲霉菌培养体系,其中,检测组中添加待筛选药物;
S2:将检测组和对照组在相同条件下培养一段时间后,对比检测组和对照组中黄曲霉菌内的fadA基因或FadA蛋白的表达水平,若检测组中黄曲霉菌内的fadA基因或FadA蛋白的表达水平在一定程度上低于对照组,则待筛选药物为潜在抑制黄曲霉致病性药物。
进一步的,所述步骤S2中,通过荧光定量qPCR或Northern blot杂交分析分析检测检测组和对照组中的黄曲霉菌内fadA基因mRNA表达水平。
进一步的,所述步骤S2中,通过Western blot免疫印迹杂交分析或酶联免疫吸附法分析检测检测组和对照组中的黄曲霉菌内FadA蛋白表达水平。
进一步的,用于分析检测FadA蛋白表达水平的相应抗体是针对FadA蛋白或蛋白片段的抗体或是在FadA蛋白C端与小分子多肽标签进行融合表达后针对小分子多肽标签的抗体。
进一步的,所述小分子多肽标签为GFP标签、RFP标签、His标签、HA标签、Flag标签或GST标签。
进一步的,还包括步骤S3:使用筛选出的所述潜在抑制黄曲霉致病性药物进行黄曲霉生长、产孢、产毒抑制测试或黄曲霉种子侵染抑制测试确认所述潜在抑制黄曲霉致病性药物是否为抑制黄曲霉致病性药物。
与现有技术相比,本发明的有益效果:
本发明的筛选方法,只需要在转录水平或者蛋白水平检测鉴定药物对黄曲霉的抑制效果,而不需要检测对黄曲霉毒素的含量,缩短了实验周期和时间,减少各种有机化学试剂的是用,减少对环境的污染,同时也大大减少可能对实验操作人员产生的毒害。
附图说明
图1是基因的敲除的原理图和敲除验证结果,(A)敲除原理图说明利用黄曲霉argB基因来替换黄曲霉菌fadA基因;(B)通过PCR的方法来验证基因敲除株,用OF和OR扩增目的基因orf,P1和argB/F来验证敲除目的基因被argB正确替换;
图2是黄曲霉菌中敲除fadA基因对黄曲霉生长的影响,(A)野生型黄曲霉WT和敲除菌ΔfadA在PDA和GMM培养基中的菌落形态;(B)野生型黄曲霉WT和敲除菌ΔfadA在PDA和GMM培养基中的菌落直径;(C)显微观察PDA培养基上野生型黄曲霉WT和敲除菌ΔfadA的菌丝分支形态;
图3是黄曲霉菌中敲除fadA基因对黄曲霉分生孢子发育的影响,(A)显微观察野生型黄曲霉WT和敲除菌ΔfadA形成的分生孢子梗情况;(B)野生型黄曲霉WT和敲除菌ΔfadA在PDA培养基中产孢量计数;(C)野生型黄曲霉WT和敲除菌ΔfadA产生的分生孢子的萌发率;
图4是薄层层析TLC检测fadA基因对黄曲霉响毒素合成的影响,(A)薄层层析TLC检测野生型黄曲霉WT和敲除菌ΔfadA在PDB液体培养基中,29℃培养5d的产毒情况;(B)对野生型WT,敲除菌ΔfadA在PDB液体培养基的产毒情况进行定量;
图5是黄曲霉菌中敲除fadA基因对黄曲霉侵染玉米种子的影响,(A)野生型黄曲霉WT,敲除菌ΔfadA在29℃条件下,对玉米侵染7d后的情况;(B)野生型WT,敲除菌ΔfadA侵染花生7d后的产孢情况;
图6是在广谱抗真菌药物紫苏醛(Perillaldehyde,PAE)作用下,黄曲霉野生型菌株中fadA基因的表达情况,图中(-PAE)表示黄曲霉培养体系内未加入紫苏醛PAE,(+PAE)表示黄曲霉培养体系内加入0.5μL/mL紫苏醛PAE,培养时间为24小时,荧光定量PCR分析所用的内参基因为actin。
具体实施方式:
发明人通过大量的研究,首次在黄曲霉中鉴定到一种黄曲霉致病相关基因——fadA。通过同源重组的方法将黄曲霉菌株中的fadA基因敲除后,黄曲霉的生长和孢子合成受到了严重的影响,黄曲霉也无法产生黄曲霉毒素。通过检测黄曲霉菌内的fadA基因的表达水平,就可以判断黄曲霉菌的致病性和毒性。通过检测黄曲霉菌中fadA基因的表达水平来筛选抑制黄曲霉致病或筛选防治黄曲霉污染的药物的方法。
以下实施例进一步说明本发明的内容,但不应理解为对本发明的限制。在不背离本发明精神和实质的情况下,对本发明方法、步骤或条件所作的修改或替换,均属于本发明的范围。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段,如Sambrook等分子克隆实验手册,或按照产品说明书建议的条件。
实施例
1.黄曲霉菌中fadA基因的敲除
搜索NCBI数据库(https://www.ncbi.nlm.nih.gov/gene/),利用生物信息学方法在黄曲霉的基因组中鉴定到一个编号为AFLA_018340(GeneID:7911513)的功能未知的新基因,该基因与构巢曲霉的fadA基因同源,因此将其命名为fadA基因(SEQ ID NO.1),FadA蛋白具有SEQ ID NO.2所示的氨基酸序列。为了研究黄曲霉菌中fadA基因在黄曲霉生长发育和毒性方面中的功能,在体外构建fadA基因敲除的融合片段,通过同源重组的方法,把黄曲霉基因组中的4116bp DNA同源片段用黄曲霉argB基因片段进行替换,从而敲除黄曲霉基因组中的fadA基因。图1A所示为该基因敲除的原理。
具体方法如下:
利用上游引物AAGAACCTTAGAGCCACTCG(SEQ ID NO.3)和下游引物GGGTGAAGAGCATTGTTTGAGGCGTCCAAGGGAGATGAGGTGA(SEQ ID NO.5),从野生型黄曲霉的基因组中用PCR扩增上游同源臂约1.1kb片段;
利用上游引物GCATCAGTGCCTCCTCTCAGACCTAGCCAGCTCTTTGTTATCC(SEQ ID NO.6)和下游引物CAGGAGAAAGGCACATCAGG(SEQ ID NO.8),从野生型黄曲霉的基因组中用PCR扩增下游同源臂约1.2kb片段;
利用上游引物TCCCGGTGGTGATGAGTTC(SEQ ID NO.9)和下游引物CCCGTGACATGTGAATGCG(SEQ ID NO.10),从野生型黄曲霉的基因组中用PCR扩增约1.8kb的黄曲霉argB片段;
利用上游引物TCCTCGCCCATCTTTCTCAG(SEQ ID NO.4)和下游引物CGAAGGCAAGGGTTGGTGG(SEQ ID NO.7),通过重叠PCR将黄曲霉fadA基因的上下游同源臂片段与黄曲霉argB基因片段连接构建敲除片段,利用同源重组方法将敲除片段同时导入到黄曲霉TJES20.1Δku70ΔargB菌株的原生质体中(Yang,K.et al.Virulence,2018,Aug23,9(1):1273–1286),以argB为筛选标记,通过PCR筛选鉴定敲除的阳性转化子。如图1B所示,因为野生型黄曲霉WT中含有fadA目的基因,所以利用fadA基因的内部的上下游引物OF(SEQID NO.11)和OR(SEQ ID NO.12),可以扩增出ORF片段,利用引物P1(SEQ ID NO.3)和argB下游引物(SEQ ID NO.10),以及argB上游引物(SEQ ID NO.10)和P6(SEQ ID NO.18)反而无法扩增出AP、BP片段。反之,ΔfadA敲除菌株因为没有目的基因而无法扩增出ORF片段,但其含有argB片段,可以分别扩增出AP、BP片段。
2.fadA基因敲除对黄曲霉生长的影响
通过同源重组的方法在黄曲霉菌中敲除fadA基因,PCR方法成功验证fadA在黄曲霉基因组中被敲除。为了检测fadA基因对黄曲霉生长的影响,本发明在PDA固体培养基和GMM固体培养基上,黑暗条件下29℃连续培养4天后,观察野生型黄曲霉和ΔfadA突变体的表型,并测量直径。在PDA固体培养基和GMM固体培养基上,ΔfadA突变体的生长都受到了明显的抑制,数据统计也说明了这点(图2A、2B)。
3.fadA基因敲除对黄曲霉分生孢子发育的影响
为研究fadA对黄曲霉分生孢子形成的影响,将野生型黄曲霉WT和ΔfadA突变体接种在PDA固体培养基,在黑暗中培养4天后对孢子进行计数统计。结果发现,ΔfadA突变体在PDA培养基中的生长速率和产孢量均明显下降(图3B)。用光照12h诱导产生分生孢子梗,观察其分生孢子梗形成,结果表明,敲除fadA后突变体不能形成正常的分生孢子梗,从而导致分生孢子产量的下降(图3A)。为了验证fadA在黄曲霉中是否对孢子萌发有影响,检测了fadA突变体的孢子萌发情况,孢子在PDA培养基中培养12小时后,用显微镜观察孢子的萌发情况,结果显示,较野生型黄曲霉,ΔfadA突变体的孢子萌发率显著下降(图3C)。
以上结果说明,fadA基因的敲除会严重影响黄曲霉产孢。
4.fadA基因敲除对黄曲霉毒素合成的影响
为了研究fadA基因敲除对黄曲霉毒素形成是否有影响,将野生型菌株和突变体菌株分别接种到PDB液体培养基,37℃黑暗培养5天。结果显示,ΔfadA突变体没有检测到黄曲霉毒素B1的产生,数据统计分析也说明了这点(图4A、B)。
以上结果表明,fadA基因的敲除会抑制黄曲霉毒素的合成。
5.fadA基因敲除对黄曲霉致病力的影响
黄曲霉的生长、产孢和毒素合成与黄曲霉的致病力有着密切的联系,黄曲霉不能产孢或者产毒,其致病力将大幅下降甚至丧失。为了研究fadA基因在黄曲霉致病过程中的作用,将新鲜收集的野生型黄曲霉WT和ΔfadA菌株分生孢子与已经消毒处理的玉米籽粒在29℃条件下共同培养7天。结果发现,与野生型相比,ΔfadA敲除菌株在玉米籽粒中不能正常生长,不能形成分生孢子(图5A)。通过统计侵染后的产孢情况发现,ΔfadA敲除菌株产生分生孢子严重受到了影响(图4B)。
以上结果表明,fadA基因在黄曲霉的致病力以及侵染过程发挥着非常重要的作用。因此,FadA是一个重要的致病相关因子。
6.根据fadA基因表达水平筛选黄曲霉致病性或防治黄曲霉污染的潜在药物
为了验证黄曲霉菌内fadA基因表达水平与黄曲霉致病性的联系,本发明设计建立了荧光定量PCR方法分析系统。具体方法如下:
在野生型黄曲霉菌的培养体系中,加入或不加入广谱抗真菌药物紫苏醛(Perillaldehyde,PAE)培养时间24小时,提取总RNA并反转录成cDNA,检测黄曲霉野生型菌株中fadA基因的表达情况。利用上游引物GAGTACCACGTTCAAACCATC(SEQ ID NO.13)和下游引物CATCAAAGTAGTATTTCGCAGAG(SEQ ID NO.14),从上述cDNA中用PCR的方法扩增约172bp片段来代表fadA基因的表达水平。
利用上游引物ACGGTGTCGTCACAAACTGG(SEQ ID NO.15)和下游引物CGGTTGGACTTAGGGTTGATAG(SEQ ID NO.16),从上述cDNA中用PCR的方法扩增约129bp片段来代表内参基因actin的表达水平。
统计分析显示,在加入紫苏醛条件下,野生型黄曲霉菌中的fadA基因表达水平显著低于不加入紫苏醛条件下的该基因的转录水平(p<0.001)。这一结果表明,fadA基因的表达水平与黄曲霉的致病性密切相关,紫苏醛PAE是抑制黄曲霉致病性或防治黄曲霉污染的潜在药物。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。
序列表
<110> 江苏师范大学
<120> 黄曲霉致病基因fadA在筛选防治黄曲霉污染药物中的应用
<160> 16
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1063
<212> DNA
<213> 黄曲霉(Aspergillus flavus)
<400> 1
atgggttgcg gaatgagtac tgaggataag gaggggaagg cccgtaatga ggagattgaa 60
aaccagctta aacgcgacaa gatgatgcag cgcaacgaaa tcaagatgct tttgctcgga 120
gcgggagagt ctggcaagtc gacaattctg aagcagatga aactgatcca tgagggagga 180
tactcgcgtg acgaaagaga gtcgttcaag gaaattatct acagtaacac ggttcagtcg 240
atgcgagtca ttttggaagc gatggaatct ctggaactgc ctctcgagga tgcccgtcac 300
gagtaccacg ttcaaaccat cttcatgcag cccgctcaaa tcgaaggtga caaccttcct 360
ccggaggtcg gaaatgcgat tggagctttg tggcgcgaca gcggtgtgca agagtgcttc 420
aagaggtctc gggaatacca gctgaacgac tctgcgaaat actactttga tgccatcgag 480
cgcatcgctc agcccgatta tctccctaca gaccaggatg tcctccgttc ccgtgtgaag 540
actaccggta tcactgaaac cacattcatc attggcgatt tgacataccg gatgttcgac 600
gtcggtggtc aacgttccga acggaagaag tggatccact gtttcgaaaa tgtcaccacg 660
atccttttct tggttgccat ctccgagtac gaccagctgt tgttcgaaga tgagaccgtt 720
aaccgtatgc aagaagctct cactttgttt gattccattt gcaactcccg gtggttcgtc 780
aagacatcca tcattctctt cctcaacaag atcgatcgtt tcaaggagaa gctgcccgtc 840
agccccatga agaactactt ccctgactat gagggtgggt gccgattacg ctgccgcttg 900
tgactacatc ctcaaccgct tcgtgtccct caaccaagcc gagcagaagc agatttacac 960
gcactttacg tgtgctactg acactacaca gattcggttc gtcatggccg cagtaaatga 1020
catcatcatc caggagaacc tccgactctg tggtctgatt taa 1063
<210> 2
<211> 300
<212> PRT
<213> 黄曲霉(Aspergillus flavus)
<400> 2
Met Gly Cys Gly Met Ser Thr Glu Asp Lys Glu Gly Lys Ala Arg Asn
1 5 10 15
Glu Glu Ile Glu Asn Gln Leu Lys Arg Asp Lys Met Met Gln Arg Asn
20 25 30
Glu Ile Lys Met Leu Leu Leu Gly Ala Gly Glu Ser Gly Lys Ser Thr
35 40 45
Ile Leu Lys Gln Met Lys Leu Ile His Glu Gly Gly Tyr Ser Arg Asp
50 55 60
Glu Arg Glu Ser Phe Lys Glu Ile Ile Tyr Ser Asn Thr Val Gln Ser
65 70 75 80
Met Arg Val Ile Leu Glu Ala Met Glu Ser Leu Glu Leu Pro Leu Glu
85 90 95
Asp Ala Arg His Glu Tyr His Val Gln Thr Ile Phe Met Gln Pro Ala
100 105 110
Gln Ile Glu Gly Asp Asn Leu Pro Pro Glu Val Gly Asn Ala Ile Gly
115 120 125
Ala Leu Trp Arg Asp Ser Gly Val Gln Glu Cys Phe Lys Arg Ser Arg
130 135 140
Glu Tyr Gln Leu Asn Asp Ser Ala Lys Tyr Tyr Phe Asp Ala Ile Glu
145 150 155 160
Arg Ile Ala Gln Pro Asp Tyr Leu Pro Thr Asp Gln Asp Val Leu Arg
165 170 175
Ser Arg Val Lys Thr Thr Gly Ile Thr Glu Thr Thr Phe Ile Ile Gly
180 185 190
Asp Leu Thr Tyr Arg Met Phe Asp Val Gly Gly Gln Arg Ser Glu Arg
195 200 205
Lys Lys Trp Ile His Cys Phe Glu Asn Val Thr Thr Ile Leu Phe Leu
210 215 220
Val Ala Ile Ser Glu Tyr Asp Gln Leu Leu Phe Glu Asp Glu Thr Val
225 230 235 240
Asn Arg Met Gln Glu Ala Leu Thr Leu Phe Asp Ser Ile Cys Asn Ser
245 250 255
Arg Trp Phe Val Lys Thr Ser Ile Ile Leu Phe Leu Asn Lys Ile Asp
260 265 270
Arg Phe Lys Glu Lys Leu Pro Val Ser Pro Met Lys Asn Tyr Phe Pro
275 280 285
Asp Tyr Glu Gly Gly Cys Arg Leu Arg Cys Arg Leu
290 295 300
<210> 3
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
aagaacctta gagccactcg t 21
<210> 4
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
tcctcgccca tctttctcag 20
<210> 5
<211> 43
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
gggtgaagag cattgtttga ggcgtccaag ggagatgagg tga 43
<210> 6
<211> 43
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
gcatcagtgc ctcctctcag acctagccag ctctttgtta tcc 43
<210> 7
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
cgaaggcaag ggttggtgg 19
<210> 8
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
caggagaaag gcacatcagg 20
<210> 9
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
tcccggtggt gatgagttc 19
<210> 10
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
cccgtgacat gtgaatgcg 19
<210> 11
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
ctacagtaac acggttcagt cg 22
<210> 12
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
ctgcttctgc tcggcttgg 19
<210> 13
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 13
gagtaccacg ttcaaaccat c 21
<210> 14
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 14
catcaaagta gtatttcgca gag 23
<210> 15
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 15
acggtgtcgt cacaaactgg 20
<210> 16
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 16
cggttggact tagggttgat ag 22

Claims (7)

1.黄曲霉致病基因fadA在筛选防治黄曲霉污染药物中的应用。
2.根据权利要求1所述的应用,其特在于,所述应用具体包括:
S1:构建检测组黄曲霉菌培养体系和对照组黄曲霉菌培养体系,其中,检测组中添加待筛选药物;
S2:将检测组和对照组在相同条件下培养一段时间后,对比检测组和对照组中黄曲霉菌内的fadA基因或FadA蛋白的表达水平,若检测组中黄曲霉菌内的fadA基因或FadA蛋白的表达水平在一定程度上低于对照组,则待筛选药物为潜在抑制黄曲霉致病性药物。
3.根据权利要求2所述的应用,其特在于,所述步骤S2中,通过荧光定量qPCR或Northern blot杂交分析分析检测检测组和对照组中的黄曲霉菌内fadA基因mRNA表达水平。
4.根据权利要求2所述的应用,其特在于,所述步骤S2中,通过Western blot免疫印迹杂交分析或酶联免疫吸附法分析检测检测组和对照组中的黄曲霉菌内FadA蛋白表达水平。
5.根据权利要求4所述的应用,其特在于,用于分析检测FadA蛋白表达水平的相应抗体是针对FadA蛋白或蛋白片段的抗体或是在FadA蛋白C端与小分子多肽标签进行融合表达后针对小分子多肽标签的抗体。
6.根据权利要求5所述的应用,其特在于,所述小分子多肽标签为GFP标签、RFP标签、His标签、HA标签、Flag标签或GST标签。
7.根据权利要求2所述的应用,其特在于,还包括步骤S3:使用筛选出的所述潜在抑制黄曲霉致病性药物进行黄曲霉生长、产孢、产毒抑制测试或黄曲霉种子侵染抑制测试确认所述潜在抑制黄曲霉致病性药物是否为抑制黄曲霉致病性药物。
CN202010013368.7A 2020-01-07 2020-01-07 黄曲霉致病基因fadA在筛选防治黄曲霉污染药物中的应用 Active CN111172310B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010013368.7A CN111172310B (zh) 2020-01-07 2020-01-07 黄曲霉致病基因fadA在筛选防治黄曲霉污染药物中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010013368.7A CN111172310B (zh) 2020-01-07 2020-01-07 黄曲霉致病基因fadA在筛选防治黄曲霉污染药物中的应用

Publications (2)

Publication Number Publication Date
CN111172310A true CN111172310A (zh) 2020-05-19
CN111172310B CN111172310B (zh) 2023-05-12

Family

ID=70620154

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010013368.7A Active CN111172310B (zh) 2020-01-07 2020-01-07 黄曲霉致病基因fadA在筛选防治黄曲霉污染药物中的应用

Country Status (1)

Country Link
CN (1) CN111172310B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113396972A (zh) * 2021-05-11 2021-09-17 江苏师范大学 防控黄曲霉毒素的方法及黄曲霉菌afla_099790基因在筛选防控药物中的应用
CN113502345A (zh) * 2021-04-23 2021-10-15 江苏师范大学 黄曲霉致病基因cdc48在筛选防治黄曲霉污染药物中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107904250A (zh) * 2018-01-19 2018-04-13 福建农林大学 一种黄曲霉致病基因rgfC及其应用
CN110172465A (zh) * 2019-05-20 2019-08-27 福建农林大学 一种黄曲霉致病基因wprA的应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107904250A (zh) * 2018-01-19 2018-04-13 福建农林大学 一种黄曲霉致病基因rgfC及其应用
CN110172465A (zh) * 2019-05-20 2019-08-27 福建农林大学 一种黄曲霉致病基因wprA的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PERNG-KUANG CHANG等,: "Aflatoxin Biosynthesis and Sclerotial Development in Aspergillus flavus and Aspergillus parasiticus", 《MYCOTOXINS IN FOOD, FEED AND BIOWEAPONS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113502345A (zh) * 2021-04-23 2021-10-15 江苏师范大学 黄曲霉致病基因cdc48在筛选防治黄曲霉污染药物中的应用
CN113396972A (zh) * 2021-05-11 2021-09-17 江苏师范大学 防控黄曲霉毒素的方法及黄曲霉菌afla_099790基因在筛选防控药物中的应用

Also Published As

Publication number Publication date
CN111172310B (zh) 2023-05-12

Similar Documents

Publication Publication Date Title
Bok et al. LaeA, a regulator of morphogenetic fungal virulence factors
Jonkers et al. The Wor1-like Protein Fgp1 Regulates Pathogenicity, Toxin Synthesis and Reproduction in the Phytopathogenic Fungus Fusarium g raminearum
Tannous et al. Fungal attack and host defence pathways unveiled in near‐avirulent interactions of Penicillium expansum creA mutants on apples
Urban et al. An ATP‐driven efflux pump is a novel pathogenicity factor in rice blast disease
Gehrke et al. Heptahelical receptors GprC and GprD of Aspergillus fumigatus are essential regulators of colony growth, hyphal morphogenesis, and virulence
CN107904250B (zh) 一种黄曲霉致病基因rgfC及其应用
Dürrenberger et al. The hgl1 gene is required for dimorphism and teliospore formation in the fungal pathogen Ustilago maydis
Dallery et al. H3K4 trimethylation by CclA regulates pathogenicity and the production of three families of terpenoid secondary metabolites in Colletotrichum higginsianum
Guo et al. A class-II myosin is required for growth, conidiation, cell wall integrity and pathogenicity of Magnaporthe oryzae
Islamovic et al. Transcriptome analysis of a Ustilago maydis ust1 deletion mutant uncovers involvement of laccase and polyketide synthase genes in spore development
CN111172310B (zh) 黄曲霉致病基因fadA在筛选防治黄曲霉污染药物中的应用
Zhang et al. FpDep1, a component of Rpd3L histone deacetylase complex, is important for vegetative development, ROS accumulation, and pathogenesis in Fusarium pseudograminearum
Su et al. The oligosaccharyl transferase subunit STT3 mediates fungal development and is required for virulence in Verticillium dahliae
Zhang et al. Functional analysis of the pathogenicity-related gene VdPR1 in the vascular wilt fungus Verticillium dahliae
Lu et al. The key iron assimilation genes ClFTR1, ClNPS6 were crucial for virulence of Curvularia lunata via initiating its appressorium formation and virulence factors
Zheng et al. Involvement of the anucleate primary sterigmata protein FgApsB in vegetative differentiation, asexual development, nuclear migration, and virulence in Fusarium graminearum
Guo et al. Fosp9, a novel secreted protein, is essential for the full virulence of Fusarium oxysporum f. sp. cubense on banana (Musa spp.)
Szabo et al. Puccinia graminis
Wang et al. The golgin protein RUD3 regulates Fusarium graminearum growth and virulence
Hsueh et al. A homolog of Ste6, the a-factor transporter in Saccharomyces cerevisiae, is required for mating but not for monokaryotic fruiting in Cryptococcus neoformans
Rath et al. FvSTUA is a key regulator of sporulation, toxin synthesis, and virulence in Fusarium verticillioides
McFadden et al. Fusarium wilt (Fusarium oxysporum f. sp. vasinfectum) genes expressed during infection of cotton (Gossypium hirsutum)
CN110172465B (zh) 一种黄曲霉致病基因wprA的应用
Mushtaq et al. Carbamoyl phosphate synthase subunit CgCPS1 is necessary for virulence and to regulate stress tolerance in Colletotrichum gloeosporioides
Liu et al. Mating differentiation in Cryptococcus neoformans is negatively regulated by the Crk1 protein kinase

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant