CN111172243B - 基于杂交链式反应的荧光dna传感器及e542k基因检测方法 - Google Patents

基于杂交链式反应的荧光dna传感器及e542k基因检测方法 Download PDF

Info

Publication number
CN111172243B
CN111172243B CN202010080730.2A CN202010080730A CN111172243B CN 111172243 B CN111172243 B CN 111172243B CN 202010080730 A CN202010080730 A CN 202010080730A CN 111172243 B CN111172243 B CN 111172243B
Authority
CN
China
Prior art keywords
hairpin probe
gene
solution
hairpin
chain reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010080730.2A
Other languages
English (en)
Other versions
CN111172243A (zh
Inventor
白云峰
张慧琳
赵璐
李婉宁
冯锋
翟红
刘海燕
李江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi Datong University
Original Assignee
Shanxi Datong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi Datong University filed Critical Shanxi Datong University
Priority to CN202010080730.2A priority Critical patent/CN111172243B/zh
Publication of CN111172243A publication Critical patent/CN111172243A/zh
Application granted granted Critical
Publication of CN111172243B publication Critical patent/CN111172243B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6825Nucleic acid detection involving sensors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Biotechnology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)

Abstract

本发明涉及一种基于杂交链式反应的荧光DNA传感器及E542K基因检测方法。本发明所提供的基于杂交链式反应的荧光DNA传感器,包括引发链、第一发夹探针及第二发夹探针,所述第一发夹探针的两端分别标记有荧光基团及相应的荧光猝灭基团,所述第二发夹探针的两端分别标记有荧光基团及相应的荧光猝灭基团,所述引发链为E542K基因,所述引发链可与所述第一发夹探针结合,打开所述第一发夹探针的发夹结构,使所述第一发夹探针与所述第二发夹探针结合,激活杂交链式反应,形成长双链DNA,使所述长双链DNA荧光增强,从而定量检测所述E542K基因。该基于杂交链式反应的荧光DNA传感器,提高了E542K基因检测的灵敏度与选择性,具有简单、快速、高效的优势。

Description

基于杂交链式反应的荧光DNA传感器及E542K基因检测方法
技术领域
本发明涉及化学与生物传感技术领域,特别是涉及基于杂交链式反应的荧光DNA传感器及E542K基因检测方法。
背景技术
循环肿瘤DNA是一类重要的肿瘤标志物,能够实时反映肿瘤的动态变化,因此在多种肿瘤的早期诊断、实时监控、预后评估等方面体现出重要的临床价值。PIK3CA基因是一种重要的循环肿瘤DNA,可以编码蛋白质,调控细胞增殖、分化等一系列细胞活动,其中,E542K基因是野生型PIK3CA基因热点突变区域的一种突变型基因,在乳腺癌、结肠癌和肺癌中均有该基因的突变,可作为肿瘤标志物用于临床上的辅助诊断。
循环肿瘤DNA的检测方法主要有数字PCR、BEAMing及NGS等,但是这些方法具有操作复杂、价格昂贵、耗时耗力、实验条件苛刻等缺点。近年来,随着检测技术的不断提高,循环肿瘤DNA的检测出现了电化学检测、表面增强拉曼散射检测等方法,但这些方法都存在检测信号不稳定的问题,使得这些方法在实际应用中受到制约。
发明内容
基于此,为了克服上述问题,提供一种基于杂交链式反应的荧光DNA传感器及E542K基因检测方法,其中,E542K基因既是靶标分子又是所述引发链,能够激活杂交链式反应,提高检测的灵敏度与选择性,并利用反应前后荧光强度的变化实现E542K基因的定量检测。
一种基于杂交链式反应的荧光DNA传感器,包括引发链、第一发夹探针及第二发夹探针,所述第一发夹探针的两端分别标记有荧光基团及相应的荧光猝灭基团,所述第二发夹探针的两端分别标记有荧光基团及相应的荧光猝灭基团,所述引发链为E542K基因,所述引发链可与所述第一发夹探针结合,打开所述第一发夹探针的发夹结构,使所述第一发夹探针与所述第二发夹探针结合,激活杂交链式反应,形成长双链DNA,使所述长双链DNA荧光增强,从而定量检测所述E542K基因。
进一步地,所述荧光基团为6-羧基荧光素(FAM),所述荧光猝灭基团为黑洞猝灭基团(BHQ1)。
进一步地,所述第一发夹探针包括特异性识别E542K基因的碱基序列,所述第一发夹探针的碱基序列为5’-BHQ1-AAAATCACTAAGCAGGCAAAGTCCTGCTTAGTGATTTTAGAGAG-FAM-3’。
进一步地,所述第二发夹探针包括与所述第一发夹探针互补的碱基序列,所述第二发夹探针的碱基序列为5’-FAM-ACTTTGCCTGCTTAGTGATTTTCTCTCTAAAATCACTAAGCAGG-BHQ1-3’。
一种所述的基于杂交链式反应的荧光DNA传感器的E542K基因检测方法,包括以下步骤:
S1、E542K基因、第一发夹探针与第二发夹探针首次开盖使用前先离心,分别将其溶于二次水中配成100μM的母液,再用缓冲液稀释成E542K基因溶液、第一发夹探针溶液和第二发夹探针溶液,4℃保存待用;
S2、将第一发夹探针溶液与第二发夹探针溶液分别加热并冷却至室温备用;
S3、将所述步骤S2中加热后的第一发夹探针溶液、第二发夹探针溶液与不同浓度的E542K基因溶液在缓冲液中混合反应,得到反应液,检测荧光信号强度。
进一步地,所述缓冲液为SPSC缓冲液,pH为7.4。
进一步地,在所述步骤S2中,加热反应温度为85℃~95℃,加热反应时间为5分钟~15分钟。
进一步地,在所述步骤S3中,所述E542K基因溶液的浓度为10nM~1000nM,所述第一发夹探针溶液的浓度为1nM~1000nM,所述第二发夹探针溶液的浓度为1nM~1000nM。
进一步地,在所述步骤S3中,混合反应温度为25℃~45℃,混合反应时间为3小时~7小时。
本发明所提供的基于杂交链式反应的荧光DNA传感器中,E542K基因既是靶标分子又是杂交链式反应的引发链。当E542K基因不存在时,第一发夹探针与第二发夹探针都是发夹结构,标记在两端的荧光基团与荧光猝灭基团相互靠近,发生荧光共振能量转移,荧光猝灭。当E542K基因存在时,E542K基因能够与第一发夹探针特异性结合,打开第一发夹探针的发夹结构,使得第一发夹探针产生构象变化,从而第一发夹探针与第二发夹探针结合,激活杂交链式反应,形成长双链DNA,从而荧光强度增加,进而实现了E542K基因的定量检测,提高了E542K基因检测的灵敏度与选择性,具有简单、快速、高效的优势。
而且,本发明所提供的基于杂交链式反应的荧光DNA传感器的E542K基因检测方法具有操作简便、信号稳定、显著降低检测成本的优势,使得该检测方法具有很广阔的应用前景。
附图说明
图1为本发明基于杂交链式反应的荧光DNA传感器的E542K基因检测方法的原理示意图;
图2为本发明实施例1中基于杂交链式反应的荧光DNA传感器的琼脂糖凝胶电泳图;
图3为本发明实施例2中基于杂交链式反应的荧光DNA传感器处于不同条件下的荧光光谱图;
图4为本发明实施例3中基于杂交链式反应的荧光DNA传感器对不同浓度的E542K基因检测的荧光光谱图;
图5为本发明实施例3中基于杂交链式反应的荧光DNA传感器中E542K基因的浓度与相对荧光强度的关系图;
图6为本发明实施例4中基于杂交链式反应的荧光DNA传感器对E542K基因检测的选择性分析。
具体实施方式
以下将对本发明提供的基于杂交链式反应的荧光DNA传感器及E542K基因检测方法作进一步说明。
本发明所提供的基于杂交链式反应的荧光DNA传感器,包括引发链、第一发夹探针及第二发夹探针,所述第一发夹探针的两端分别标记有荧光基团及相应的荧光猝灭基团,所述第二发夹探针的两端分别标记有荧光基团及相应的荧光猝灭基团,所述引发链为E542K基因,所述引发链可与所述第一发夹探针结合,打开所述第一发夹探针的发夹结构,使所述第一发夹探针与所述第二发夹探针结合,激活杂交链式反应,形成长双链DNA,使所述长双链DNA荧光增强,从而定量检测所述E542K基因。
具体的,所述荧光DNA传感器利用E542K基因作为引发链,能够与所述第一发夹探针特异性结合,使得所述第一发夹探针产生构象变化,打开发夹结构,与所述第二发夹探针杂交组装,激活杂交链式反应,形成长双链DNA,从而放大反应检测信号,提高了检测的选择性与灵敏度,有利于实际样品中的E542K基因检测,进而有助于肿瘤的动态监控。因此,所述荧光DNA传感器具有简单、快速、高效的优势,应用前景广阔。
发夹探针包括修饰有荧光基团与猝灭基团的第一发夹探针(H1L)、修饰有荧光基团与猝灭基团的第二发夹探针(H2L)及未标记荧光基团与猝灭基团的第一发夹探针(H1)、未标记荧光基团与猝灭基团的第二发夹探针(H2)。所述杂交链式反应激活,所述第一发夹探针H1L与所述第二发夹探针H2L链末端修饰的荧光基团与荧光猝灭基团之间能够发生荧光共振能量转移,使得双链DNA两端的荧光增强,分子内部间的荧光猝灭,从而能够利用荧光信号强度变化实现E542K基因的定量检测。
进一步地,考虑到荧光信号强度,所述荧光基团选择6-羧基荧光素(FAM),所述荧光猝灭基团为黑洞猝灭基团(BHQ1)。所述荧光基团以及相应的所述荧光猝灭基团没有具体的限制,两个基团之间能够实现荧光共振能量转移即可,从而有效地实现荧光猝灭及荧光激发。
进一步地,考虑到靶标的特异性识别,所述第一发夹探针包括特异性识别E542K基因的碱基序列,所述第一发夹探针的碱基序列为5’-BHQ1-AAAATCACTAAGCAGGCAAAGTCCTGCTTAGTGATTTTAGAGAG-FAM-3’。为了提高第一发夹探针的稳定性,所述第一发夹探针还包括稳定发夹结构的碱基序列,使得所述第一发夹探针能够稳定存在于溶液中。
进一步地,所述第二发夹探针包括与所述第一发夹探针互补的碱基序列,所述第二发夹探针的碱基序列为5’-FAM-ACTTTGCCTGCTTAGTGATTTTCTCTCTAAAATCACTAAGCAGG-BHQ1-3’,能够与所述第一发夹探针杂交组装,从而激活杂交链式反应,形成长双链DNA,并根据荧光共振能量转移原理,产生荧光信号强度变化。其中,所述第二发夹探针还包括稳定发夹结构的碱基序列,能够提高所述第二发夹探针的稳定性。
本发明还提供了所述的基于杂交链式反应的荧光DNA传感器的E542K基因检测方法,包括以下步骤:
S1、E542K基因、第一发夹探针与第二发夹探针首次开盖使用前先离心,分别将其溶于二次水中配成100μM的母液,再用缓冲液稀释成E542K基因溶液、第一发夹探针溶液和第二发夹探针溶液,4℃保存待用;
S2、将第一发夹探针溶液与第二发夹探针溶液分别加热并冷却至室温备用;
S3、将所述步骤S2中加热后的第一发夹探针溶液、第二发夹探针溶液与不同浓度的E542K基因溶液在缓冲液中混合反应,得到反应液,检测荧光信号强度。
具体的,考虑到核酸易受到核酸酶作用而降解,以及杂交链式反应扩增效率,所述缓冲液为SPSC缓冲液,所述SPSC缓冲液的pH为7.4,使所述E542K基因、所述第一发夹探针与所述第二发夹探针能够保持较稳定的发夹结构,从而实现杂交链式反应。
在所述步骤S2中,为了使核酸充分形成发夹结构,核酸探针需要经过高温过程,即加热反应温度为85℃~95℃,加热反应时间为5分钟~15分钟,使得DNA变性,从而形成二聚体的DNA解链形成单链,在缓慢退火降温的复性过程中,核酸探针能够充分形成稳定的发夹结构,有利于后续的杂交链式反应。优选的,反应温度为90℃,反应时间为10分钟。
在所述步骤S3中,为了提高杂交链式反应的扩增效率,所述E542K基因溶液的浓度为10nM~1000nM,所述第一发夹探针溶液为1nM~1000nM,所述第二发夹探针溶液为1nM~1000nM。优选的,所述第一发夹探针溶液为50nM,所述第二发夹探针溶液为50nM。
当反应温度过高时,DNA双链之间的氢键不稳定,导致DNA解链,降低扩增效率。当反应时间过短,则核酸探针之间的反应不完全。因此,考虑到反应温度以及反应时间对杂交链式反应的影响,所述混合反应温度为25℃~45℃之间,优选为37℃,所述混合反应时间为3小时~7小时,优选为5小时。
本发明所提供的基于杂交链式反应的荧光DNA传感器的E542K基因检测方法中,E542K基因既是目标分析物,又是杂交链式反应的引发链,具有操作简便、显著降低检测成本、缩短检测时间的优势,而且无需辅助酶,就能够实现荧光信号放大,从而提高实际样品中E542K基因检测的选择性与灵敏度。
以下,将通过具体实施例对所述基于杂交链式反应的荧光DNA传感器及E542K基因检测方法做进一步的说明。
如图1所示,基于杂交链式反应的荧光DNA传感器的E542K基因检测方法的原理示意图。
实施例中,各DNA序列如下:
表1本实验所用的DNA序列
Figure BDA0002380223170000071
实施例1
E542K基因、第一发夹探针与第二发夹探针首次开盖使用前先10000rpm离心,4℃离心30秒,分别将其溶于二次水中配成100μM的母液,再用SPSC缓冲液稀释,4℃保存待用;将第一发夹探针溶液10μM与第二发夹探针溶液10μM分别加热到90℃,反应10分钟,并冷却至室温备用。
其中,在图2条带1中,离心管中加入1μM E542K基因于pH为7.4的SPSC缓冲液中,37℃反应5小时。
在图2条带2中,离心管中加入1μM无标记的第一发夹探针溶液H1于pH为7.4的SPSC缓冲液中,37℃反应5小时。
在图2条带3中,离心管中加入1μM无标记的第二发夹探针溶液H2于pH为7.4的SPSC缓冲液中,37℃反应5小时。
在图2条带4中,离心管中加入1μM无标记第一发夹探针溶液H1与1μM无标记第二发夹探针溶液H2于pH为7.4的SPSC缓冲液中,37℃反应5小时。
在图2条带5中,离心管中加入0.1μM E542K基因、1μM无标记第一发夹探针溶液H1与1μM无标记第二发夹探针溶液H2于pH为7.4的SPSC缓冲液中,37℃反应5小时。
在图2条带6中,离心管中加入0.4μM E542K基因、1μM无标记第一发夹探针溶液H1与1μM无标记第二发夹探针溶液H2于pH为7.4的SPSC缓冲液中,37℃反应5小时。
在图2条带7中,离心管中加入0.8μM E542K基因、1μM无标记第一发夹探针溶液H1与1μM无标记第二发夹探针溶液H2于pH为7.4的SPSC缓冲液中,37℃反应5小时。
在图2条带8中,离心管中加入1μM E542K基因、1μM无标记第一发夹探针溶液H1与1μM无标记第二发夹探针溶液H2于pH为7.4的SPSC缓冲液中,37℃反应5小时。
在图2条带M中,100bp分子量的DNAMarker。
通过图2的琼脂糖凝胶电泳图,可以得出,所述E542K基因不存在时,所述无标记第一发夹探针H1与所述无标记第二发夹探针H2保持稳定的发夹结构,保持闭合状态,未发生杂交链式反应,两个无标记发夹探针稳定地存在于溶液中。所述E542K基因存在时,两个无标记发夹探针杂交组装,激活杂交链式反应,聚合形成了大分子DNA双链。
实施例2
E542K基因、第一发夹探针与第二发夹探针首次开盖使用前先10000rpm离心,4℃离心30秒,分别将其溶于二次水中配成100μM的母液,再用SPSC缓冲液稀释,4℃保存待用;将0.5μM第一发夹探针溶液与0.5μM第二发夹探针溶液分别加热到90℃,反应10分钟,并冷却至室温备用。
其中,在图3(a)中,离心管中加入100nM E542K基因在pH为7.4的SPSC缓冲液中,37℃反应5小时,得到反应液,检测荧光信号强度。
在图3(b)中,离心管中加入50nM第一发夹探针溶液H1L在pH为7.4的SPSC缓冲液中,37℃反应5小时,得到反应液,检测荧光信号强度。
在图3(c)中,离心管中加入50nM第二发夹探针溶液H2L在pH为7.4的SPSC缓冲液中,37℃反应5小时,得到反应液,检测荧光信号强度。
在图3(d)中,离心管中加入50nM第一发夹探针溶液H1L与50nM第二发夹探针溶液H2L在pH为7.4的SPSC缓冲液中,37℃反应5小时,得到反应液,检测荧光信号强度。
在图3(e)中,离心管中加入100nM E542K基因,50nM第一发夹探针溶液H1L与50nM第二发夹探针溶液H2L在pH为7.4的SPSC缓冲液中,37℃反应5小时,得到反应液,检测荧光信号强度。
在图3(f)中,离心管中加入500nM E542K基因,50nM第一发夹探针溶液H1L与50nM第二发夹探针溶液H2L在pH为7.4的SPSC缓冲液中,37℃反应5小时,得到反应液,检测荧光信号强度。
通过图3的荧光光谱图,可以得出,当E542K基因分子不存在时,所述第一发夹探针H1L与所述第二发夹探针H2L保持稳定的发夹结构,发生荧光共振能量转移,荧光猝灭,因此,反应液仅有较弱的荧光信号强度。然而,当E542K基因分子存在时,随着所述E542K基因浓度的增加,荧光信号强度显著增强。
实施例3
E542K基因、第一发夹探针与第二发夹探针首次开盖使用前先10000rpm离心,4℃离心30秒,分别将其溶于二次水中配成100μM的母液,再用SPSC缓冲液稀释,4℃保存待用;将0.5μM第一发夹探针溶液与0.5μM第二发夹探针溶液分别加热到90℃,反应10分钟,并冷却至室温备用。
在图4(a)中,离心管中加入50nM第一发夹探针溶液H1L与50nM第二发夹探针溶液H2L在pH为7.4的SPSC缓冲液中,37℃反应5小时,得到反应液,检测荧光信号强度。
在图4(b)中,离心管中加入5nM E542K基因、50nM第一发夹探针溶液H1L与50nM第二发夹探针溶液H2L在pH为7.4的SPSC缓冲液中,37℃反应5小时,得到反应液,检测荧光信号强度。
在图4(c)中,离心管中加入10nM E542K基因、50nM第一发夹探针溶液H1L与50nM第二发夹探针溶液H2L在pH为7.4的SPSC缓冲液中,37℃反应5小时,得到反应液,检测荧光信号强度。
在图4(d)中,离心管中加入15nM E542K基因、50nM第一发夹探针溶液H1L与50nM第二发夹探针溶液H2L在pH为7.4的SPSC缓冲液中,37℃反应5小时,得到反应液,检测荧光信号强度。
在图4(e)中,离心管中加入20nM E542K基因、50nM第一发夹探针溶液H1L与50nM第二发夹探针溶液H2L在pH为7.4的SPSC缓冲液中,37℃反应5小时,得到反应液,检测荧光信号强度。
在图4(f)中,离心管中加入30nM E542K基因、50nM第一发夹探针溶液H1L与50nM第二发夹探针溶液H2L在pH为7.4的SPSC缓冲液中,37℃反应5小时,得到反应液,检测荧光信号强度。
在图4(g)中,离心管中加入40nM E542K基因、50nM第一发夹探针溶液H1L与50nM第二发夹探针溶液H2L在pH为7.4的SPSC缓冲液中,37℃反应5小时,得到反应液,检测荧光信号强度。
在图4(h)中,离心管中加入60nM E542K基因、50nM第一发夹探针溶液H1L与50nM第二发夹探针溶液H2L在pH为7.4的SPSC缓冲液中,37℃反应5小时,得到反应液,检测荧光信号强度。
在图4(i)中,离心管中加入80nM E542K基因、50nM第一发夹探针溶液H1L与50nM第二发夹探针溶液H2L在pH为7.4的SPSC缓冲液中,37℃反应5小时,得到反应液,检测荧光信号强度。
在图4(j)中,离心管中加入100nM E542K基因、50nM第一发夹探针溶液H1L与50nM第二发夹探针溶液H2L在pH为7.4的SPSC缓冲液中,37℃反应5小时,得到反应液,检测荧光信号强度。
在图4(k)中,离心管中加入200nM E542K基因、50nM第一发夹探针溶液H1L与50nM第二发夹探针溶液H2L在pH为7.4的SPSC缓冲液中,37℃反应5小时,得到反应液,检测荧光信号强度。
在图4(l)中,离心管中加入400nM E542K基因、50nM第一发夹探针溶液H1L与50nM第二发夹探针溶液H2L在pH为7.4的SPSC缓冲液中,37℃反应5小时,得到反应液,检测荧光信号强度。
通过图4的荧光光谱图,可以得出,随着所述E542K基因浓度的增加,荧光信号强度显著增强。
在本实施例中,从图5可以得出,在5nM~100nM浓度范围内,E542K基因的浓度与相对荧光强度变化呈现良好的线性关系,线性相关系数为R2=0.99052,检出限为2nM,其中F和F0分别为E542K基因存在与不存在时的荧光强度,因此,所述基于杂交链式反应的荧光DNA传感器具有较高的灵敏度。
实施例4
E542K基因、第一发夹探针与第二发夹探针首次开盖使用前先10000rpm离心,4℃离心30秒,分别将其溶于二次水中配成100μM的母液,再用SPSC缓冲液稀释,4℃保存待用;将0.5μM第一发夹探针溶液与0.5μM第二发夹探针溶液分别加热到90℃,反应10分钟,并冷却至室温备用。
在图6(a)中,离心管中加入50nM第一发夹探针溶液H1L与50nM第二发夹探针溶液H2L在pH为7.4的SPSC缓冲液中,37℃反应5小时,得到反应液,检测荧光信号强度。
在图6(b)中,离心管中加入100nM E542K基因、50nM第一发夹探针溶液H1L与50nM第二发夹探针溶液H2L在pH为7.4的SPSC缓冲液中,37℃反应5小时,得到反应液,检测荧光信号强度。
在图6(c)中,离心管中加入100nM单碱基错配DNA(1MTDNA)、50nM第一发夹探针溶液H1L与50nM第二发夹探针溶液H2L在pH为7.4的SPSC缓冲液中,37℃反应5小时,得到反应液,检测荧光信号强度。
在图6(d)中,离心管中加入100nM双碱基错配DNA(2MTDNA)、50nM第一发夹探针溶液H1L与50nM第二发夹探针溶液H2L在pH为7.4的SPSC缓冲液中,37℃反应5小时,得到反应液,检测荧光信号强度。
在图6(e)中,离心管中加入100nM四碱基错配DNA(4MTDNA)、50nM第一发夹探针溶液H1L与50nM第二发夹探针溶液H2L在pH为7.4的SPSC缓冲液中,37℃反应5小时,得到反应液,检测荧光信号强度。
在图6(f)中,离心管中加入100nM完全错配DNA(ncDNA)、50nM第一发夹探针溶液H1L与50nM第二发夹探针溶液H2L在pH为7.4的SPSC缓冲液中,37℃反应5小时,得到反应液,检测荧光信号强度。
从图6可知,E542K基因能够引发杂交链式反应,从而具有较强的荧光信号强度,而单碱基错配DNA、双碱基错配DNA、四碱基错配DNA和完全错配DNA及背景仅有较弱的荧光信号强度,因此,所述基于杂交链式反应的荧光DNA传感器对E542K基因具有较高的选择性,能够区分单碱基错配序列。
实施例5
为了评估该荧光DNA传感器在实样检测中的分析应用能力,测定了不同浓度的E542K基因在稀释的人血清样本中的回收率。实验结果如表2所示,所述基于杂交链式反应的荧光DNA传感器对E542K基因的加标回收率在95.52%到104.80%之间,满足实验要求,因而该荧光DNA传感器能够在复杂生物样品中定量检测E542K基因,具有临床应用前景。
表2血清中E542K基因的检测
Figure BDA0002380223170000141
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (6)

1.一种基于杂交链式反应的荧光DNA传感器,其特征在于,包括引发链、第一发夹探针及第二发夹探针,所述第一发夹探针的两端分别标记有荧光基团及相应的荧光猝灭基团,所述第二发夹探针的两端分别标记有荧光基团及相应的荧光猝灭基团,所述荧光基团为6-羧基荧光素,所述荧光猝灭基团为黑洞猝灭基团,所述第一发夹探针包括特异性识别E542K基因的碱基序列,所述第一发夹探针的碱基序列为5’-BHQ1-AAAATCACTAAGCAGGCAAAGTCCTGCTTAGTGATTTTAGAGAG-FAM-3’,所述第二发夹探针包括与所述第一发夹探针互补的碱基序列,所述第二发夹探针的碱基序列为5’-FAM-ACTTTGCCTGCTTAGTGATTTTCTCTCTAAAATCACTAAGCAGG-BHQ1-3’,所述引发链为E542K基因,所述引发链可与所述第一发夹探针结合,打开所述第一发夹探针的发夹结构,使所述第一发夹探针与所述第二发夹探针结合,激活杂交链式反应,形成长双链DNA,使所述长双链DNA荧光增强,从而定量检测所述E542K基因。
2.一种非疾病诊断目的的如权利要求1所述的基于杂交链式反应的荧光DNA传感器的E542K基因检测方法,其特征在于,包括以下步骤:
S1、取E542K基因、第一发夹探针与第二发夹探针首次开盖使用前先离心,分别将其溶于二次水中配成100μM的母液,再用缓冲液稀释成E542K基因溶液、第一发夹探针溶液和第二发夹探针溶液,4℃保存待用;
S2、将第一发夹探针溶液与第二发夹探针溶液分别加热并冷却至室温备用;
S3、将所述步骤S2中加热后的第一发夹探针溶液、第二发夹探针溶液与不同浓度的E542K基因溶液在缓冲液中混合反应,得到反应液,检测荧光信号强度。
3.根据权利要求2所述的基于杂交链式反应的荧光DNA传感器的E542K基因检测方法,其特征在于,所述缓冲液为SPSC缓冲液,pH为7.4。
4.根据权利要求2所述的基于杂交链式反应的荧光DNA传感器的E542K基因检测方法,其特征在于,在所述步骤S2中,加热反应温度为85℃~95℃,加热反应时间为5分钟~15分钟。
5.根据权利要求2所述的基于杂交链式反应的荧光DNA传感器的E542K基因检测方法,其特征在于,在所述步骤S3中,E542K基因溶液的浓度为10nM~1000nM,所述第一发夹探针溶液的浓度为1nM~1000nM,所述第二发夹探针溶液的浓度为1nM~1000nM。
6.根据权利要求2所述的基于杂交链式反应的荧光DNA传感器的E542K基因检测方法,其特征在于,在所述步骤S3中,混合反应温度为25℃~45℃,混合反应时间为3小时~7小时。
CN202010080730.2A 2020-02-05 2020-02-05 基于杂交链式反应的荧光dna传感器及e542k基因检测方法 Active CN111172243B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010080730.2A CN111172243B (zh) 2020-02-05 2020-02-05 基于杂交链式反应的荧光dna传感器及e542k基因检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010080730.2A CN111172243B (zh) 2020-02-05 2020-02-05 基于杂交链式反应的荧光dna传感器及e542k基因检测方法

Publications (2)

Publication Number Publication Date
CN111172243A CN111172243A (zh) 2020-05-19
CN111172243B true CN111172243B (zh) 2022-09-09

Family

ID=70648255

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010080730.2A Active CN111172243B (zh) 2020-02-05 2020-02-05 基于杂交链式反应的荧光dna传感器及e542k基因检测方法

Country Status (1)

Country Link
CN (1) CN111172243B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116445586B (zh) * 2023-06-13 2023-09-01 中国农业大学 一种基于荧光杂交链式反应的生物传感器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107574227A (zh) * 2017-10-10 2018-01-12 武汉大学 一种基于级联杂交链式反应的核酸分析方法
CN109321635A (zh) * 2018-09-19 2019-02-12 嘉兴学院 一种基于多支杂交链式反应的核酸检测方法及应用
US20190218608A1 (en) * 2016-04-25 2019-07-18 President And Fellows Of Harvard College Hybridization Chain Reaction Methods for In Situ Molecular Detection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190218608A1 (en) * 2016-04-25 2019-07-18 President And Fellows Of Harvard College Hybridization Chain Reaction Methods for In Situ Molecular Detection
CN107574227A (zh) * 2017-10-10 2018-01-12 武汉大学 一种基于级联杂交链式反应的核酸分析方法
CN109321635A (zh) * 2018-09-19 2019-02-12 嘉兴学院 一种基于多支杂交链式反应的核酸检测方法及应用

Also Published As

Publication number Publication date
CN111172243A (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
Yin et al. Ultrasensitive pathogenic bacteria detection by a smartphone-read G-quadruplex-based CRISPR-Cas12a bioassay
CN111175506B (zh) 基于杂交链式反应和核酶的传感器及癌胚抗原检测方法
CN103305612A (zh) 一种基于恒温级联核酸扩增的铅离子检测试剂盒及其检测方法
CN112098380B (zh) 一种基于量子点选择性识别反应的生物分析方法及其应用
Huang et al. An electrochemical biosensor for the highly sensitive detection of Staphylococcus aureus based on SRCA-CRISPR/Cas12a
CN104630363A (zh) 一种基于免标记无酶dna机器荧光放大策略检测尿嘧啶-dna糖基化酶活性的方法
CN107084961B (zh) 检测黄曲霉毒素b1的适配体分子对、试剂盒及其检测方法
CN112301100A (zh) 基于杂交链式反应和核酶的荧光适配体传感器及其应用
CN111175268A (zh) 一种检测汞离子的双重信号放大的荧光传感器及其制备方法
Yang et al. A novel fluorescent detection for PDGF-BB based on dsDNA-templated copper nanoparticles
Li et al. Electrochemiluminescence aptasensor based on cascading amplification of nicking endonuclease-assisted target recycling and rolling circle amplifications for mucin 1 detection
Li et al. Graphene oxide-based fluorometric determination of microRNA-141 using rolling circle amplification and exonuclease III-aided recycling amplification
CN111172243B (zh) 基于杂交链式反应的荧光dna传感器及e542k基因检测方法
Iwe et al. A dual-cycling fluorescence scheme for ultrasensitive DNA detection through signal amplification and target regeneration
Chen et al. Portable biosensor for on-site detection of kanamycin in water samples based on CRISPR-Cas12a and an off-the-shelf glucometer
CN112378965B (zh) 一种内切酶驱动多足DNA分子机器的超敏microRNA电化学检测方法
CN110777193A (zh) 一种核酸单碱基突变检测的方法
Li et al. Fluorescence energy transfer biosensing platform based on hyperbranched rolling circle amplification and multi-site strand displacement for ultrasensitive detection of miRNA
Yan et al. Non‐binary encoded nucleic acid barcodes directly readable by a nanopore
Zhang et al. A highly sensitive and versatile fluorescent biosensor for pathogen nucleic acid detection based on toehold-mediated strand displacement initiated primer exchange reaction
Wang et al. Glucometer-based electrochemical biosensor for determination of microRNA (let-7a) using magnetic-assisted extraction and supersandwich signal amplification
Wang et al. Fluorescent trimethyl-substituted naphthyridine as a label-free signal reporter for one-step and highly sensitive fluorescent detection of DNA in serum samples
Sebuyoya et al. Dual detection system for cancer-associated point mutations assisted by a multiplexed LNA-based amperometric bioplatform coupled with rolling circle amplification
ZHANG et al. Highly sensitive fluorescent aptasensor for thrombin detection based on competition triggered rolling circle amplification
CN116426611A (zh) 一种基于DNAzyme和CRISPR/Cas12a的炭疽杆菌标志物检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant