CN111148115B - 一种车间通信信道接入方法 - Google Patents

一种车间通信信道接入方法 Download PDF

Info

Publication number
CN111148115B
CN111148115B CN201910854587.5A CN201910854587A CN111148115B CN 111148115 B CN111148115 B CN 111148115B CN 201910854587 A CN201910854587 A CN 201910854587A CN 111148115 B CN111148115 B CN 111148115B
Authority
CN
China
Prior art keywords
channel
communication
time slot
base station
channel state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910854587.5A
Other languages
English (en)
Other versions
CN111148115A (zh
Inventor
包志华
王慧玲
邱恭安
高锐锋
张士兵
李业
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong University
Original Assignee
Nantong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong University filed Critical Nantong University
Priority to CN201910854587.5A priority Critical patent/CN111148115B/zh
Publication of CN111148115A publication Critical patent/CN111148115A/zh
Application granted granted Critical
Publication of CN111148115B publication Critical patent/CN111148115B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/22Traffic simulation tools or models
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/085Random access procedures, e.g. with 4-step access with collision treatment collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及干扰避免的车间通信信道接入方法,当蜂窝网络基站通信区域内交通情景出现异常时,基站实施本方法以避免车间通信和蜂窝通信间的同频干扰。其中:无线信道状态检测中应用能量检测方法获得通信周期中第一时隙信道状态,并上传至基站;基站应用隐马尔可夫模型估计通信周期内其他时隙中信道状态序列,统计信道状态切换值,计算信道干扰避免指数值;基站应用Dijkstra算法对信道干扰避免指数值进行排序,以此为车间通信分配干扰最小的信道作为接入信道。其优点是利用基站的边缘计算增益提升车联网的通信增益,以有效降低蜂窝通信的阻塞率和车间通信的中断概率,提高蜂窝网络频谱效率。

Description

一种车间通信信道接入方法
技术领域
本发明涉及车联网通信技术,尤其涉及一种可避免干扰的车间通信信道接入方法。
背景技术
车间通信是交通网络信息传播的基础,是构建车联网的有效途径。基于IEEE802.11p协议的车载专用短程通信技术能在一定通信范围内有效地实现车与车、车与路之间的各种交通信息传播,但存在可扩展性不强、端到端时延不确定、可靠性差、通信距离短等缺点,大规模商用经济实用性弱。
当前,依托蜂窝通信网络实现的车联网通信技术具有覆盖范围广、蜂窝既有用户数量大、基础设施成熟等优势,具有潜在的商用可行性。作为实时传播车联网信息的主要通信技术,车间通信(Vehicle to Vehicle,V2V)利用蜂窝网络中终端到终端的直通通信(Device to Device,D2D)技术实现短距离交通状态信息的实时传播。车间通信方法主要有专用模式和复用模式,专用模式利用蜂窝通信网络基站提前为V2V用户分配专用资源,V2V用户的通信信道与蜂窝用户的通信信道相互正交,不会产生干扰,但蜂窝网络无线资源利用率低。在复用模式中,V2V用户通过复用蜂窝用户的频谱资源进行车间通信,无线资源利用率高,但存在潜在的同频干扰问题,甚至导致正常的蜂窝用户通信中断。
目前,解决复用模式下同频干扰问题的方法主要有两类,一是通过发射端功率控制技术限制干扰产生源,但功率控制会降低车间通信传播距离和传输可靠性;二是通过接收端载波滤波技术消除干扰,但窄带滤波器的边带锐截止要求使得器件实现困难。
发明内容
本发明目的是利用时分通信的周期性时隙业务接入特征,应用频谱检测技术获得蜂窝网络无线信道使用状态,应用信道估计技术计算信道复用模式下无线信道的干扰避免指数,通过关联车间通信业务和复用信道特征实现同频干扰避免的信道分配,达到提高频谱效率和车间通信质量的双重目的,具体由以下技术方案实现:
所述车间通信信道接入方法,基于蜂窝网络的车间通信模型,包括如下步骤:
步骤1)在基站通信覆盖范围内,车节点周期性检测无线信道中第一个时隙的状态,并上传检测结果到基站;
步骤2)基站通过设定的干扰避免指数计算接入信道的干扰程度,并广播给通信区域内所有车节点;
步骤3)当车节点需要与邻居节点建立车间通信时,选择接入干扰避免的信道进行交通消息传播。
所述车间通信信道接入方法的进一步设计在于,所述步骤1)中检测无线信道状态时,设通信模型的蜂窝基站的通信区域中有M个独立无线信道,每个信道传输周期T分为K个时隙,每个时隙时长为Ts,在单个时隙中信道处于忙或空闲状态;设第k时隙中信道状态为qk,且qk∈{0,1},其中,qk=1为信道空闲状态,qk=0为信道忙状态。
所述车间通信信道接入方法的进一步设计在于,车节点应用能量检测方法检测传输周期T中第1个时隙的信道状态。
所述车间通信信道接入方法的进一步设计在于,所述步骤2)中,基站接收到信道传输周期内第1个时隙中信道状态检测结果后,应用隐马尔可夫模型估计后续时隙中的信道状态:设经训练后获得匹配信道的隐马尔可夫模型参数为ξ,第(k-1)时隙中信道状态为qk-1,根据式(1)得到第k时隙中信道状态qk
Figure GDA0003912379860000021
当车节点检测获得第1个时隙的信道状态后,信道传输周期T的K个时隙中信道状态序列Q可依次递推获得,即Q={q1,...,qk,...,qK}。
所述车间通信信道接入方法的进一步设计在于,设信道传输周期T内相邻时隙信道状态切换次数为L,即每当
Figure GDA0003912379860000022
时,切换次数加1,则根据信道状态qk和相邻时隙信道状态切换次数L计算该信道的空闲稳定性,即定义信道干扰避免指数S如式(2),
Figure GDA0003912379860000031
所述车间通信信道接入方法的进一步设计在于,所述步骤3)中车节点需要与邻居节点建立车间通信时无线信道的选择具体为:设第n对车间通信连接对为vn,则某基站通信区域内所有N对车间通信连接对集为V={v1,...,vn,...,vN};设第m个信道的干扰避免指数值为Sm,则区域所有M个信道的干扰避免指数值集为ζ={S1,...,Sm,...,SM};应用Dijkstra算法对ζ中所有干扰避免指数值进行排序,得到最小潜在干扰的车间通信待接入信道集ζ'={S'1,...,S'n,...,S'N},当车间需要建立通信连接对时,依次选择最大干扰避免指数值的信道分配给车间通信。
本发明的优点如下:
本发明的车间通信信道接入方法利用频谱检测方法获得蜂窝网络中无线信道使用状态,根据干扰避免指数计算潜在的同频干扰避免值,通过优化信道分配方案实现车间通信与蜂窝通信间的协同通信,以有效降低蜂窝通信的阻塞率和车间通信的中断概率,提高蜂窝网络频谱效率。
附图说明
图1是基于蜂窝网络的车间通信模型示意图。
图2是干扰避免的信道分配模型示意图。
具体实施方式
下面结合附图以及具体实施例对本发明进行详细说明。
本实施例基于蜂窝通信的车联网,车节点周期性检测无线信道状况并上传检测结果至基站,基站根据信道传输周期内相邻时隙切换状态和信道状态计算该信道的干扰避免指数,为车间通信分配避免干扰的接入信道,具体过程如下:
步骤1)在基站通信覆盖范围内,车节点周期性检测无线信道中第一个时隙的状态,并上传检测结果到基站,具体为:
当某路段发生交通异常时,该路段会在短时间内聚集大量车节点,车载应急业务需要通过复用蜂窝网络中的频谱资源建立车间通信链路进行短距离交通消息传播。设蜂窝网络中有M个独立信道,每个信道传输周期T分为K个时隙,每个时隙时长为Ts,在单个时隙中信道处于忙或空闲状态。设第m个信道传输周期内第1个时隙的信道状态为
Figure GDA0003912379860000041
Figure GDA0003912379860000042
其中,
Figure GDA0003912379860000043
为信道空闲状态,
Figure GDA0003912379860000044
为信道忙状态。设区域内第m个信道中蜂窝用户发射信号为x(m),信道增益为
Figure GDA0003912379860000045
噪声为σ(m),则基站接收信号为
Figure GDA0003912379860000046
应用能量检测方法得到第m个信道传输周期内第1个时隙的信道状态检测值如式(3)所示。
Figure GDA0003912379860000047
其中,检测值
Figure GDA0003912379860000048
为第m个信道传输周期内第1个时隙中接收信号抽样电平均值,Y为接收信号抽样电平数。将检测值
Figure GDA0003912379860000049
与判决门限值λ进行比较,当
Figure GDA00039123798600000410
时,表示该时隙中信道为忙状态,即
Figure GDA00039123798600000411
Figure GDA00039123798600000412
时,表示该时隙中信道为闲状态,即
Figure GDA00039123798600000413
步骤2)基站通过设定的干扰避免指数计算接入信道的干扰程度,并广播给通信区域内所有车节点,具体为:
当基站接收到第m个信道传输周期内第1个时隙中信道状态检测结果
Figure GDA00039123798600000414
后,应用隐马尔可夫模型估计后续其他时隙中信道状态。设第m个信道匹配的隐马尔可夫模型参数为ξm,第(k-1)时隙中信道状态为
Figure GDA00039123798600000415
则第k时隙中信道状态
Figure GDA00039123798600000416
Figure GDA00039123798600000417
由此,当车节点检测获得第m个信道第1个时隙的信道状态后,传输周期T内K个时隙中信道状态序列Qm可依次递推获得,即
Figure GDA00039123798600000418
Figure GDA00039123798600000419
时,相邻时隙信道状态切换次数Lm加1,则可得所有M个信道状态参数如表1所示。
表1信道状态参数集
Figure GDA0003912379860000051
由表1中信道状态参数qk和相邻时隙信道状态切换次数L,依据公式(2)可得第m个信道的干扰避免指数Sm
Figure GDA0003912379860000052
步骤3)当车节点需要与邻居节点建立车间通信时,选择接入干扰避免的信道进行交通消息传播(即信道分配),具体为:
在基站通信区域内,所有N对车间通信连接对集为V={v1,...,vn,...,vN},所有M个信道的干扰避免指数值集为ζ={S1,...,Sm,...,SM}。设将第m个信道分配给第n个车间通信对时,信道分配函数为xn=Sm,其中,m=1,2,...,M,n=1,2,...,N,N≤M,则所有N对车间通信信道分配函数集为X={x1,...,xn,...,xN}。应用Dijkstra算法对干扰指数值排序得到干扰避免的车间通信信道待接入信道集ζ′={S′1,...,S′n,...,S′N},完成车间通信的干扰避免的接入信道分配,如图2所示。
综上所述,本实施例通过计算信道的干扰避免指数提供了一种干扰避免的车间通信信道接入方法,该方法通过定义干扰避免指数对待分配信道进行标记,通过基于干扰避免指数的通信信道分配为解决蜂窝网络中车间通信复用上行链路资源带来的潜在同频干扰问题提供了便于实施的方案。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (1)

1.一种车间通信信道接入方法,基于蜂窝网络的车间通信模型其特征在于,包括如下步骤:
步骤1)在基站通信覆盖范围内,车节点周期性检测无线信道中第一个时隙的状态,并上传检测结果到基站;
步骤2)基站通过设定的干扰避免指数计算接入信道的干扰程度,并广播给通信区域内所有车节点;
步骤3)当车节点需要与邻居节点建立车间通信时,选择接入干扰避免的信道进行交通消息传播;
所述步骤1)中检测无线信道状态时,设通信模型的蜂窝基站的通信区域中有M个独立无线信道,每个信道传输周期T分为K个时隙,每个时隙时长为Ts,在单个时隙中信道处于忙或空闲状态;设第k时隙中信道状态为qk,且qk∈{0,1},其中,qk=1为信道空闲状态,qk=0为信道忙状态;
车节点应用能量检测方法检测传输周期T中第1个时隙的信道状态;
所述步骤2)中,基站接收到信道传输周期内第1个时隙中信道状态检测结果后,应用隐马尔可夫模型估计后续时隙中的信道状态:设经训练后获得匹配信道的隐马尔可夫模型参数为ξ,第(k-1)时隙中信道状态为qk-1,根据式(1)得到第k时隙中信道状态qk
Figure FDA0003912379850000011
当车节点检测获得第1个时隙的信道状态后,信道传输周期T的K个时隙中信道状态序列Q可依次递推获得,即Q={q1,...,qk,...,qK};
设信道传输周期T内相邻时隙信道状态切换次数为L,即每当
Figure FDA0003912379850000012
时,切换次数加1,则根据信道状态qk和相邻时隙信道状态切换次数L计算该信道的空闲稳定性,即定义信道干扰避免指数S如式(2),
Figure FDA0003912379850000013
所述步骤3)中车节点需要与邻居节点建立车间通信时无线信道的选择具体为:
设第n对车间通信连接对为vn,则某基站通信区域内所有N对车间通信连接对集为V={v1,...,vn,...,vN};设第m个信道的干扰避免指数值为Sm,则区域所有M个信道的干扰避免指数值集为ζ={S1,...,Sm,...,SM};应用Dijkstra算法对ζ中所有干扰避免指数值进行排序,得到最小潜在干扰的车间通信待接入信道集ζ′={S′1,...,S′n,...,S′N}当车间需要建立通信连接对时,依次选择最大干扰避免指数值的信道分配给车间通信。
CN201910854587.5A 2019-09-10 2019-09-10 一种车间通信信道接入方法 Active CN111148115B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910854587.5A CN111148115B (zh) 2019-09-10 2019-09-10 一种车间通信信道接入方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910854587.5A CN111148115B (zh) 2019-09-10 2019-09-10 一种车间通信信道接入方法

Publications (2)

Publication Number Publication Date
CN111148115A CN111148115A (zh) 2020-05-12
CN111148115B true CN111148115B (zh) 2023-02-28

Family

ID=70516834

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910854587.5A Active CN111148115B (zh) 2019-09-10 2019-09-10 一种车间通信信道接入方法

Country Status (1)

Country Link
CN (1) CN111148115B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106878919A (zh) * 2016-12-23 2017-06-20 大唐高鸿信息通信研究院(义乌)有限公司 一种适用于车载短距离通信网络的无线认知信道管理方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014173429A1 (en) * 2013-04-22 2014-10-30 Telefonaktiebolaget L M Ericsson (Publ) Cellular network control of channel allocation for vehicle-to-vehicle communication
WO2018000084A1 (en) * 2016-06-27 2018-01-04 Zhuang Weihua System and method of rebroadcasting messages for reliable vehicular communications

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106878919A (zh) * 2016-12-23 2017-06-20 大唐高鸿信息通信研究院(义乌)有限公司 一种适用于车载短距离通信网络的无线认知信道管理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
一种基于蜂窝网络的D2D通信资源分配算法;陆音等;《数据采集与处理》;20181115(第06期);全文 *

Also Published As

Publication number Publication date
CN111148115A (zh) 2020-05-12

Similar Documents

Publication Publication Date Title
Bazzi et al. Study of the impact of PHY and MAC parameters in 3GPP C-V2V mode 4
Molina-Masegosa et al. System level evaluation of LTE-V2V mode 4 communications and its distributed scheduling
Cecchini et al. LTEV2Vsim: An LTE-V2V simulator for the investigation of resource allocation for cooperative awareness
Sommer et al. How shadowing hurts vehicular communications and how dynamic beaconing can help
JP5296587B2 (ja) 無線通信システム及び無線通信方法
CN106856418B (zh) 认知车载自组网中协作频谱感知方法
JP6633630B2 (ja) 複数の移動体間の通信を管理する方法
JP2010213243A (ja) 無線通信システムの無線局で使用される制御装置及び制御方法
CN107864480B (zh) 一种基于认知声技术的mac协议通信方法
Javed et al. Distributed spatial reuse distance control for basic safety messages in SDMA-based VANETs
JP2014123939A (ja) 無線通信ネットワークにおいて動作するトランシーバ、無線通信ネットワークにおける送信システムおよび方法
JP2018528704A (ja) 車両用送信のための速度依存の送信フォーマット
CN103997743A (zh) 一种认知无线电系统中基于有效容量的资源分配方法
WO2014044415A1 (en) Method and system for operating stations in a cooperative station network
Jung et al. Reducing consecutive collisions in sensing based semi persistent scheduling for cellular-V2X
Costa et al. On energy efficiency and lifetime in low power wide area network for the Internet of Things
JP6955236B2 (ja) 無線通信システムおよび無線通信方法
CN104080190A (zh) 一种基于概率预测的退避方法
EP3262869B1 (en) Communication devices, control device and methods thereof
CN111148115B (zh) 一种车间通信信道接入方法
CN104320772A (zh) 基于信任度和物理距离的d2d通信节点成簇方法和装置
Vizziello et al. Location based routing protocol exploiting heterogeneous primary users in cognitive radio networks
CN103702357A (zh) 一种基于概率论建立数据包碰撞模型的智能公用事业网传输误包率测算方法
Watanabe et al. Poster: A scheduling method for V2V networks using successive interference cancellation
Cai et al. Peerprobe: Estimating vehicular neighbor distribution with adaptive compressive sensing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant