CN111147243B - 一种基于llo的单波长量子与经典通信同传方法 - Google Patents

一种基于llo的单波长量子与经典通信同传方法 Download PDF

Info

Publication number
CN111147243B
CN111147243B CN201911424231.4A CN201911424231A CN111147243B CN 111147243 B CN111147243 B CN 111147243B CN 201911424231 A CN201911424231 A CN 201911424231A CN 111147243 B CN111147243 B CN 111147243B
Authority
CN
China
Prior art keywords
signal
quantum
multiplexing
classical
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911424231.4A
Other languages
English (en)
Other versions
CN111147243A (zh
Inventor
郭邦红
张倩琳
胡敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Yukopod Technology Development Co ltd
Original Assignee
Guangdong Yukopod Technology Development Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Yukopod Technology Development Co ltd filed Critical Guangdong Yukopod Technology Development Co ltd
Priority to CN201911424231.4A priority Critical patent/CN111147243B/zh
Publication of CN111147243A publication Critical patent/CN111147243A/zh
Application granted granted Critical
Publication of CN111147243B publication Critical patent/CN111147243B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种基于LLO的单波长量子与经典通信同传方法,包括:多用户Alice端,复用模块,多用户Bob端,多用户Alice端、复用模块、多用户Bob端通过光纤依次连接。采用单波长复用的方法实现量子信号和经典信号编码在同一弱相干脉冲上,减少了QKD对硬件设备的额外需求,提高QKD技术的实用性。采用LLO方案关闭窃听者通过操纵公共信道上的LO带来的安全漏洞,采用不平衡延迟线干涉仪实现LLO,使系统可以容忍更强的相位噪声。在单波长复用的基础上结合波分复用,进一步提升系统的系统容量,为开发与下一代网络兼容的相干量子与经典融合系统开辟了现实之路。

Description

一种基于LLO的单波长量子与经典通信同传方法
技术领域
本发明涉及量子信息领域,尤其涉及一种基于LLO的单波长量子与经典通信同传系统及同传方法。
背景技术
量子信息科学最实际的应用之一是所谓的QKD(Quantum Key Distribution,量子密钥分发)技术,它允许两个远程方(传统上称为Alice和Bob)通过完全由窃听者(Eve)控制的不安全量子信道生成安全密钥。该安全密钥可进一步应用于其它密码协议中,以增强通信安全性。但QKD广泛应用的主要障碍之一是成本高,因为在QKD系统中需要使用专用通信基础结构(如暗光纤)和昂贵的设备(如单光子探测器)。因此,有必要提出具有成本效益的QKD解决方案。为了降低成本并提高光纤传输效率,可在现有的光纤基础设施中集成QKD和经典通信系统,以此降低敷设和运营费用,并提高QKD网络的可扩展性。
1997年,Townsend首次提出针对QKD和经典信号同时传输的方案。使用CWDM(Coarse Wavelength Division Multiplexing,粗波分复用技术),将1300nm QKD信道与传统的1550nm经典信道进行多路复用,在光纤中实现超过25km的传输。但是量子信号和经典信号分别通过不同的激光器产生,且经过不同的调制光路,造成器件成本过高的弊端。2005年,I.Devetak鉴于基于相干检测的CV-QKD(Continuous Variable-Quantum KeyDistribution,连续变量-量子密钥分发)与经典相干通信的相似性,首次提出在给定的量子通道上同时传输经典信息和量子信息。2016年,Bing Qi提出一种相干通信方案,其中经典通信的比特和QKD的高斯分布随机数都编码在同一弱相干脉冲上,并由同一相干接收机进行解码,实现QKD在经典通信中以最小的成本运行。但是其QKD采用的GMCS(GaussianModulated Coherent State,高斯调制相干态)协议,此协议调制效率较低,严重限制了密钥的传输距离。2018年,Can Yang提出一种分层调制相干通信协议,包括用于传统通信的正交相移键控调制和用于连续可变量子密钥分配的离散调制。离散调制协议能够在低信噪比条件下获得高的调制效率,使其成为高斯调制协议的替代方案,实现远距离传输,且调制过程的复杂性较低。但其采用TLO(Transmitted Local Oscillator,发送本地振荡)的相干通信方式,它在公共信道上传播时会导致与LO操作相关联的安全漏洞。
现有技术专利:(CN108337088A)提出了一种单纤融合量子密钥分发系统、方法和相关系统,实现量子密钥分发中量子信号与经典信号接近零串扰的共纤融合传输,大幅度降低经典信号对量子信号产生的串扰噪声。但其量子信号和经典信号分别使用不同的硬件设备,造成融合传输成本过高,本发明更优的提出在单个波长脉冲下传输CV-QKD信号和经典信号,量子信号和经典信号共用发送器和探测器,在实用性和低成本实现方面提供了一种可行方案。
现有技术专利:(CN109586911A)通过在相干光通信信号上叠加量子信号实现相干光通信信号与量子信号的同步传输,但其量子信号采用的高斯调制相干态CV-QKD协议,其密钥协商需要消耗大量的计算资源,导致应用成本增加。本发明更优的提出采用离散调制实现CV-QKD,其密钥纠错问题易于解决,且在信噪比很低的时候也能获得很高的调制效率。
发明内容
为了解决上述方案出现的问题,本发明更优地提出使用LLO(Local LocalOscillator,本地本地振荡)实现单波长量子与经典同传的方案,量子信号采用离散调制CV-QKD协议,其以正交分量的符号成码,大大简化了高斯调制协议密钥提取的过程,使协议在低性噪比条件下仍然能够保证高的密钥率。与其他方案相比,LLO可以通过设计关闭在Alice和Bob之间的公共信道上因操控LO而产生的任何潜在安全漏洞。本发明利用光学相干检测技术,可以在同一平台上同时实现经典通信和量子密钥分发,其最小的硬件需求降低了QKD的应用成本,从而为开发与下一代网络要求兼容的相干量子通信系统开辟了现实之路。
本发明提供了一种使用相同的通信基础设施同时实现量子与经典通信同传的方法。采用相干通信方法,将经典通信的比特和CV-QKD的随机数都编码在同一弱相干脉冲上,并由同一相干接收机进行解码,CV-QKD无需专用的硬件设备,降低了量子密钥分发的成本。采用LLO方案实现相干检测,在Bob侧生成LO信号,阻止窃听者通过操纵LO信号发动复杂攻击,降低多路复用和解复用的复杂性。
本发明更优的采用基于RR(Reverse Reconciliation,反向协调)离散调制相干态实现CV-QKD。其整体分发过程与高斯调制类似,不同的是在高斯调制方案中Alice是在正则分量上加载连续的信息,而离散调制是随机发送四个相干态之一给Bob,Bob使用零差检测随机地测量两个正则分量之一。经过协商,Alice和Bob共享一串相同的比特串,之后通过纠错和保密增强就可以得到最终密钥。离散调制与高斯调制相比,其协商过程更加简单,且使CV-QKD能适用于更远的距离。为了进一步提高密钥传输距离,本发明进一步引入反向协调纠错协议,即Alice利用Bob发送来的校验信息将手中的数据修正的与Bob的数据相一致。
为了达到上述技术效果,本发明的技术方案如下:
一种基于LLO的单波长量子与经典通信同传系统,包括多用户Alice端,复用模块,检测单元Charlie端和多用户Bob端;
所述复用模块包括复用单元1和复用单元2,所述多用户Alice端与复用单元1连接,多用户Bob端与复用单元2连接,复用单元1和复用单元2均与检测单元Charlie端连接;所述Charlie端包括1个相干检测单元和1个数字信号处理及相位校正单元;复用模块的复用单元1和复用单元2分别通过SMF与相干检测单元连接,相干检测单元与数字信号处理及相位校正单元连接;
所述Alice端包括N个Alice用户,N≥1;每个Alice用户包括1个激光器LA、1个PMB(Polarization-Maintaining Fiber Beam Splitter,保偏光纤分束器)、1个位移装置、1条延迟线和1个PBC(Polarization Beam Combiner,偏振耦合器);LA与PMB连接,PMB分别通过位移装置和延迟线与PBC连接,PBC与复用模块的复用单元1连接;
所述Bob端包括N个Bob用户,N≥1;每个用户包括1个激光器LB和1个不平衡延迟线干涉仪;激光器LB通过不平衡延迟线干涉仪与复用模块的复用单元2连接;所述N个激光器LA发送的N束脉冲分别进入90/10的PMB后,被分解成两束光强强度不同的脉冲通过保偏光纤传输,其中光强较弱的脉冲进入位移装置,被位移装置中的90/10的BSa分成光强较弱的量子信号和光强较强的经典信号,并进一步对量子信号和经典信号复用形成位移量子信号;光强较强的脉冲进入延迟线,作为相位参考脉冲用于LA和LB之间的相对相位校正;从保偏光纤输出的位移量子信号和相位参考脉冲进入PBC耦合成正交偏振模式,随后发送到复用单元1进行波分复用和解复用;激光器LB发出的一束脉冲通过不平衡延迟线干涉仪被分解成一前一后两束强度一样的脉冲,进入复用单元2进行波分复用和解复用,随后连同复用单元1输出的信号进入相干检测单元进行外差探测,最后进入数字信号处理及相位校正单元进行信号处理和相对相位校正。
经过偏振耦合器PBC耦合后的正交偏振模式是指,从保偏光纤输出的位移量子信号的偏振方向与相位参考脉冲的偏振方向相互垂直的偏振模式。
优选地,所述位移装置包括一个CR(Circulator,环形器)、一个高折射分束器BSa、一个99/1分束器BSb、三个PC(Polarization Controller,偏振控制器)、三段HBF(HighBirefringence Photon Crystal Fiber,高双折射光子晶体光纤)、一个TDA(TunableDirectional Attenuator,可调方向衰减器)、一个PM(Phase Modulator,相位调制器)、一个AM(Amplitude Modulator,幅度调制器)和一个PD(Photodiode,光电二级管);CR与BSa连接,BSa沿顺时针方向通过PC1与HBFL1连接,HBFL1通过TDA与PM连接,PM通过PC2与HBFL2连接,HBFL2通过BSb与AM连接,AM通过PC3与HBFL3连接,HBFL3与BSa连接,PD与BSb连接。
优选的,相干检测单元使用外差探测方案,包括一个90°光学混合器、四个可调谐光衰减器Att.(Tunable Optical Attenuator,可调谐光衰减器)、四个PD,一个ADC(Analogto Digital Converter,模数转换器);90°光学混合器分别通过四个Att.与PD相连,PD与ADC相连。
优选的,所述位移装置选取三阶高双折射光子晶体光纤Sagnac环。
优选的,所述复用模块的复用单元1和复用单元2均包括一个波分复用器和一个波分解复用器,所述波分复用器和波分解复用器相互通过G654-110光纤连接,所述G654-110光纤为低损耗大有效面积单模光纤。
进一步优选的,在复用模块进行传输时,不同信道之间采用非等间隔分布的波长,波长范围为1530nm~1560nm。
以上的,所述量子信号为基于反向协调离散调制相干态协议产生的CV-QKD信号。
一种基于LLO的单波长量子与经典通信同传系统的同传方法,包括以下步骤:
S1、系统噪声测试:在Alice端发射激光脉冲串的情况下,测试系统噪声,判断信噪比是否高于设定的信噪比预设值,若信噪比高于预设值,进入步骤S2和S2’,若信噪比低于预设值,生成提示信息;
S2、量子态制备:Alice端的激光器LA发射一束脉冲,被90/10的保偏光纤分束器分成两束脉冲,光强强度较强的脉冲用作相位参考脉冲,光强强度较弱的脉冲用作信号脉冲被发送到位移装置;信号脉冲被位移装置中的90/10的BSa分成两束,光强强度较弱的一束当作量子信号,沿Sagnac环顺时针方向进行离散调制,调制后的量子态为nA∈{0,1,2,3};
S2’、QPSK调制:信号脉冲被位移装置中的90/10的BSa分成两束,光强强度较强的一束当作经典信号,沿Sagnac环逆时针方向进行QPSK调制,其利用载波的四种不同相位来表征输入的数字信息,调制后的经典信号为mA∈{0,1,2,3};
S3、单波长复用:S2中沿Sagnac环顺时针方向调制后的离散调制相干态量子信号和S2’中沿Sagnac环逆时针方向调制后的QPSK经典信号进入高透射分数器BSa,BSa将量子信号和经典信号混合产生位移量子信号
S4、波分复用传输:N路单波长复用后的位移量子信号进入复用单元中的波分复用器中被耦合到一根G654-110光纤中进行波分复用传输,之后到达波分解复用器,形成多路位移量子信号;
S5、相干检测:Charlie端的相干检测单元接收到复用单元1输出的位移量子信号时,连同复用单元2输出的LO信号一起进行外差检测,同时测量相干态的位置和动量/>以解调第二层经典信息;在确定第二层的经典信息之后,Charlie端调整并移动测量结果以解调第一层量子信息,获得安全量子密钥;
S6、数字信号处理及相位校正:光脉冲经过相干检测之后变为数字电脉冲,随后数字电脉冲进入数字信号处理单元进行信号处理;Alice端的相位参考脉冲用于测量Alice端的激光器LA和Bob端激光器LB之间的相对相位差,利用测量的结果进行相位校正;
S7、参数估计测试:Bob端发送长度为比特的信息给Alice端,让她计算‖X‖2、‖Y‖2和,X,Y.,以及γa、γb和γc;如果/>那么参数估计测试通过,产生的密钥可以用于通信,通信继续进行;反之则参数估计测试未通过,通信中止,本轮已产生的密钥将会被舍弃。
优选的,所述位移量子信号采用LLO而非TLO方式实现量子相干通信。
进一步优选的,所述LLO方式采用延迟线设计实现。
与现有技术相比,本发明的有益效果:
1)本发明更优的在同一激光器发送的弱相干脉冲上编码量子信号和经典信号,并由同一相干接收机进行解码,实现量子和经典信号的单波长复用。减轻了QKD技术的硬件需求,实现QKD在经典通信中以最小的成本运行。
2)本发明更优的选取三阶高双折射光子晶体光纤Sagnac环实现单波长复用。相比于其他方案只利用BS实现量子信号的位移,Sagnac环能减小量子信号和经典信号之间的相位漂移,且将三阶高双折射光子晶体光纤加入Sagnac环中,与单独的Sagnac环比,具有损耗低、结构简单、兼容性好等特点。
3)本发明更优的采用LLO方案实现信号的相干通信。量子与经典信号常用TLO方案实现单波长复用,但发送的LO在公共信道传播时易受到窃听者的操控而造成安全漏洞;且接收时对LO的强度要求很高,而CV-QKD的每个相干激光器的发射功率都有限制,难以满足强LO的需求。而本发明采用的LLO方案在Bob侧使用第二个激光器产生局部LO脉冲,可以通过设计确保LO是完全可靠的,关闭潜在的安全漏洞。
4)本发明更优的采用延迟线设计实现LLO。实现LLO的常用技术是利用AM产生LLO序列,但其对AM的动态调制范围要求高,只能容忍较小的相位噪声,对硬件的要求高。所以本发明采用延迟线设计实现LLO,可容忍更强的相位噪声,并且可以共用价格合理的硬件部署,从而为开发与下一代网络兼容的相干量子通信系统开辟了现实之路。
5)本发明更优的选用离散调制相干态实现CV-QKD。由于高斯调制CV-QKD的缺陷,即当通信距离较长,信道衰减较大时,信噪比会比短距离通信时明显降低,连续变量的信息调制效率也会随着信噪比的衰减急剧降低,即使采用目前CV-QKD中最好的纠错方案,也很难使通信距离超过30km。所以本发明更优的选用离散调制CV-QKD,其协商过程比较简单,且在低信噪比下,可以直接使用二进制LDPC码进行纠错,对于远距离CV-QKD分发非常有意义。
6)本发明更优的采用波分复用与单波长复用的二维复用方案实现量子与经典的多路同传。为了提高系统的传输容量,本发明在单波长复用的技术上利用波分复用实现多路传输。不同路径选用非等间隔分布的波长,波长范围为1530nm~1560nm,以提高信道之间的隔离度,并减少四波混频,减小相邻信道之间的串扰。
7)本发明更优的采用G654-110光纤实现波分复用。该光纤比标准单模光纤相比具有更大的有效芯区,因此可以用来降低复用传输中基本光物质相互作用的光学效应,从而提高量子密钥分发能力,具有最佳的QKD性能。
附图说明
图1是本发明一种基于LLO的单波长量子与经典通信同传方法的原理框架图;
图2是本发明一种基于LLO的单波长量子与经典通信同传方法的位移装置图;
图3是本发明一种基于LLO的单波长量子与经典通信同传方法的复用单元图;
图4是本发明一种基于LLO的单波长量子与经典通信同传方法的相干检测装置图;
图5是本发明一种基于LLO的单波长量子与经典通信同传方法的信号调制图;
图6是本发明一种基于LLO的单波长量子与经典通信同传方法的位移量子信号原理和相空间分布图;
图7是本发明一种基于LLO的单波长量子与经典通信同传方法的流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合具体实施例以及附图,对本发明进一步详细说明,但本发明要求的保护范围并不局限于实施例。
实施例1:
如图1所示;
一种基于LLO的单波长量子与经典通信同传系统,包括:多用户Alice端,复用模块,检测单元Charlie端,多用户Bob端。
复用模块包括复用单元1和复用单元2,所述多用户Alice端与复用单元1连接,多用户Bob端与复用单元2连接,复用单元1和复用单元2均与检测单元Charlie端连接;所述Charlie端包括1个相干检测单元和1个数字信号处理及相位校正单元;复用模块的复用单元1和复用单元2分别通过SMF与相干检测单元连接,相干检测单元与数字信号处理及相位校正单元连接;
Alice端包括N个Alice用户,N≥1;每个用户包括1个激光器LA、1个PMB、1个位移装置、1条延迟线和1个PBC;LA与PMB连接,PMB分别通过位移装置和延迟线与PBC连接,PBC与复用模块的复用单元1连接;
Bob端包括N个Bob用户,N≥1;每个用户包括1个激光器LB和1个不平衡延迟线干涉仪;激光器LB通过不平衡延迟线干涉仪与复用模块的复用单元2连接;
N个激光器LA发送的N个1MH重复频率的脉冲分别进入90/10的PMB后,被分解成两束脉冲通过保偏光纤传输,强度较弱的脉冲进入位移装置,被位移装置中的90/10的BSa分成光强较弱的量子信号和光强较强的经典信号,并对量子信号和经典信号复用;强度较强的脉冲进入延迟线,作为相位参考脉冲用于LA和LB之间的相对相位校正;从保偏光纤输出的移位后的信号和相位参考脉冲进入PBC,被耦合成正交偏振模式,随后发送到复用单元1进行波分复用和解复用;N个激光器LB通过不平衡延迟线干涉仪被分解成一前一后两束强度一样的脉冲,进入复用单元2进行波分复用和解复用,随后连同复用单元1输出的信号进入相干检测单元进行外差探测,最后进入数字信号处理及相位校正单元进行信号处理和相对相位校正。
经过偏振耦合器PBC耦合后的正交偏振模式是指,从保偏光纤输出的位移量子信号的偏振方向与相位参考脉冲的偏振方向相互垂直的偏振模式。
其中,量子信号采用LLO而非TLO实现量子相干通信。因为TLO对LO强度要求高,接收时需要每个脉冲大约108个光子,以确保相干检测可以在低电子与散粒噪声比的情况下运行,而CV-QKD发送端的激光器的发射功率都有限制,难以满足TLO的强LO需求。因此,本发明更优的采用LLO方案,在这种结构中,发送激光器的重复率以及传输的距离都不会影响检测时的LO强度,可以获得足以确保高电子与散粒噪声比的LO功率,且与传输距离无关。
具体的,CV-QKD单元采用基于反向协调的离散调制相干态协议产生连续变量量子信号。相比于DV-QKD系统,CV-QKD分发的是符号而非比特,因此具有比DV-QKD更高的通信效率;且CV-QKD的光源只需要普通的相干激光源,无需制备复杂的单光子脉冲,所需的条件也没有单光子源那么苛刻;因此CV-QKD在实用化方面比DV-QKD更有优势。因为高斯调制在低信噪比下,目前只能够采用多维协商的方式,而多维协商的运算量比较复杂,对接收端的信噪比也有特定的要求,所以本发明采用协商过程更为简单的离散调制协议。
为了分析经典信号的BER,定义如果λ=0,整个系统是一个经典QPSK调制系统,仅传输经典信息。当λ非常小时,相空间每个象限中的四个相干态形成一个“云”,“云”中的相干态之间的变化对经典信号具有与白噪声相同的影响。在这种情况下,经典信号的误码率较低,基于离散调制的CV-QKD系统是安全的。进一步的,可以通过比较CNR(Carrier toNoise Ratio,载波噪声比)和QPSK的功率跟噪声功率的比值SNR1(Signal Noise Ratio,信噪比)的差值Psnr来评估添加量子信息之前和之后QPSK调制系统的性能。CNR被定义为:
其中,ES为载波功率,接收器的噪声平均功率N0为散粒噪声方差,χline为总附加信道噪声,χhet为外差探测的附加噪声。Psnr越大,代表外差接收器在系统中的性能越差,经计算,由于CV-QKD的干扰,SNR1必须大于7dB。当CNR=7dB时,λ=0.1,Psnr≈0.5dB。根据这些结果,设置λ<0.1以满足外差探测的操作条件。
本发明的密钥率K由如下公式定义,其中ξ是调制效率:
K=ξI(x:y)-S4(y:E)
I(x:y)是Alice和Bob的数据之间的经典香农互信息,定义为:
V=VA+1
χtot=χlinehet/T
其中,VB是Bob端接收到信号的方差,VB|A是在Alice测量结果条件下Bob的方差,VA是Alice端高斯分布的调制方差,χtot代表信道输入的全部噪声(不包括散粒噪声)。
S4(y:E)为Bob和Eve之间Holevo信息,在假设VA足够小的前提下,四态CVQKD协议中Bob和Eve之间的Holevo量接近于高斯调制协议中的Holevo量。特别是当VA<0.5时,这两种方案中的Holevo量可以视为相同。因此,
G(x)=(x+1)log2(x+1)-xlog2(x)
A=V2(1-2T)+2T+T2(V+χline)2
B=T2(1+χline)2
在现实的设备中,Alice和Bob共享的数据中只有一部分可以用来提取密钥,因此I(x:y)前有一个系数ξ,ξ取决于信噪比和调制方法。在高斯调制CV-QKD中,ξ随信噪比的增加而增加,因此在高信噪比情况下,高斯调制优于离散调制的调制效率。但离散调制的调制效率在低信噪比条件下更好,所以本发明设置ξ=0.5。设置η=0.5,VA≤0.5,λ<0.1,β=10,光纤损耗为0.2Db/km,过量噪声为0.005,计算出的密钥率的范围为10-3bit/pulse~10-1bit/pulse。
更具体的,如图2所示,位移装置为三阶高双折射光子晶体光纤Sagnac环。其原理是99/1的非对称高透射分束器BSa将量子相干态与强经典信号混合用以产生位移量子信号,Sagnac环结构将相位锁定在信号上,使位移操作正常运行。具体步骤为:输入信号通过Sagnac的访问端口CR进入BSa后被分成两束信号,强信号用作经典信号沿逆时针方向通过AM和PM进行调制,弱信号用作经典信号沿顺时针方向通过PM和AM进行调制;两束信号通过环路传播后都在BSa会合,经典信号根据两信号间的相对相位以及BSa的分束比在相空间中移动量子信号;随后,BSa充当位移量子信号的输出端口,其中99%的经典信号被反射,99%的位移量子信号被透射。TDA是具有可调外部磁场的法拉第光学隔离器,可在信号中提供-3dB至-30dB的衰减。99/1分束器BSb和PD用以监视信号幅度。PC用于控制偏振,HBF用于实现三阶级联。该位移装置的臂长误差容限大、可调数值精细,通过三级级联,使其更加不受外界温度等因素的影响、工作状态更为稳定、反射谱与透射谱更为精细、带宽更易调节。
更具体的,如图3所示,复用单元选取波分复用方式,其中光纤选取G654-110光纤,其损耗较低,使得QSNR(Quantum Signal to Noise Ratio)平均提高15.4dB,密钥率至少提高2倍,具有最佳的QKD性能。波分复用与其他复用方式相比,技术比较成熟,成本较低,能够实现复用的路径多,连同单波长复用实现二维复用,能进一步提升通信容量。
更具体的,如图4所示,相干检测单元选取外差探测方案。位移量子信号和LO信号通过90°光学混合器和两个350MHz的平衡光电探测器测量信号的X分量和P分量,之后进入ADC进行模数转换。外差探测相对于零差探测,不需要进行选择测量基,因此分发的步骤得到了简化,协议效率也提高了一倍。
更具体的,如图5(a)所示,量子信号采用离散调制CV-QKD协议,在这个协议中,Alice随机的选择向Bob发送相干态其中nA∈{0,1,2,3};α是一个实数。对于一个确定的信道,即给定了透过率和额外噪声的信道,可以通过改变α的取值使得安全码率达到最大.Bob接受到Alice发出的态后随机的选择对X分量或P分量进行平衡零拍探测并得到测量结果y。与高斯调制协议不同,在离散调制中,Bob并非根据y的确切测量值解调出数据,而是根据y符号的正负得到1bit数据,并将测量结果的绝对值|y|通过经典信道发送给Alice,用于评估信道信息。这样Alice和Bob就共享了一串相关的比特,然后通过信息协调和保密增强就可以得到密钥.从经典通信的角度来看,对这种在高斯加性白噪声信道传递的二进制调制数据进行纠错是很容易解决的,即使在信噪比很低的时候也能获得很高的协调效率。
更具体的,如图5(b)所示,经典信号采用QPSK协议,该协议规定了四种载波相位45°、135°、225°、315°,分别将经典信息编码为比特{11,01,00,00}。编码的比特采用格雷码,其是一种错误最小化的编码方式,与其它编码同时改变两位或多位的情况相比更为可靠,即可减少出错的可能性。
更具体的,如图5(c)所示,首先Alice端准备了一个相干态,在这个相干态上,经典信息mA和量子密钥信息nA被有序地编码。相干态可用表示,其中mA∈{0,1,2,3},nA∈{0,1,2,3},振幅α和β均为实数。经典信息可以映射为经典比特ab∈{00,10,11,01},振幅β为实数,其选择以优化系统性能。
更具体的,如图6所示,经典信号根据两信号之间的相对相位和BSa的分束比在相空间中产生位移量子信号。如图6(a)所示,位移算符在辐射场的任何量子态上的作用都可以通过分束器很好的近似,所以本发明采用高透射分束器BSa将量子相干态|A>与强经典信号|B>混合产生位移量子态。如图6(b)所示,位移前的量子信号在第二象限,位移后的量子信号移动到第一象限。
更具体的,如图7所示,一种基于LLO的单波长量子与经典通信同传方法的具体流程为:
S1、系统噪声测试:在信号发送端发射激光脉冲串的情况下,测试系统噪声,判断信噪比是否高于设定的信噪比预设值,若信噪比高于设定额信噪比设定值,进入步骤S2和S2’,若信噪比低于设定的信噪比预设值,生成提示信息;其中,测试系统的信噪比采用如下公式:SNR=10lg(PS/PN),PS为信号功率,PN为噪声功率,信噪比预设值为20dB;
S2、量子态制备:Alice端的CV-QKD单元根据基于反向协调的离散调制相干态协议制备量子态,生成量子信号,具体方法为:Alice发送一个相干态编码量子信息nA,编码后的相干态为nA∈{0,1,2,3},振幅α为实数,其选择以优化系统性能。
S2’、QPSK调制:Alice端的经典信号单元根据QPSK协议调制经典信号,生成QPSK信号,具体方法为:Alice发送一个相干态编码经典信息mA,编码后的相干态为|B>=mA∈{0,1,2,3},经典信息可以映射为经典比特ab∈{00,10,11,01},振幅β为实数,其选择以优化系统性能。
S3、单波长复用:S2中沿Sagnac顺时针方向调制后的离散调制相干态量子信号和S2’中沿Sagnac环逆时针方向调制后的QPSK经典信号进入高透射分数器BSa,BSa将量子信号和经典信号混合产生位移量子信号实现在同一波长脉冲上的量子与经典复用。
S4、波分复用传输:N路单波长复用后的位移量子信号进入复用单元中的波分复用器中被耦合到一根G654-110光纤中进行波分复用传输,之后到达波分解复用器,形成多路位移量子信号。
S5、相干检测:Charlie端的相干检测单元使用外差探测测量输入的位移量子信号和LO信号,具体步骤包括:
S5.1、第二层的经典信号解调:相干检测单元接收到波分解复用器输出的位移量子信号时,首先通过外差检测同时测量相干态的位置和动量/>以获得经典信息;即,如果测量结果是/>并且/>则将经典信息比特ab分配为10。
S5.2、第一层的量子信号解调:在确定第二层的经典信息之后,Bob调整并移动测量结果以获得安全量子密钥如下:
其中T信道的透射率,η是外差探测的探测效率。解调经典信息之后,相干态变为nA∈{0,1,2,3}。之后通过类似于离散调制的传统CVQKD协议的分析获得的原始量子密钥,例如/>且/>则Bob确定量子密钥信息nA=0。
S6、数字信号处理及相位校正:光脉冲经过相干检测之后变为数字电脉冲,随后数字电脉冲进入数字信号处理单元进行信号处理;Alice端的相位参考脉冲用于测量Alice端的激光器LA和Bob端激光器之间的相对相位差,利用测量的结果进行相位校正。
S7、参数估计测试:Bob发送长度为比特的信息给Alice,让她计算‖X‖2、‖Y‖2和<X,Y>,以及γa、γb和γc。如果/>那么参数估计测试通过,产生的密钥可以用于通信,通信继续进行;反之则参数估计测试未过,通信中止,本轮已产生的密钥将会被舍弃。
S7.1、确定协方差矩阵参数的界限具体可表示为:
其中δa、δb和δc是小的正数,用于平衡协议的稳健性和安全码率。
S7.2、计算输入‖X‖2、‖Y‖2、<X,Y>。其中X,Y为全部n个量子态的n个测量结果,可以计算出如下参数:
其中∈PE为参数估计失败的最大概率。
S7.3、如果满足那么测试通过,否则测试失败。
根据上述说明书的揭示和教导,本发明所属领域的技术人员还可以对上述实施方式进行变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本发明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (8)

1.一种基于LLO的单波长量子与经典通信同传系统,其特征在于,包括多用户Alice端,复用模块,检测单元Charlie端和多用户Bob端;
所述复用模块包括复用单元1和复用单元2;所述多用户Alice端与复用单元1连接,多用户Bob端与复用单元2连接,复用单元1和复用单元2均与检测单元Charlie端连接;所述Charlie端包括1个相干检测单元和1个数字信号处理及相位校正单元;复用模块的复用单元1和复用单元2分别通过SMF与相干检测单元连接,相干检测单元与数字信号处理及相位校正单元连接;
所述Alice端包括N个Alice用户,N≥1;每个用户包括1个激光器LA、1个保偏光纤分束器PMB、1个位移装置、1条延迟线和1个偏振耦合器PBC;LA与PMB连接,PMB分别通过位移装置和延迟线与PBC连接,PBC与复用模块的复用单元1连接;
所述Bob端包括N个Bob用户,N≥1;每个用户包括1个激光器LB和1个不平衡延迟线干涉仪;激光器LB通过不平衡延迟线干涉仪与复用模块的复用单元2连接;所述N个激光器LA发送的N束脉冲分别进入90/10的PMB后,被分解成两束光强强度不同的脉冲通过保偏光纤传输,其中光强较弱的脉冲进入位移装置,被位移装置中的90/10的高折射分束器BSa分成光强较弱的量子信号和光强较强的经典信号,并进一步对量子信号和经典信号复用形成位移量子信号;光强较强的脉冲进入延迟线,作为相位参考脉冲用于LA和LB之间的相对相位校正;从保偏光纤输出的位移量子信号和相位参考脉冲进入偏振耦合器PBC耦合成正交偏振模式,随后发送到复用单元1进行波分复用和解复用;激光器LB发出的一束脉冲通过不平衡延迟线干涉仪被分解成一前一后两束强度一样的脉冲,进入复用单元2进行波分复用和解复用,随后连同复用单元1输出的信号进入相干检测单元进行外差探测,最后进入数字信号处理及相位校正单元进行信号处理和相对相位校正;
LLO的全称为Local Local Oscillator,本地本地振荡;SMF的全称为Single ModeFiber,单模光纤;
所述位移装置包括一个环形器CR、一个高折射分束器BSa、一个99/1分束器BSb、三个偏振控制器PC、三段高双折射光子晶体光纤HBF、一个可调方向衰减器TDA、一个相位调制器PM、一个幅度调制器AM和一个光电二极管PD;CR与BSa连接,BSa沿顺时针方向通过PC1与HBFL1连接,HBFL1通过TDA与PM连接,PM通过PC2与HBFL2连接,HBFL2通过BSb与AM连接,AM通过PC3与HBFL3连接,HBFL3与BSa连接,PD与BSb连接;
所述光强较弱的脉冲通过Sagnac的访问端口CR进入BSa后被分成两束信号,强信号用作经典信号沿逆时针方向通过AM和PM进行调制,弱信号用作经典信号沿顺时针方向通过PM和AM进行调制;两束信号通过环路传播后都在BSa会合,经典信号根据两信号间的相对相位以及BSa的分束比在相空间中移动量子信号;随后,BSa充当位移量子信号的输出端口;
经过偏振耦合器PBC耦合后的正交偏振模式是指,从保偏光纤输出的位移量子信号的偏振方向与相位参考脉冲的偏振方向相互垂直的偏振模式;
所述复用模块的复用单元1和复用单元2均包括一个波分复用器和一个波分解复用器,所述波分复用器和波分解复用器相互通过G654-110光纤连接;N路单波长复用后的位移量子信号进入复用单元中的波分复用器中被耦合到一根G654-110光纤中进行波分复用传输,之后到达波分解复用器,形成多路位移量子信号。
2.根据权利要求1所述的一种基于LLO的单波长量子与经典通信同传系统,其特征在于,所述位移装置选取三阶高双折射光子晶体光纤Sagnac环。
3.根据权利要求1所述的一种基于LLO的单波长量子与经典通信同传系统,其特征在于,所述G654-110光纤为低损耗大有效面积单模光纤。
4.根据权利要求3所述的一种基于LLO的单波长量子与经典通信同传系统,其特征在于,在复用模块进行传输时,不同信道之间采用非等间隔分布的波长,波长范围为1530nm~1560nm。
5.根据权利要求1-4任一所述的一种基于LLO的单波长量子与经典通信同传系统,其特征在于,所述量子信号为基于反向协调离散调制相干态协议产生的CV-QKD信号。
6.权利要求1-5任一所述的基于LLO的单波长量子与经典通信同传系统的同传方法,其特征在于,包括以下步骤:
S1、系统噪声测试:在Alice端发射激光脉冲串的情况下,测试系统噪声,判断信噪比是否高于设定的信噪比预设值,若信噪比高于预设值,进入步骤S2和S2’,若信噪比低于预设值,生成提示信息;
S2、量子态制备:Alice端的激光器LA发射一束脉冲,被90/10的保偏光纤分束器分成两束脉冲,光强强度较强的脉冲用作相位参考脉冲,光强强度较弱的脉冲用作信号脉冲被发送到位移装置;信号脉冲被位移装置中的90/10的BSa分成两束,光强强度较弱的一束当作量子信号,沿Sagnac环顺时针方向进行离散调制,调制后的量子态为
S2’、QPSK调制:信号脉冲被位移装置中的90/10的BSa分成两束,光强强度较强的一束当作经典信号,沿Sagnac环逆时针方向进行QPSK调制,其利用载波的四种不同相位来表征输入的数字信息,调制后的经典信号为
S3、单波长复用:S2中沿Sagnac环顺时针方向调制后的离散调制相干态量子信号和S2’中沿Sagnac环逆时针方向调制后的QPSK经典信号进入高透射分数器BSa,BSa将量子信号和经典信号混合产生位移量子信号
S4、波分复用传输:N路单波长复用后的位移量子信号进入复用单元中的波分复用器中被耦合到一根G654-110光纤中进行波分复用传输,之后到达波分解复用器,形成多路位移量子信号;
S5、相干检测:Charlie端的相干检测单元接收到复用单元1输出的位移量子信号时,连同复用单元2输出的LO信号一起进行外差检测,同时测量相干态的位置和动量/>以解调第二层经典信息;在确定第二层的经典信息之后,Charlie端调整并移动测量结果以解调第一层量子信息,获得安全量子密钥;
S6、数字信号处理及相位校正:光脉冲经过相干检测之后变为数字电脉冲,随后数字电脉冲进入数字信号处理单元进行信号处理;Alice端的相位参考脉冲用于测量Alice端的激光器LA和Bob端激光器LB之间的相对相位差,利用测量的结果进行相位校正;
S7、参数估计测试:Bob端发送长度为比特的信息给Alice端,让她计算‖X‖2、‖Y‖2和<X,Y>,以及γa、γb和γc;如果/>那么参数估计测试通过,产生的密钥可以用于通信,通信继续进行;反之则参数估计测试未通过,通信中止,本轮已产生的密钥将会被舍弃。
7.根据权利要求6所述的一种基于LLO的单波长量子与经典通信同传系统,其特征在于,所述位移量子信号采用LLO而非TLO方式实现量子相干通信;TLO的全称为TransmittedLocal Oscillator,发送本地振荡。
8.根据权利要求7所述的一种基于LLO的单波长量子与经典通信同传系统,其特征在于,所述LLO方式采用延迟线设计实现。
CN201911424231.4A 2019-12-31 2019-12-31 一种基于llo的单波长量子与经典通信同传方法 Active CN111147243B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911424231.4A CN111147243B (zh) 2019-12-31 2019-12-31 一种基于llo的单波长量子与经典通信同传方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911424231.4A CN111147243B (zh) 2019-12-31 2019-12-31 一种基于llo的单波长量子与经典通信同传方法

Publications (2)

Publication Number Publication Date
CN111147243A CN111147243A (zh) 2020-05-12
CN111147243B true CN111147243B (zh) 2024-02-06

Family

ID=70523157

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911424231.4A Active CN111147243B (zh) 2019-12-31 2019-12-31 一种基于llo的单波长量子与经典通信同传方法

Country Status (1)

Country Link
CN (1) CN111147243B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111934857B (zh) * 2020-07-03 2022-03-18 中国电子科技集团公司第三十研究所 一种适用于cv-qkd的最优码率自适应方法与装置
PL436177A1 (pl) * 2020-11-30 2022-06-06 Uniwersytet Warszawski Sposób łączności optycznej dla transmisji informacji i dystrybucji klucza kryptograficznego oraz układ do realizacji tego sposobu
US12001058B2 (en) 2021-02-05 2024-06-04 Qunnect, Inc. High fidelity storage and retrieval of quantum information in a warm atomic vapor cell device
CN113507365B (zh) * 2021-08-05 2024-06-07 济南量子技术研究院 基于单根光纤的tf-qkd网络及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108616356A (zh) * 2018-05-04 2018-10-02 北京邮电大学 一种用于离散调制连续变量量子密钥分发中的多维协商方法
CN109450628A (zh) * 2018-12-18 2019-03-08 华南师范大学 一种即插即用测量设备无关量子密钥分发网络系统及方法
CN211352207U (zh) * 2019-12-31 2020-08-25 华南师范大学 一种单波长量子与经典通信同传系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108616356A (zh) * 2018-05-04 2018-10-02 北京邮电大学 一种用于离散调制连续变量量子密钥分发中的多维协商方法
CN109450628A (zh) * 2018-12-18 2019-03-08 华南师范大学 一种即插即用测量设备无关量子密钥分发网络系统及方法
CN211352207U (zh) * 2019-12-31 2020-08-25 华南师范大学 一种单波长量子与经典通信同传系统

Also Published As

Publication number Publication date
CN111147243A (zh) 2020-05-12

Similar Documents

Publication Publication Date Title
CN111147243B (zh) 一种基于llo的单波长量子与经典通信同传方法
CN112929161B (zh) 即插即用型参考系无关的双场量子密钥分发协议实现方法
CN111082876B (zh) 一种基于mdm-sdm的量子与经典融合通信系统及传输方法
CN108809638A (zh) 用于诱骗态三态量子密钥分发的装置和方法
Zhu et al. Experimental mode-pairing measurement-device-independent quantum key distribution without global phase locking
CN211352207U (zh) 一种单波长量子与经典通信同传系统
CN108650088B (zh) 包含至少三方的量子通信装置及方法
CN110620655B (zh) 一种偏振复用双向量子密钥分发方法与系统
CN108141288A (zh) 具有增强安全性的高速通信系统和方法
CN111555878A (zh) 集成化测量设备无关量子密钥分发系统
WO2021188045A1 (en) System and apparatuses for measurement-device-independent quantum key distribution
Wang et al. Physical-layer security of a binary data sequence transmitted with Bessel–Gaussian beams over an optical wiretap channel
CN110912617A (zh) 提升水下连续变量量子密钥分发的增减光子系统及其实现方法
CN111490825B (zh) 基于反谐振空芯光纤的数据传输且同时分发量子密钥方法
Zhang et al. Continuous-variable quantum key distribution system: A review and perspective
CN110278036B (zh) 应用于数据中心的数字相干收发器、数据传输方法及装置
CN210839585U (zh) 一种基于mdm-sdm的量子与经典融合通信系统
CN112332983B (zh) 一种混合离散变量和连续变量的量子密钥分发方法
KR102576065B1 (ko) 직교 위상 성분 값의 제어된 분포를 갖는 광학 펄스의 생성
CN113632414B (zh) 量子密钥分发中的光注入锁定
WO2002061981A2 (en) Fiber optic communications
CN219304841U (zh) 一种基于相位偏振联合调制的多用户mdi-qkd系统
CN116527243B (zh) 一种多协议兼容的量子密钥分发系统
CN217063750U (zh) 一种基于压缩态的高斯调制连续变量量子密钥分发系统
CN111211900B (zh) 一种自由空间连续变量量子密钥分发的极化成对编码方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210203

Address after: 510000 room A105, first floor, ladder a, No. 11, panglv Road, Science City, Guangzhou high tech Industrial Development Zone, Guangdong Province

Applicant after: Guangdong Yukopod Technology Development Co.,Ltd.

Address before: School of information and optoelectronics, South China Normal University, 378 Waihuan West Road, Panyu District, Guangzhou, Guangdong 510000

Applicant before: SOUTH CHINA NORMAL University

GR01 Patent grant
GR01 Patent grant