CN111141208B - Parallel line detection method and device - Google Patents

Parallel line detection method and device Download PDF

Info

Publication number
CN111141208B
CN111141208B CN201910021206.5A CN201910021206A CN111141208B CN 111141208 B CN111141208 B CN 111141208B CN 201910021206 A CN201910021206 A CN 201910021206A CN 111141208 B CN111141208 B CN 111141208B
Authority
CN
China
Prior art keywords
gradient value
gradient
feature point
preset
pixel point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910021206.5A
Other languages
Chinese (zh)
Other versions
CN111141208A (en
Inventor
黄永祯
于仕琪
徐栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Galaxy Water Drop Technology Jiangsu Co ltd
Zhongke Shuidi Technology Shenzhen Co ltd
Original Assignee
Zhongke Shuidi Technology Shenzhen Co ltd
Watrix Technology Beijing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongke Shuidi Technology Shenzhen Co ltd, Watrix Technology Beijing Co Ltd filed Critical Zhongke Shuidi Technology Shenzhen Co ltd
Priority to CN201910021206.5A priority Critical patent/CN111141208B/en
Publication of CN111141208A publication Critical patent/CN111141208A/en
Application granted granted Critical
Publication of CN111141208B publication Critical patent/CN111141208B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Image Analysis (AREA)

Abstract

本申请提供了一种平行线检测方法及装置,包括:获取待检测图像;根据所述待检测图像中各个像素点的水平方向的水平梯度和垂直方向的垂直梯度,确定各个像素点的梯度值;将各个像素点的位置坐标映射到极坐标系中得到各个像素点对应的映射直线,并确定所述极坐标系中至少两条映射直线相交的特征点;确定所述特征点之间距离为预设距离的两个特征点为特征点对;根据符合预设条件的所述特征点对,确定所述待检测图像中的平行线。通过这种方法,可以直接根据选择出的特征点对确定待检测图像中的平行线,无需先确定直线,再确定平行线,提高了平行线检测的效率。

Figure 201910021206

The present application provides a parallel line detection method and device, including: acquiring an image to be detected; determining the gradient value of each pixel point according to the horizontal gradient in the horizontal direction and the vertical gradient in the vertical direction of each pixel point in the to-be-detected image ; Map the position coordinates of each pixel point to the polar coordinate system to obtain the mapping line corresponding to each pixel point, and determine the feature point where at least two mapping lines intersect in the polar coordinate system; Determine the distance between the feature points as The two feature points of the preset distance are feature point pairs; according to the feature point pairs that meet the preset conditions, the parallel lines in the image to be detected are determined. Through this method, the parallel lines in the image to be detected can be directly determined according to the selected feature point pairs, without first determining the straight lines and then determining the parallel lines, which improves the efficiency of parallel line detection.

Figure 201910021206

Description

一种平行线检测方法及装置Method and device for detecting parallel lines

技术领域technical field

本申请涉及图像检测技术领域,尤其是涉及一种平行线检测方法及装置。The present application relates to the technical field of image detection, and in particular, to a parallel line detection method and device.

背景技术Background technique

在进行元器件检测时,例如检测元器件的尺寸是否符合要求时,一般都会用到平行线检测算法。When testing components, such as testing whether the size of components meets the requirements, the parallel line detection algorithm is generally used.

目前,在待检测图像中确定预设距离的平行线的方法中,都是先检测出待检测图像中的所有直线,然后在得到的直线中筛选满足预设距离条件的平行线,存在检测速度慢的问题。At present, in the method of determining the parallel lines of the preset distance in the image to be detected, all the straight lines in the image to be detected are detected first, and then the parallel lines that satisfy the preset distance condition are selected from the obtained straight lines, and there is a detection speed. slow problem.

发明内容SUMMARY OF THE INVENTION

有鉴于此,本申请的目的在于提供一种平行线检测方法及装置,以提高图像检测中平行线检测的效率。In view of this, the purpose of the present application is to provide a parallel line detection method and device to improve the efficiency of parallel line detection in image detection.

第一方面,本申请实施例提供了一种平行线检测方法,包括:In a first aspect, an embodiment of the present application provides a parallel line detection method, including:

获取待检测图像;Obtain the image to be detected;

根据所述待检测图像中各个像素点的水平方向的水平梯度和垂直方向的垂直梯度,确定各个像素点的梯度值;Determine the gradient value of each pixel point according to the horizontal gradient in the horizontal direction and the vertical gradient in the vertical direction of each pixel point in the image to be detected;

将各个像素点的位置坐标映射到极坐标系中得到各个像素点对应的映射曲线,并确定所述极坐标系中至少两条映射曲线相交的特征点;The position coordinates of each pixel point are mapped to the polar coordinate system to obtain the mapping curve corresponding to each pixel point, and the feature point at which at least two mapping curves intersect in the polar coordinate system is determined;

确定所述特征点之间距离为预设距离的两个特征点为特征点对;Determine that two feature points whose distances between the feature points are preset distances are feature point pairs;

根据符合预设条件的所述特征点对,确定所述待检测图像中的平行线。Determine the parallel lines in the to-be-detected image according to the feature point pairs that meet the preset conditions.

结合第一方面,本申请实施例提供了第一方面的第一种可能的实施方式,其中,所述根据符合预设条件的所述特征点对,确定所述待检测图像中的平行线,包括:In conjunction with the first aspect, the embodiment of the present application provides a first possible implementation manner of the first aspect, wherein the parallel lines in the image to be detected are determined according to the feature point pair that meets a preset condition, include:

确定经过每一对特征点对包含的特征点的映射曲线所对应的像素点为第一选定像素点;Determine that the pixel point corresponding to the mapping curve of the feature points included in each pair of feature point pairs is the first selected pixel point;

计算所述第一选定像素点的梯度值之和;Calculate the sum of the gradient values of the first selected pixel point;

将所述梯度值之和满足预设梯度条件的特征点对,确定为选定特征点对;Determining the feature point pair whose sum of the gradient values satisfies the preset gradient condition as the selected feature point pair;

确定经过所述选定特征点对所包含的特征点的每条映射曲线所对应的像素点为第二选定像素点;Determine that the pixel point corresponding to each mapping curve of the feature point included in the selected feature point pair is the second selected pixel point;

根据所述第二选定像素点,确定所述待检测图像中的平行线。According to the second selected pixel points, the parallel lines in the to-be-detected image are determined.

结合第一方面的第一种可能的实施方式,本申请实施例提供了第一方面的第二种可能的实施方式,其中,所述将所述梯度值之和满足预设梯度条件的特征点对,确定为选定特征点对,包括:With reference to the first possible implementation manner of the first aspect, the embodiment of the present application provides the second possible implementation manner of the first aspect, wherein the sum of the gradient values is to the feature points that satisfy the preset gradient condition Yes, identified as the selected feature point pair, including:

将梯度值之和大于预设阈值的特征点对,确定为选定特征点对;或者,Determine the feature point pair whose sum of gradient values is greater than the preset threshold as the selected feature point pair; or,

将每个特征点对所对应的梯度值之和按照由大到小的顺序进行排序,将排列在前M位的特征点对,确定为选定特征点对,M为正整数。Sort the sum of the gradient values corresponding to each feature point pair in descending order, and determine the feature point pair arranged in the top M positions as the selected feature point pair, where M is a positive integer.

结合第一方面,本申请实施例提供了第一方面的第三种可能的实施方式,其中,所述根据所述待检测图像中各个像素点的水平方向的水平梯度和垂直方向的垂直梯度,确定各个像素点的梯度值,包括:In conjunction with the first aspect, the embodiment of the present application provides a third possible implementation manner of the first aspect, wherein, according to the horizontal gradient in the horizontal direction and the vertical gradient in the vertical direction of each pixel in the to-be-detected image, Determine the gradient value of each pixel, including:

针对所述待检测图像中第i个像素点,执行如下操作:For the i-th pixel in the to-be-detected image, perform the following operations:

分别计算第i个像素点的水平方向的第一梯度值和垂直方向的第二梯度值;Calculate the first gradient value in the horizontal direction and the second gradient value in the vertical direction of the ith pixel respectively;

根据所述第一梯度值和所述第二梯度值,确定所述第i个像素点的第三梯度值;determining the third gradient value of the i-th pixel point according to the first gradient value and the second gradient value;

判断所述第三梯度值是否在预设梯度值范围内,若判断结果为是,则将所述第三梯度值确定为所述第i个像素点的梯度值;若判断结果为否,则调整所述第三梯度值,并将调整后的第三梯度值确定为第i个像素点的梯度值。Judging whether the third gradient value is within the preset gradient value range, if the judgment result is yes, then the third gradient value is determined as the gradient value of the i-th pixel point; if the judgment result is no, then The third gradient value is adjusted, and the adjusted third gradient value is determined as the gradient value of the ith pixel.

结合第一方面的第三种可能的实施方式,本申请实施例提供了第一方面的第四种可能的实施方式,其中,当第三梯度值不在预设梯度值范围内时,调整第三梯度值,包括:In conjunction with the third possible implementation manner of the first aspect, the embodiment of the present application provides the fourth possible implementation manner of the first aspect, wherein when the third gradient value is not within the preset gradient value range, the third Gradient values, including:

当所述第三梯度值小于所述预设梯度值范围的最小值时,将所述第三梯度值调整为所述预设梯度值范围的最小值;When the third gradient value is smaller than the minimum value of the preset gradient value range, adjusting the third gradient value to the minimum value of the preset gradient value range;

当所述第三梯度值大于所述预设梯度值范围的最大值时,将所述第三梯度值调整为所述预设梯度值范围的最大值。When the third gradient value is greater than the maximum value of the preset gradient value range, the third gradient value is adjusted to the maximum value of the preset gradient value range.

第二方面,本申请实施例还提供一种平行线检测装置,包括:In a second aspect, an embodiment of the present application also provides a parallel line detection device, including:

获取模块,用于获取待检测图像;an acquisition module for acquiring the image to be detected;

第一确定模块,用于根据所述待检测图像中各个像素点的水平方向的水平梯度和垂直方向的垂直梯度,确定各个像素点的梯度值;a first determination module, configured to determine the gradient value of each pixel point according to the horizontal gradient in the horizontal direction and the vertical gradient in the vertical direction of each pixel point in the to-be-detected image;

第二确定模块,用于将各个像素点的位置坐标映射到极坐标系中得到各个像素点对应的映射曲线,并确定所述极坐标系中至少两条映射曲线相交的特征点;The second determination module is used to map the position coordinates of each pixel point to the polar coordinate system to obtain the mapping curve corresponding to each pixel point, and determine the feature point where at least two mapping curves intersect in the polar coordinate system;

第三确定模块,用于确定所述特征点之间距离为预设距离的两个特征点为特征点对;a third determining module, configured to determine that two feature points whose distances between the feature points are preset distances are feature point pairs;

第四确定模块,用于根据符合预设条件的所述特征点对,确定所述待检测图像中的平行线。The fourth determination module is configured to determine parallel lines in the image to be detected according to the feature point pairs that meet the preset conditions.

结合第二方面,本申请实施例提供了第二方面的第一种可能的实施方式,其中,所述第四确定模块,在根据符合预设条件的所述特征点对,确定所述待检测图像中的平行线时,具体用于:In conjunction with the second aspect, the embodiment of the present application provides a first possible implementation manner of the second aspect, wherein the fourth determination module determines the to-be-detected feature point pair according to the feature point pair that meets a preset condition When parallel lines in an image, specifically for:

确定经过每一对特征点对包含的特征点的映射曲线所对应的像素点为第一选定像素点;Determine that the pixel point corresponding to the mapping curve of the feature points included in each pair of feature point pairs is the first selected pixel point;

计算所述第一选定像素点的梯度值之和;Calculate the sum of the gradient values of the first selected pixel point;

将所述梯度值之和满足预设梯度条件的特征点对,确定为选定特征点对;Determining the feature point pair whose sum of the gradient values satisfies the preset gradient condition as the selected feature point pair;

确定经过所述选定特征点对所包含的特征点的每条映射曲线所对应的像素点为第二选定像素点;Determine that the pixel point corresponding to each mapping curve of the feature point included in the selected feature point pair is the second selected pixel point;

根据所述第二选定像素点,确定所述待检测图像中的平行线。According to the second selected pixel points, the parallel lines in the to-be-detected image are determined.

结合第二方面的第一种可能的实施方式,本申请实施例提供了第二方面的第二种可能的实施方式,其中,所述第四确定模块,在将所述梯度值之和满足预设梯度条件的特征点对,确定为选定特征点对时,具体用于:With reference to the first possible implementation manner of the second aspect, the embodiment of the present application provides a second possible implementation manner of the second aspect, wherein, the fourth determination module, after determining that the sum of the gradient values satisfies the predetermined When the feature point pair of the gradient condition is set as the selected feature point pair, it is specifically used for:

将梯度值之和大于预设阈值的特征点对,确定为选定特征点对;或者,Determine the feature point pair whose sum of gradient values is greater than the preset threshold as the selected feature point pair; or,

将每个特征点对所对应的梯度值之和按照由大到小的顺序进行排序,将排列在前M位的特征点对,确定为选定特征点对,M为正整数。Sort the sum of the gradient values corresponding to each feature point pair in descending order, and determine the feature point pair arranged in the top M positions as the selected feature point pair, where M is a positive integer.

结合第二方面,本申请实施例提供了第二方面的第三种可能的实施方式,其中,所述第一确定模块,在根据所述待检测图像中各个像素点的水平方向的水平梯度和垂直方向的垂直梯度,确定各个像素点的梯度值时,具体用于:In conjunction with the second aspect, the embodiment of the present application provides a third possible implementation manner of the second aspect, wherein the first determination module is based on the horizontal gradient and the horizontal gradient of each pixel point in the to-be-detected image. The vertical gradient in the vertical direction, when determining the gradient value of each pixel, is specifically used for:

针对所述待检测图像中第i个像素点,执行如下操作:For the i-th pixel in the to-be-detected image, perform the following operations:

分别计算第i个像素点的水平方向的第一梯度值和垂直方向的第二梯度值;Calculate the first gradient value in the horizontal direction and the second gradient value in the vertical direction of the ith pixel respectively;

根据所述第一梯度值和所述第二梯度值,确定所述第i个像素点的第三梯度值;determining the third gradient value of the i-th pixel point according to the first gradient value and the second gradient value;

判断所述第三梯度值是否在预设梯度值范围内,若判断结果为是,则将所述第三梯度值确定为所述第i个像素点的梯度值;若判断结果为否,则调整所述第三梯度值,并将调整后的第三梯度值确定为第i个像素点的梯度值。Judging whether the third gradient value is within the preset gradient value range, if the judgment result is yes, then the third gradient value is determined as the gradient value of the i-th pixel point; if the judgment result is no, then The third gradient value is adjusted, and the adjusted third gradient value is determined as the gradient value of the ith pixel.

结合第二方面的第三种可能的实施方式,本申请实施例提供了第二方面的第四种可能的实施方式,其中,所述第一确定模块,在当第三梯度值不在预设梯度值范围内时,调整第三梯度值时,具体用于:In conjunction with the third possible implementation manner of the second aspect, the embodiment of the present application provides a fourth possible implementation manner of the second aspect, wherein, the first determination module, when the third gradient value is not in the preset gradient When the value is within the range, when adjusting the third gradient value, it is specifically used for:

当所述第三梯度值小于所述预设梯度值范围的最小值时,将所述第三梯度值调整为所述预设梯度值范围的最小值;When the third gradient value is smaller than the minimum value of the preset gradient value range, adjusting the third gradient value to the minimum value of the preset gradient value range;

当所述第三梯度值大于所述预设梯度值范围的最大值时,将所述第三梯度值调整为所述预设梯度值范围的最大值。When the third gradient value is greater than the maximum value of the preset gradient value range, the third gradient value is adjusted to the maximum value of the preset gradient value range.

第三方面,本申请实施例还提供一种电子设备,包括:处理器、存储器和总线,所述存储器存储有所述处理器可执行的机器可读指令,当电子设备运行时,所述处理器与所述存储器之间通过总线通信,所述机器可读指令被所述处理器执行时执行上述第一方面,或第一方面的任一种可能的实施方式中的步骤。In a third aspect, embodiments of the present application further provide an electronic device, including: a processor, a memory, and a bus, where the memory stores machine-readable instructions executable by the processor, and when the electronic device runs, the processing A bus communicates between the processor and the memory, and when the machine-readable instructions are executed by the processor, the first aspect or the steps in any possible implementation manner of the first aspect are performed.

第四方面,本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器运行时执行上述第一方面,或第一方面的任一种可能的实施方式中的步骤。In a fourth aspect, embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and the computer program is executed by a processor to execute the first aspect, or any of the first aspect. steps in one possible implementation.

本申请实施例提供的直线检测方法及装置,通过待检测图像中各个像素点的水平方向的水平梯度和垂直方向的垂直梯度,确定各个像素点的梯度值;然后将各个像素点的位置坐标映射到极坐标系中,得到各个像素点对应的映射曲线,并在极坐标系中确定映射曲线相交的特征点,然后从特征点中筛选出距离为预设距离的至少一对特征点对,并根据符合预设条件的特征点对,确定待检测图像中的平行线。通过上述方法,可以直接根据选择出的特征点对确定待检测图像中的平行线,无需先确定直线,再确定平行线,提高了平行线检测的效率。In the straight line detection method and device provided by the embodiment of the present application, the gradient value of each pixel point is determined by the horizontal gradient in the horizontal direction and the vertical gradient in the vertical direction of each pixel point in the image to be detected; and then the position coordinates of each pixel point are mapped. In the polar coordinate system, the mapping curve corresponding to each pixel point is obtained, and the feature point where the mapping curve intersects is determined in the polar coordinate system, and then at least one pair of feature point pairs with a preset distance is screened from the feature points, and Determine the parallel lines in the image to be detected according to the feature point pairs that meet the preset conditions. Through the above method, the parallel lines in the image to be detected can be directly determined according to the selected feature point pairs, without first determining the straight line and then determining the parallel line, which improves the efficiency of parallel line detection.

为使本申请的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。In order to make the above-mentioned objects, features and advantages of the present application more obvious and easy to understand, the preferred embodiments are exemplified below, and are described in detail as follows in conjunction with the accompanying drawings.

附图说明Description of drawings

为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。In order to illustrate the technical solutions of the embodiments of the present application more clearly, the following drawings will briefly introduce the drawings that need to be used in the embodiments. It should be understood that the following drawings only show some embodiments of the present application, and therefore do not It should be regarded as a limitation of the scope, and for those of ordinary skill in the art, other related drawings can also be obtained according to these drawings without any creative effort.

图1示出了本申请实施例所提供的一种平行线检测方法的流程示意图;1 shows a schematic flowchart of a parallel line detection method provided by an embodiment of the present application;

图2示出了本申请实施例所提供的确定像素点梯度值的方法的流程示意图;FIG. 2 shows a schematic flowchart of a method for determining a pixel point gradient value provided by an embodiment of the present application;

图3示出了本申请实施例所提供的一种向量求和方法;FIG. 3 shows a vector summation method provided by an embodiment of the present application;

图4示出了本申请实施例所提供的一种根据符合预设条件的特征点对,确定待检测图像中的平行线的方法的流程示意图;4 shows a schematic flowchart of a method for determining parallel lines in an image to be detected according to feature point pairs that meet preset conditions provided by an embodiment of the present application;

图5示出了本申请实施例所提供的一种平行线检测装置600的架构示意图;FIG. 5 shows a schematic structural diagram of a parallel line detection apparatus 600 provided by an embodiment of the present application;

图6示出了本申请实施例所提供的一种电子设备700的架构示意图。FIG. 6 shows a schematic structural diagram of an electronic device 700 provided by an embodiment of the present application.

具体实施方式Detailed ways

为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。In order to make the purposes, technical solutions and advantages of the embodiments of the present application clearer, the technical solutions in the embodiments of the present application will be clearly and completely described below with reference to the drawings in the embodiments of the present application. Obviously, the described embodiments are only It is a part of the embodiments of the present application, but not all of the embodiments. The components of the embodiments of the present application generally described and illustrated in the drawings herein may be arranged and designed in a variety of different configurations. Thus, the following detailed description of the embodiments of the application provided in the accompanying drawings is not intended to limit the scope of the application as claimed, but is merely representative of selected embodiments of the application. Based on the embodiments of the present application, all other embodiments obtained by those skilled in the art without creative work fall within the protection scope of the present application.

首先,对本申请所提供的方法可适用的应用场景做出介绍。本申请所提供的方法可以适用于固定距离的平行线检测中,例如在图像中定位已知宽度的矩形物体。现有技术中对于固定距离的平行线检测都是先检测出直线,然后根据检测出的直线检测平行线,再根据检测出的平行线之间的距离,确定固定距离的平行线,这种方法检测效率较低。First, the applicable application scenarios of the method provided in this application are introduced. The method provided in this application can be applied to parallel line detection at a fixed distance, such as locating a rectangular object of known width in an image. In the prior art, for the detection of parallel lines with a fixed distance, a straight line is detected first, then the parallel lines are detected according to the detected straight line, and then the parallel lines with a fixed distance are determined according to the distance between the detected parallel lines. The detection efficiency is low.

本申请所提供的方法中,将待检测图像的每个像素点映射到极坐标系中,并根据极坐标系中像素点所对应的映射曲线确定特征点,然后根据特征点之间的距离选择出特征点对,最后根据符合预设条件的特征点对,确定待检测图像中的平行线,与现有技术相比,本申请所提供的方法无需先确定直线,再确定平行线,而是直接根据选择出的符合预设条件的特征点对,确定出平行线,检测效率较高。In the method provided by the present application, each pixel point of the image to be detected is mapped into the polar coordinate system, and the feature points are determined according to the mapping curve corresponding to the pixel points in the polar coordinate system, and then the feature points are selected according to the distance between the feature points. Feature point pairs are obtained, and finally, according to the feature point pairs that meet the preset conditions, the parallel lines in the image to be detected are determined. The parallel lines are determined directly according to the selected feature point pairs that meet the preset conditions, and the detection efficiency is high.

为便于对本实施例进行理解,首先对本申请实施例所公开的一种平行线检测方法进行详细介绍。In order to facilitate the understanding of this embodiment, a parallel line detection method disclosed in the embodiment of this application is first introduced in detail.

实施例一Example 1

参见图1所示,为本申请实施例所提供的一种平行线检测方法的流程示意图,包括以下步骤:Referring to FIG. 1 , a schematic flowchart of a parallel line detection method provided by an embodiment of the present application includes the following steps:

S101、获取待检测图像。S101. Acquire an image to be detected.

S102、根据待检测图像中各个像素点的水平方向的水平梯度和垂直方向的垂直梯度,确定各个像素点的梯度值。S102: Determine the gradient value of each pixel point according to the horizontal gradient in the horizontal direction and the vertical gradient in the vertical direction of each pixel point in the image to be detected.

具体实施中,针对待检测图像中的第i个像素点,可以根据如图2所示的确定像素点梯度值的方法,确定第i个像素点的梯度值,包括以下步骤:In specific implementation, for the ith pixel in the image to be detected, the gradient value of the ith pixel can be determined according to the method for determining the gradient value of the pixel as shown in Figure 2, including the following steps:

S201、分别计算第i个像素点的水平方向的第一梯度值和垂直方向的第二梯度值。S201. Calculate the first gradient value in the horizontal direction and the second gradient value in the vertical direction of the ith pixel respectively.

在一种可能的实施方式中,设第i个像素点在待检测图像中的位置为第j行第k列,则可以按照下述公式计算第i个像素点的水平方向的第一梯度值:In a possible implementation manner, set the position of the i-th pixel in the image to be detected as the j-th row and the k-th column, then the first gradient value in the horizontal direction of the i-th pixel can be calculated according to the following formula :

i1=aj,k+1-aj,k-1 i 1 =a j,k+1 -a j,k-1

其中,i1表示第i个像素点的水平方向的第一梯度值,aj,k+1表示第j行第k+1列像素点的像素值,aj,k-1表示第j行第k-1列的像素点的像素值。Among them, i 1 represents the first gradient value in the horizontal direction of the ith pixel point, a j, k+1 represents the pixel value of the pixel point in the jth row and the k+1th column, and a j, k-1 represents the jth row. The pixel value of the pixel in the k-1th column.

同理,可以按照下述公式计算第i个像素点的垂直方向的第二梯度值:Similarly, the second gradient value in the vertical direction of the ith pixel can be calculated according to the following formula:

i2=aj+1,k-aj-1,k i 2 =a j+1,k -a j-1,k

其中,i2表示第i个像素点的水平方向的第二梯度值,aj+1,k表示第j+1行第k列像素点的像素值,aj-1,k表示第j-1行第k列的像素点的像素值。Among them, i 2 represents the second gradient value in the horizontal direction of the i-th pixel point, a j+1, k represents the pixel value of the j+1-th row and k-th column pixel point, a j-1, k represents the j-th The pixel value of the pixel in row 1 and column k.

S202、根据第一梯度值和第二梯度值,确定第i个像素点的第三梯度值。S202. Determine the third gradient value of the ith pixel point according to the first gradient value and the second gradient value.

在一种可能的实施方式中,可以根据向量求和的方式计算第i个像素点的第三梯度值,如图3所示的向量求和方法,设OA为第一梯度值,OB为第二梯度值,则根据向量求和方法,可以计算得第三梯度值OC的大小和方向。In a possible implementation manner, the third gradient value of the i-th pixel point can be calculated according to the vector summation method. As shown in the vector summation method shown in FIG. 3 , let OA be the first gradient value and OB be the first gradient value For the second gradient value, according to the vector summation method, the magnitude and direction of the third gradient value OC can be calculated.

具体的,可以按照下述公式计算第三梯度值:Specifically, the third gradient value can be calculated according to the following formula:

Figure GDA0003073119330000081
Figure GDA0003073119330000081

其中,i1表示第i个像素点的水平方向的第一梯度值,i2表示第i个像素点的垂直方向的第二梯度值,i3表示第i个像素点的第三梯度值。Wherein, i 1 represents the first gradient value in the horizontal direction of the ith pixel, i 2 represents the second gradient value in the vertical direction of the ith pixel, and i 3 represents the third gradient value of the ith pixel.

S203、判断第三梯度值是否在预设梯度值范围内。S203. Determine whether the third gradient value is within a preset gradient value range.

若判断结果为是,则顺序执行步骤S204;If the judgment result is yes, step S204 is executed sequentially;

若判断结果为否,则执行步骤S205。If the judgment result is no, step S205 is executed.

本申请一示例中,预设梯度值范围可以是[-127,127],也可以根据具体情况设定预设梯度值的范围,本申请对此并不做出限定。In an example of the present application, the preset gradient value range may be [-127, 127], or the preset gradient value range may be set according to specific conditions, which is not limited in this application.

S204、将第三梯度值确定为第i个像素点的梯度值。S204. Determine the third gradient value as the gradient value of the i-th pixel point.

S205、调整第三梯度值,并将调整后的第三梯度值确定为第i个像素点的梯度值。S205: Adjust the third gradient value, and determine the adjusted third gradient value as the gradient value of the ith pixel.

在一种可能的场景下,待检测图像中可能出现有噪声,导致所计算出第三梯度值过大或者过小,为了防止第三梯度值过大或过小导致平行线检测失误,可以先将不在预设梯度值范围的像素点调整到预设梯度值范围内。In a possible scenario, there may be noise in the image to be detected, causing the calculated third gradient value to be too large or too small. Adjust the pixels that are not in the preset gradient value range to the preset gradient value range.

具体实施时,当第三梯度值小于预设梯度值范围的最小值时,可以将第三梯度值调整为预设梯度值范围的最小值;当第三梯度值大于预设梯度值范围的最大值时,将第三梯度值调整为预设梯度值范围的最大值。During specific implementation, when the third gradient value is smaller than the minimum value of the preset gradient value range, the third gradient value can be adjusted to the minimum value of the preset gradient value range; when the third gradient value is greater than the maximum value of the preset gradient value range When the value is set, the third gradient value is adjusted to the maximum value of the preset gradient value range.

S103、将各个像素点的位置坐标映射到极坐标系中得到各个像素点对应的映射曲线,并确定极坐标系中至少两条映射曲线相交的特征点。S103: Map the position coordinates of each pixel point to a polar coordinate system to obtain a mapping curve corresponding to each pixel point, and determine a feature point where at least two mapping curves intersect in the polar coordinate system.

在待检测图像中确定的像素点的位置坐标为二维直角坐标,将二维直角坐标中的点映射到极坐标系中得到一条对应的映射曲线。The position coordinates of the pixel points determined in the image to be detected are two-dimensional rectangular coordinates, and a corresponding mapping curve is obtained by mapping the points in the two-dimensional rectangular coordinates to the polar coordinate system.

将待检测图像中每个像素点的位置坐标映射到极坐标系中,每个像素点对应一条映射曲线,则在极坐标系中映射曲线的交点可能对应二维直角坐标系中的直线。The position coordinates of each pixel in the image to be detected are mapped to the polar coordinate system, each pixel corresponds to a mapping curve, and the intersection of the mapping curves in the polar coordinate system may correspond to a straight line in the two-dimensional rectangular coordinate system.

S104、确定特征点之间距离为预设距离的两个特征点为特征点对。S104. Determine two feature points whose distance between the feature points is a preset distance as a feature point pair.

极坐标系中的特征点可能对应二维直角坐标系中的直线,则在极坐标系中两个距离为L的特征点,可能对应一组距离为L的平行线。因此,通过选择特征点之间距离为预设距离的两个特征点为特征点对,再根据经过特征点对所包含的特征点的映射曲线所对应的像素点的梯度值,选择出距离为预设距离的平行线。A feature point in the polar coordinate system may correspond to a straight line in a two-dimensional rectangular coordinate system, and two feature points with a distance L in the polar coordinate system may correspond to a set of parallel lines with a distance L. Therefore, by selecting two feature points whose distance between the feature points is a preset distance as the feature point pair, and then according to the gradient value of the pixel points corresponding to the mapping curve of the feature points included in the feature point pair, the distance is selected as Parallel lines at a preset distance.

例如,设预设距离为W,极坐标系中包含A,B,C,D,E五个特征点,A与B之间的距离为W,A与D之间的距离也为W,则分别将A与B、A与D确定为特征点对。For example, suppose the preset distance is W, the polar coordinate system contains five feature points A, B, C, D, and E, the distance between A and B is W, and the distance between A and D is also W, then A and B, A and D are respectively determined as feature point pairs.

S105、根据符合预设条件的特征点对,确定待检测图像中的平行线。S105. Determine parallel lines in the image to be detected according to the pair of feature points that meet the preset condition.

一种可能的实施方式中,可以按照图4所示的方法,根据符合预设条件的特征点对,确定待检测图像中的平行线,包括以下步骤:In a possible implementation, the method shown in FIG. 4 can be used to determine the parallel lines in the image to be detected according to the feature point pairs that meet the preset conditions, including the following steps:

S501、确定经过每一对特征点对包含的特征点的映射曲线所对应的像素点为第一选定像素点。S501. Determine the pixel point corresponding to the mapping curve of the feature points included in each pair of feature point pairs as the first selected pixel point.

S502、计算第一选定像素点的梯度值之和。S502. Calculate the sum of the gradient values of the first selected pixel point.

S503、将梯度值之和满足预设梯度条件的特征点对,确定为选定特征点对。S503: Determine the feature point pair whose sum of the gradient values satisfies the preset gradient condition as the selected feature point pair.

在将梯度之和满足预设梯度条件的特征点对,确定为选定特征点对时,可以将梯度值之和大于预设阈值的特征点对确定为选定特征点对;或者,将每个特征点对所对应的梯度值之和按照从大到小的顺序进行排序,将排列在前M为的特征点对,确定为选定特征点对,M为正整数。When the feature point pair whose sum of gradients satisfies the preset gradient condition is determined as the selected feature point pair, the feature point pair whose sum of gradient values is greater than the preset threshold may be determined as the selected feature point pair; The sum of the gradient values corresponding to each feature point pair is sorted in descending order, and the feature point pair arranged in the top M is determined as the selected feature point pair, where M is a positive integer.

S504、确定经过选定特征点对所包含的特征点的每条映射曲线所对应的像素点为第二选定像素点。S504. Determine the pixel point corresponding to each mapping curve of the feature points included in the selected feature point pair as the second selected pixel point.

S505、根据第二选定像素点,确定待检测图像中的平行线。S505. Determine parallel lines in the image to be detected according to the second selected pixel point.

第二选定像素点为在待检测图像中平行线上的像素点,因此,可以通过选择的第二选定像素点确定待检测图像中的平行线。The second selected pixel point is a pixel point on the parallel line in the image to be detected, therefore, the parallel line in the image to be detected can be determined by the selected second selected pixel point.

本申请一示例中,若经过上述步骤S101~步骤S105之后确定出待检测图像中的平行线不止一组,则可以输出每一组平行线对应的梯度值之和,并在待检测图像中对每一组平行线进行标注,例如可以将同一组的平行线的两条直线标注为相同的颜色,将不同组的平行线标注为不同的颜色,并输出每一组平行线对应的梯度值之和,用户可以根据待检测图像中标注的平行线,以及每一组平行线对应的梯度值之和,确定所需要的平行线。In an example of the present application, if it is determined that there are more than one group of parallel lines in the image to be detected after the above steps S101 to S105, the sum of the gradient values corresponding to each group of parallel lines can be output, and the corresponding gradient values in the image to be detected can be output. Label each group of parallel lines. For example, two straight lines of the same group of parallel lines can be marked with the same color, and parallel lines of different groups can be marked with different colors, and the gradient values corresponding to each group of parallel lines can be output. And, the user can determine the required parallel lines according to the parallel lines marked in the image to be detected and the sum of the gradient values corresponding to each group of parallel lines.

本申请实施例提供的直线检测方法,通过待检测图像中各个像素点的水平方向的水平梯度和垂直方向的垂直梯度,确定各个像素点的梯度值;然后将各个像素点的位置坐标映射到极坐标系中,得到各个像素点对应的映射曲线,并在极坐标系中确定映射曲线相交的特征点,然后从特征点中筛选出距离为预设距离的至少一对特征点对,并根据符合预设条件的特征点对,确定待检测图像中的平行线。通过上述方法,可以直接根据选择出的特征点对确定待检测图像中的平行线,无需先确定直线,再确定平行线,提高了平行线检测的效率。In the straight line detection method provided by the embodiment of the present application, the gradient value of each pixel point is determined by the horizontal gradient in the horizontal direction and the vertical gradient in the vertical direction of each pixel point in the image to be detected; and then the position coordinates of each pixel point are mapped to the polar In the coordinate system, the mapping curve corresponding to each pixel point is obtained, and the feature point where the mapping curve intersects is determined in the polar coordinate system, and then at least a pair of feature point pairs whose distance is a preset distance are screened out from the feature points, and according to the The feature point pairs of the preset conditions determine the parallel lines in the image to be detected. Through the above method, the parallel lines in the image to be detected can be directly determined according to the selected feature point pairs, without first determining the straight line and then determining the parallel line, which improves the efficiency of parallel line detection.

实施例二Embodiment 2

本申请实施例提供了一种平行线检测装置,参见图5所示,为本申请实施例提供的平行线检测装置600的架构示意图,该装置600包括:获取模块601、第一确定模块602、第二确定模块603、第三确定模块604、以及第四确定模块605,具体的:An embodiment of the present application provides a parallel line detection device. Referring to FIG. 5 , which is a schematic diagram of the structure of a parallel line detection device 600 provided by an embodiment of the present application, the device 600 includes: an acquisition module 601 , a first determination module 602 , The second determination module 603, the third determination module 604, and the fourth determination module 605, specifically:

获取模块601,用于获取待检测图像;an acquisition module 601, configured to acquire an image to be detected;

第一确定模块602,用于根据所述待检测图像中各个像素点的水平方向的水平梯度和垂直方向的垂直梯度,确定各个像素点的梯度值;a first determination module 602, configured to determine the gradient value of each pixel point according to the horizontal gradient in the horizontal direction and the vertical gradient in the vertical direction of each pixel point in the to-be-detected image;

第二确定模块603,用于将各个像素点的位置坐标映射到极坐标系中得到各个像素点对应的映射曲线,并确定所述极坐标系中至少两条映射曲线相交的特征点;The second determination module 603 is used to map the position coordinates of each pixel point to the polar coordinate system to obtain the mapping curve corresponding to each pixel point, and determine the feature point where at least two mapping curves intersect in the polar coordinate system;

第三确定模块604,用于确定所述特征点之间距离为预设距离的两个特征点为特征点对;A third determining module 604, configured to determine that two feature points whose distances between the feature points are preset distances are feature point pairs;

第四确定模块605,用于根据符合预设条件的所述特征点对,确定所述待检测图像中的平行线。The fourth determination module 605 is configured to determine parallel lines in the image to be detected according to the feature point pairs that meet the preset conditions.

一种可能的实施方式中,所述第四确定模块605,在根据符合预设条件的所述特征点对,确定所述待检测图像中的平行线时,具体用于:In a possible implementation manner, the fourth determining module 605, when determining the parallel lines in the image to be detected according to the feature point pairs that meet the preset conditions, is specifically used for:

确定经过每一对特征点对包含的特征点的映射曲线所对应的像素点为第一选定像素点;Determine that the pixel point corresponding to the mapping curve of the feature points included in each pair of feature point pairs is the first selected pixel point;

计算所述第一选定像素点的梯度值之和;Calculate the sum of the gradient values of the first selected pixel point;

将所述梯度值之和满足预设梯度条件的特征点对,确定为选定特征点对;Determining the feature point pair whose sum of the gradient values satisfies the preset gradient condition as the selected feature point pair;

确定经过所述选定特征点对所包含的特征点的每条映射曲线所对应的像素点为第二选定像素点;Determine that the pixel point corresponding to each mapping curve of the feature point included in the selected feature point pair is the second selected pixel point;

根据所述第二选定像素点,确定所述待检测图像中的平行线。According to the second selected pixel points, the parallel lines in the to-be-detected image are determined.

一种可能的实施方式中,所述第四确定模块605,在将所述梯度值之和满足预设梯度条件的特征点对,确定为选定特征点对时,具体用于:In a possible implementation manner, when the fourth determination module 605 determines the feature point pair whose sum of the gradient values satisfies the preset gradient condition as the selected feature point pair, it is specifically used for:

将梯度值之和大于预设阈值的特征点对,确定为选定特征点对;或者,Determine the feature point pair whose sum of gradient values is greater than the preset threshold as the selected feature point pair; or,

将每个特征点对所对应的梯度值之和按照由大到小的顺序进行排序,将排列在前M位的特征点对,确定为选定特征点对,M为正整数。Sort the sum of the gradient values corresponding to each feature point pair in descending order, and determine the feature point pair arranged in the top M positions as the selected feature point pair, where M is a positive integer.

一种可能的实施方式中,所述第一确定模块602,在根据所述待检测图像中各个像素点的水平方向的水平梯度和垂直方向的垂直梯度,确定各个像素点的梯度值时,具体用于:In a possible implementation manner, the first determination module 602, when determining the gradient value of each pixel point according to the horizontal gradient in the horizontal direction and the vertical gradient in the vertical direction of each pixel point in the image to be detected, specifically: Used for:

针对所述待检测图像中第i个像素点,执行如下操作:For the i-th pixel in the to-be-detected image, perform the following operations:

分别计算第i个像素点的水平方向的第一梯度值和垂直方向的第二梯度值;Calculate the first gradient value in the horizontal direction and the second gradient value in the vertical direction of the ith pixel respectively;

根据所述第一梯度值和所述第二梯度值,确定所述第i个像素点的第三梯度值;determining the third gradient value of the i-th pixel point according to the first gradient value and the second gradient value;

判断所述第三梯度值是否在预设梯度值范围内,若判断结果为是,则将所述第三梯度值确定为所述第i个像素点的梯度值;若判断结果为否,则调整所述第三梯度值,并将调整后的第三梯度值确定为第i个像素点的梯度值。Judging whether the third gradient value is within the preset gradient value range, if the judgment result is yes, then the third gradient value is determined as the gradient value of the i-th pixel point; if the judgment result is no, then The third gradient value is adjusted, and the adjusted third gradient value is determined as the gradient value of the ith pixel.

一种可能的实施方式中,所述第一确定模块602,在当第三梯度值不在预设梯度值范围内时,调整第三梯度值时,具体用于:In a possible implementation manner, the first determination module 602, when adjusting the third gradient value when the third gradient value is not within the preset gradient value range, is specifically configured to:

当所述第三梯度值小于所述预设梯度值范围的最小值时,将所述第三梯度值调整为所述预设梯度值范围的最小值;When the third gradient value is smaller than the minimum value of the preset gradient value range, adjusting the third gradient value to the minimum value of the preset gradient value range;

当所述第三梯度值大于所述预设梯度值范围的最大值时,将所述第三梯度值调整为所述预设梯度值范围的最大值。When the third gradient value is greater than the maximum value of the preset gradient value range, the third gradient value is adjusted to the maximum value of the preset gradient value range.

本实施例提供的装置,可以直接根据选择出的特征点对确定待检测图像中的平行线,无需先确定直线,再确定平行线,提高了平行线检测的效率。The device provided in this embodiment can directly determine the parallel lines in the image to be detected according to the selected feature point pairs, without first determining the straight line and then determining the parallel line, which improves the efficiency of parallel line detection.

实施例三Embodiment 3

基于同一技术构思,本申请实施例还提供了一种电子设备。参照图6所示,为本申请实施例提供的电子设备700的结构示意图,包括处理器701、存储器702、和总线703。其中,存储器702用于存储执行指令,包括内存7021和外部存储器7022;这里的内存7021也称内存储器,用于暂时存放处理器701中的运算数据,以及与硬盘等外部存储器7022交换的数据,处理器701通过内存7021与外部存储器7022进行数据交换,当电子设备700运行时,处理器701与存储器702之间通过总线703通信,使得处理器701在执行以下指令:Based on the same technical concept, the embodiments of the present application also provide an electronic device. Referring to FIG. 6 , a schematic structural diagram of an electronic device 700 provided in an embodiment of the present application includes a processor 701 , a memory 702 , and a bus 703 . Among them, the memory 702 is used to store the execution instructions, including the memory 7021 and the external memory 7022; the memory 7021 here is also called the internal memory, which is used to temporarily store the operation data in the processor 701 and the data exchanged with the external memory 7022 such as the hard disk, The processor 701 exchanges data with the external memory 7022 through the memory 7021. When the electronic device 700 is running, the processor 701 communicates with the memory 702 through the bus 703, so that the processor 701 executes the following instructions:

获取待检测图像;Obtain the image to be detected;

根据所述待检测图像中各个像素点的水平方向的水平梯度和垂直方向的垂直梯度,确定各个像素点的梯度值;Determine the gradient value of each pixel point according to the horizontal gradient in the horizontal direction and the vertical gradient in the vertical direction of each pixel point in the image to be detected;

将各个像素点的位置坐标映射到极坐标系中得到各个像素点对应的映射曲线,并确定所述极坐标系中至少两条映射曲线相交的特征点;The position coordinates of each pixel point are mapped to the polar coordinate system to obtain the mapping curve corresponding to each pixel point, and the feature point at which at least two mapping curves intersect in the polar coordinate system is determined;

确定所述特征点之间距离为预设距离的两个特征点为特征点对;Determine that two feature points whose distances between the feature points are preset distances are feature point pairs;

根据符合预设条件的所述特征点对,确定所述待检测图像中的平行线。Determine the parallel lines in the to-be-detected image according to the feature point pairs that meet the preset conditions.

一种可能的设计中,处理器701执行的处理中,所述根据符合预设条件的所述特征点对,确定所述待检测图像中的平行线,包括:In a possible design, in the processing performed by the processor 701, the determination of the parallel lines in the to-be-detected image according to the feature point pair that meets the preset condition includes:

确定经过每一对特征点对包含的特征点的映射曲线所对应的像素点为第一选定像素点;Determine that the pixel point corresponding to the mapping curve of the feature points included in each pair of feature point pairs is the first selected pixel point;

计算所述第一选定像素点的梯度值之和;Calculate the sum of the gradient values of the first selected pixel point;

将所述梯度值之和满足预设梯度条件的特征点对,确定为选定特征点对;Determining the feature point pair whose sum of the gradient values satisfies the preset gradient condition as the selected feature point pair;

确定经过所述选定特征点对所包含的特征点的每条映射曲线所对应的像素点为第二选定像素点;Determine that the pixel point corresponding to each mapping curve of the feature point included in the selected feature point pair is the second selected pixel point;

根据所述第二选定像素点,确定所述待检测图像中的平行线。According to the second selected pixel points, the parallel lines in the to-be-detected image are determined.

一种可能的设计中,处理器701执行的处理中,所述将所述梯度值之和满足预设梯度条件的特征点对,确定为选定特征点对,包括:In a possible design, in the processing performed by the processor 701, the feature point pair whose sum of the gradient values satisfies the preset gradient condition is determined as the selected feature point pair, including:

将梯度值之和大于预设阈值的特征点对,确定为选定特征点对;或者,Determine the feature point pair whose sum of gradient values is greater than the preset threshold as the selected feature point pair; or,

将每个特征点对所对应的梯度值之和按照由大到小的顺序进行排序,将排列在前M位的特征点对,确定为选定特征点对,M为正整数。Sort the sum of the gradient values corresponding to each feature point pair in descending order, and determine the feature point pair arranged in the top M positions as the selected feature point pair, where M is a positive integer.

一种可能的设计中,处理器701执行的处理中,所述根据所述待检测图像中各个像素点的水平方向的水平梯度和垂直方向的垂直梯度,确定各个像素点的梯度值,包括:In a possible design, in the processing performed by the processor 701, the determination of the gradient value of each pixel point according to the horizontal gradient in the horizontal direction and the vertical gradient in the vertical direction of each pixel point in the image to be detected includes:

针对所述待检测图像中第i个像素点,执行如下操作:For the i-th pixel in the to-be-detected image, perform the following operations:

分别计算第i个像素点的水平方向的第一梯度值和垂直方向的第二梯度值;Calculate the first gradient value in the horizontal direction and the second gradient value in the vertical direction of the ith pixel respectively;

根据所述第一梯度值和所述第二梯度值,确定所述第i个像素点的第三梯度值;determining the third gradient value of the i-th pixel point according to the first gradient value and the second gradient value;

判断所述第三梯度值是否在预设梯度值范围内,若判断结果为是,则将所述第三梯度值确定为所述第i个像素点的梯度值;若判断结果为否,则调整所述第三梯度值,并将调整后的第三梯度值确定为第i个像素点的梯度值。Judging whether the third gradient value is within the preset gradient value range, if the judgment result is yes, then the third gradient value is determined as the gradient value of the i-th pixel point; if the judgment result is no, then The third gradient value is adjusted, and the adjusted third gradient value is determined as the gradient value of the ith pixel.

一种可能的设计中,处理器701执行的处理中,当第三梯度值不在预设梯度值范围内时,调整第三梯度值,包括:In a possible design, in the processing performed by the processor 701, when the third gradient value is not within the preset gradient value range, adjusting the third gradient value includes:

当所述第三梯度值小于所述预设梯度值范围的最小值时,将所述第三梯度值调整为所述预设梯度值范围的最小值;When the third gradient value is smaller than the minimum value of the preset gradient value range, adjusting the third gradient value to the minimum value of the preset gradient value range;

当所述第三梯度值大于所述预设梯度值范围的最大值时,将所述第三梯度值调整为所述预设梯度值范围的最大值。When the third gradient value is greater than the maximum value of the preset gradient value range, the third gradient value is adjusted to the maximum value of the preset gradient value range.

实施例四Embodiment 4

本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器运行时执行上述任一实施例中所述的平行线检测方法的步骤。Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program is run by a processor, the steps of the parallel line detection method described in any of the foregoing embodiments are executed .

具体地,该存储介质能够为通用的存储介质,如移动磁盘、硬盘等,该存储介质上的计算机程序被运行时,能够执行上述平行线检测方法的步骤,从而提高平行线检测的效率。Specifically, the storage medium can be a general storage medium, such as a removable disk, a hard disk, etc. When the computer program on the storage medium is run, the steps of the parallel line detection method can be executed, thereby improving the efficiency of parallel line detection.

本申请实施例所提供的进行平行线检测方法的计算机程序产品,包括存储了处理器可执行的非易失的程序代码的计算机可读存储介质,所述程序代码包括的指令可用于执行前面方法实施例中所述的方法,具体实现可参见方法实施例,在此不再赘述。The computer program product for performing the parallel line detection method provided by the embodiments of the present application includes a computer-readable storage medium storing a non-volatile program code executable by a processor, and the instructions included in the program code can be used to execute the foregoing method. For the specific implementation of the method described in the embodiment, reference may be made to the method embodiment, which will not be repeated here.

所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that, for the convenience and brevity of description, the specific working process of the above-described systems, devices and units may refer to the corresponding processes in the foregoing method embodiments, which will not be repeated here.

在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,又例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些通信接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。In the several embodiments provided in this application, it should be understood that the disclosed system, apparatus and method may be implemented in other manners. The apparatus embodiments described above are only illustrative. For example, the division of the units is only a logical function division. In actual implementation, there may be other division methods. For example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented. On the other hand, the shown or discussed mutual coupling or direct coupling or communication connection may be through some communication interfaces, indirect coupling or communication connection of devices or units, which may be in electrical, mechanical or other forms.

所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。The units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.

另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。In addition, each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.

所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可执行的非易失的计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-OnlyMemory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。The functions, if implemented in the form of software functional units and sold or used as stand-alone products, may be stored in a processor-executable non-volatile computer-readable storage medium. Based on this understanding, the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution. The computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application. The aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes.

最后应说明的是:以上所述实施例,仅为本申请的具体实施方式,用以说明本申请的技术方案,而非对其限制,本申请的保护范围并不局限于此,尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本申请实施例技术方案的精神和范围,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。Finally, it should be noted that the above-mentioned embodiments are only specific implementations of the present application, and are used to illustrate the technical solutions of the present application, rather than limit them. The embodiments describe the application in detail, and those of ordinary skill in the art should understand that: any person skilled in the art can still modify the technical solutions described in the foregoing embodiments within the technical scope disclosed in the application. Or can easily think of changes, or equivalently replace some of the technical features; and these modifications, changes or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions in the embodiments of the application, and should be covered in this application. within the scope of protection. Therefore, the protection scope of the present application should be based on the protection scope of the claims.

Claims (10)

1.一种平行线检测方法,其特征在于,包括:1. a parallel line detection method, is characterized in that, comprises: 获取待检测图像;Obtain the image to be detected; 根据所述待检测图像中各个像素点的水平方向的水平梯度和垂直方向的垂直梯度,确定各个像素点的梯度值;Determine the gradient value of each pixel point according to the horizontal gradient in the horizontal direction and the vertical gradient in the vertical direction of each pixel point in the image to be detected; 将各个像素点的位置坐标映射到极坐标系中得到各个像素点对应的映射曲线,并确定所述极坐标系中至少两条映射曲线相交的特征点;The position coordinates of each pixel point are mapped to the polar coordinate system to obtain the mapping curve corresponding to each pixel point, and the feature point at which at least two mapping curves intersect in the polar coordinate system is determined; 确定所述特征点之间距离为预设距离的两个特征点为特征点对;Determine that two feature points whose distances between the feature points are preset distances are feature point pairs; 根据符合预设条件的所述特征点对,确定所述待检测图像中的平行线;Determine the parallel lines in the to-be-detected image according to the feature point pairs that meet the preset conditions; 所述根据符合预设条件的所述特征点对,确定所述待检测图像中的平行线,包括:The determining the parallel lines in the to-be-detected image according to the feature point pairs that meet the preset conditions, includes: 确定经过每一对特征点对包含的特征点的映射曲线所对应的像素点为第一选定像素点;Determine that the pixel point corresponding to the mapping curve of the feature points included in each pair of feature point pairs is the first selected pixel point; 计算所述第一选定像素点的梯度值之和;Calculate the sum of the gradient values of the first selected pixel point; 将所述梯度值之和满足预设梯度条件的特征点对,确定为选定特征点对;Determining the feature point pair whose sum of the gradient values satisfies the preset gradient condition as the selected feature point pair; 确定经过所述选定特征点对所包含的特征点的每条映射曲线所对应的像素点为第二选定像素点;Determine that the pixel point corresponding to each mapping curve of the feature point included in the selected feature point pair is the second selected pixel point; 根据所述第二选定像素点,确定所述待检测图像中的平行线。According to the second selected pixel points, the parallel lines in the to-be-detected image are determined. 2.根据权利要求1所述的方法,其特征在于,所述将所述梯度值之和满足预设梯度条件的特征点对,确定为选定特征点对,包括:2. The method according to claim 1, wherein the feature point pair whose sum of the gradient values satisfies a preset gradient condition is determined as the selected feature point pair, comprising: 将梯度值之和大于预设阈值的特征点对,确定为选定特征点对;或者,Determine the feature point pair whose sum of gradient values is greater than the preset threshold as the selected feature point pair; or, 将每个特征点对所对应的梯度值之和按照由大到小的顺序进行排序,将排列在前M位的特征点对,确定为选定特征点对,M为正整数。Sort the sum of the gradient values corresponding to each feature point pair in descending order, and determine the feature point pair arranged in the top M positions as the selected feature point pair, where M is a positive integer. 3.根据权利要求1所述的方法,其特征在于,所述根据所述待检测图像中各个像素点的水平方向的水平梯度和垂直方向的垂直梯度,确定各个像素点的梯度值,包括:3. The method according to claim 1, wherein, determining the gradient value of each pixel point according to the horizontal gradient in the horizontal direction and the vertical gradient in the vertical direction of each pixel point in the image to be detected, comprising: 针对所述待检测图像中第i个像素点,执行如下操作:For the i-th pixel in the to-be-detected image, perform the following operations: 分别计算第i个像素点的水平方向的第一梯度值和垂直方向的第二梯度值;Calculate the first gradient value in the horizontal direction and the second gradient value in the vertical direction of the ith pixel respectively; 根据所述第一梯度值和所述第二梯度值,确定所述第i个像素点的第三梯度值;其中,所述第三梯度值是通过第一梯度值和第二梯度值进行向量求和生成的;Determine the third gradient value of the i-th pixel point according to the first gradient value and the second gradient value; wherein, the third gradient value is a vector of the first gradient value and the second gradient value. generated by summation; 判断所述第三梯度值是否在预设梯度值范围内,若判断结果为是,则将所述第三梯度值确定为所述第i个像素点的梯度值;若判断结果为否,则调整所述第三梯度值,并将调整后的第三梯度值确定为第i个像素点的梯度值。Judging whether the third gradient value is within the preset gradient value range, if the judgment result is yes, then the third gradient value is determined as the gradient value of the i-th pixel point; if the judgment result is no, then The third gradient value is adjusted, and the adjusted third gradient value is determined as the gradient value of the ith pixel. 4.根据权利要求3所述的方法,其特征在于,当第三梯度值不在预设梯度值范围内时,调整第三梯度值,包括:4. The method according to claim 3, wherein when the third gradient value is not within the preset gradient value range, adjusting the third gradient value, comprising: 当所述第三梯度值小于所述预设梯度值范围的最小值时,将所述第三梯度值调整为所述预设梯度值范围的最小值;When the third gradient value is smaller than the minimum value of the preset gradient value range, adjusting the third gradient value to the minimum value of the preset gradient value range; 当所述第三梯度值大于所述预设梯度值范围的最大值时,将所述第三梯度值调整为所述预设梯度值范围的最大值。When the third gradient value is greater than the maximum value of the preset gradient value range, the third gradient value is adjusted to the maximum value of the preset gradient value range. 5.一种平行线检测装置,其特征在于,包括:5. A parallel line detection device, characterized in that, comprising: 获取模块,用于获取待检测图像;an acquisition module for acquiring the image to be detected; 第一确定模块,用于根据所述待检测图像中各个像素点的水平方向的水平梯度和垂直方向的垂直梯度,确定各个像素点的梯度值;a first determination module, configured to determine the gradient value of each pixel point according to the horizontal gradient in the horizontal direction and the vertical gradient in the vertical direction of each pixel point in the to-be-detected image; 第二确定模块,用于将各个像素点的位置坐标映射到极坐标系中得到各个像素点对应的映射曲线,并确定所述极坐标系中至少两条映射曲线相交的特征点;The second determination module is used to map the position coordinates of each pixel point to the polar coordinate system to obtain the mapping curve corresponding to each pixel point, and determine the feature point where at least two mapping curves intersect in the polar coordinate system; 第三确定模块,用于确定所述特征点之间距离为预设距离的两个特征点为特征点对;a third determining module, configured to determine that two feature points whose distances between the feature points are preset distances are feature point pairs; 第四确定模块,用于根据符合预设条件的所述特征点对,确定所述待检测图像中的平行线;a fourth determination module, configured to determine parallel lines in the to-be-detected image according to the pair of feature points that meet preset conditions; 所述第四确定模块,在根据符合预设条件的所述特征点对,确定所述待检测图像中的平行线时,具体用于:The fourth determination module, when determining the parallel lines in the to-be-detected image according to the feature point pairs that meet the preset conditions, is specifically used for: 确定经过每一对特征点对包含的特征点的映射曲线所对应的像素点为第一选定像素点;Determine that the pixel point corresponding to the mapping curve of the feature points included in each pair of feature point pairs is the first selected pixel point; 计算所述第一选定像素点的梯度值之和;Calculate the sum of the gradient values of the first selected pixel point; 将所述梯度值之和满足预设梯度条件的特征点对,确定为选定特征点对;Determining the feature point pair whose sum of the gradient values satisfies the preset gradient condition as the selected feature point pair; 确定经过所述选定特征点对所包含的特征点的每条映射曲线所对应的像素点为第二选定像素点;Determine that the pixel point corresponding to each mapping curve of the feature point included in the selected feature point pair is the second selected pixel point; 根据所述第二选定像素点,确定所述待检测图像中的平行线。According to the second selected pixel points, the parallel lines in the to-be-detected image are determined. 6.根据权利要求5所述的装置,其特征在于,所述第四确定模块,在将所述梯度值之和满足预设梯度条件的特征点对,确定为选定特征点对时,具体用于:6. The apparatus according to claim 5, wherein the fourth determination module, when determining the feature point pair whose sum of the gradient values satisfies the preset gradient condition as the selected feature point pair, specifically Used for: 将梯度值之和大于预设阈值的特征点对,确定为选定特征点对;或者,Determine the feature point pair whose sum of gradient values is greater than the preset threshold as the selected feature point pair; or, 将每个特征点对所对应的梯度值之和按照由大到小的顺序进行排序,将排列在前M位的特征点对,确定为选定特征点对,M为正整数。Sort the sum of the gradient values corresponding to each feature point pair in descending order, and determine the feature point pair arranged in the top M positions as the selected feature point pair, where M is a positive integer. 7.根据权利要求5所述的装置,其特征在于,所述第一确定模块,在根据所述待检测图像中各个像素点的水平方向的水平梯度和垂直方向的垂直梯度,确定各个像素点的梯度值时,具体用于:7 . The device according to claim 5 , wherein the first determination module determines each pixel point according to the horizontal gradient in the horizontal direction and the vertical gradient in the vertical direction of each pixel point in the image to be detected. 8 . When the gradient value of , is used for: 针对所述待检测图像中第i个像素点,执行如下操作:For the i-th pixel in the to-be-detected image, perform the following operations: 分别计算第i个像素点的水平方向的第一梯度值和垂直方向的第二梯度值;Calculate the first gradient value in the horizontal direction and the second gradient value in the vertical direction of the ith pixel respectively; 根据所述第一梯度值和所述第二梯度值,确定所述第i个像素点的第三梯度值;其中,所述第三梯度值是通过第一梯度值和第二梯度值进行向量求和生成的;Determine the third gradient value of the i-th pixel point according to the first gradient value and the second gradient value; wherein, the third gradient value is a vector of the first gradient value and the second gradient value. generated by summation; 判断所述第三梯度值是否在预设梯度值范围内,若判断结果为是,则将所述第三梯度值确定为所述第i个像素点的梯度值;若判断结果为否,则调整所述第三梯度值,并将调整后的第三梯度值确定为第i个像素点的梯度值。Judging whether the third gradient value is within the preset gradient value range, if the judgment result is yes, then the third gradient value is determined as the gradient value of the i-th pixel point; if the judgment result is no, then The third gradient value is adjusted, and the adjusted third gradient value is determined as the gradient value of the ith pixel. 8.根据权利要求7所述的装置,其特征在于,所述第一确定模块,在当第三梯度值不在预设梯度值范围内时,调整第三梯度值时,具体用于:8. The device according to claim 7, wherein the first determination module, when adjusting the third gradient value when the third gradient value is not within the preset gradient value range, is specifically used for: 当所述第三梯度值小于所述预设梯度值范围的最小值时,将所述第三梯度值调整为所述预设梯度值范围的最小值;When the third gradient value is smaller than the minimum value of the preset gradient value range, adjusting the third gradient value to the minimum value of the preset gradient value range; 当所述第三梯度值大于所述预设梯度值范围的最大值时,将所述第三梯度值调整为所述预设梯度值范围的最大值。When the third gradient value is greater than the maximum value of the preset gradient value range, the third gradient value is adjusted to the maximum value of the preset gradient value range. 9.一种电子设备,其特征在于,包括:处理器、存储器和总线,所述存储器存储有所述处理器可执行的机器可读指令,当电子设备运行时,所述处理器与所述存储器之间通过总线通信,所述机器可读指令被所述处理器执行时执行如权利要求1至4任一所述的平行线检测方法的步骤。9. An electronic device, comprising: a processor, a memory, and a bus, wherein the memory stores machine-readable instructions executable by the processor, and when the electronic device is running, the processor and the The memories communicate with each other through a bus, and the machine-readable instructions execute the steps of the parallel line detection method according to any one of claims 1 to 4 when the machine-readable instructions are executed by the processor. 10.一种计算机可读存储介质,其特征在于,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器运行时执行如权利要求1至4任一所述的平行线检测方法的步骤。10. A computer-readable storage medium, wherein a computer program is stored on the computer-readable storage medium, and the computer program executes the parallel line detection method according to any one of claims 1 to 4 when the computer program is run by a processor A step of.
CN201910021206.5A 2019-01-09 2019-01-09 Parallel line detection method and device Active CN111141208B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910021206.5A CN111141208B (en) 2019-01-09 2019-01-09 Parallel line detection method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910021206.5A CN111141208B (en) 2019-01-09 2019-01-09 Parallel line detection method and device

Publications (2)

Publication Number Publication Date
CN111141208A CN111141208A (en) 2020-05-12
CN111141208B true CN111141208B (en) 2021-08-27

Family

ID=70516571

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910021206.5A Active CN111141208B (en) 2019-01-09 2019-01-09 Parallel line detection method and device

Country Status (1)

Country Link
CN (1) CN111141208B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111709929B (en) * 2020-06-15 2023-01-20 北京航空航天大学 Lung canceration region segmentation and classification detection system
CN114972769B (en) * 2022-06-17 2023-07-28 北京百度网讯科技有限公司 Image processing method, three-dimensional map generation method, device, equipment and medium
CN116804532B (en) * 2023-08-24 2023-11-28 苏州中科行智智能科技有限公司 3D measurement method for distance between parallel line segments

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5901252A (en) * 1991-12-11 1999-05-04 Fujitsu Limited Process and apparatus for extracting and recognizing figure elements using division into receptive fields, polar transformation, application of one-dimensional filter, and correlation between plurality of images
CN1667351A (en) * 2005-04-06 2005-09-14 北京航空航天大学 Automatic Extraction Method of Image Feature Points of Rough Texture Workpiece under Strong Reflective Background
JP2008003793A (en) * 2006-06-21 2008-01-10 Toyota Motor Corp Image processing apparatus and image processing program
CN103914830A (en) * 2014-02-22 2014-07-09 小米科技有限责任公司 Straight line detection method and device
CN104424475A (en) * 2013-09-10 2015-03-18 阿里巴巴集团控股有限公司 Method and device for identifying stripe region in image
CN105184830A (en) * 2015-08-28 2015-12-23 华中科技大学 Symmetry image symmetric axis detection positioning method
CN106251332A (en) * 2016-07-17 2016-12-21 西安电子科技大学 SAR image airport target detection method based on edge feature
CN107424160A (en) * 2015-11-02 2017-12-01 康耐视公司 The system and method that image center line is searched by vision system
CN108447016A (en) * 2018-02-05 2018-08-24 西安电子科技大学 The matching process of optical imagery and SAR image based on straight-line intersection
CN109034047A (en) * 2018-07-20 2018-12-18 京东方科技集团股份有限公司 A kind of method for detecting lane lines and device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4206723B2 (en) * 2002-10-11 2009-01-14 オムロン株式会社 Image processing method and image processing apparatus
CN102915640B (en) * 2012-10-30 2015-06-17 武汉烽火众智数字技术有限责任公司 Safety belt detecting method based on Hough transform
CN106529443B (en) * 2016-11-03 2019-09-06 温州大学 Improved Hough Change Detection Method for Lane Lines

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5901252A (en) * 1991-12-11 1999-05-04 Fujitsu Limited Process and apparatus for extracting and recognizing figure elements using division into receptive fields, polar transformation, application of one-dimensional filter, and correlation between plurality of images
CN1667351A (en) * 2005-04-06 2005-09-14 北京航空航天大学 Automatic Extraction Method of Image Feature Points of Rough Texture Workpiece under Strong Reflective Background
JP2008003793A (en) * 2006-06-21 2008-01-10 Toyota Motor Corp Image processing apparatus and image processing program
CN104424475A (en) * 2013-09-10 2015-03-18 阿里巴巴集团控股有限公司 Method and device for identifying stripe region in image
CN103914830A (en) * 2014-02-22 2014-07-09 小米科技有限责任公司 Straight line detection method and device
CN105184830A (en) * 2015-08-28 2015-12-23 华中科技大学 Symmetry image symmetric axis detection positioning method
CN107424160A (en) * 2015-11-02 2017-12-01 康耐视公司 The system and method that image center line is searched by vision system
CN106251332A (en) * 2016-07-17 2016-12-21 西安电子科技大学 SAR image airport target detection method based on edge feature
CN108447016A (en) * 2018-02-05 2018-08-24 西安电子科技大学 The matching process of optical imagery and SAR image based on straight-line intersection
CN109034047A (en) * 2018-07-20 2018-12-18 京东方科技集团股份有限公司 A kind of method for detecting lane lines and device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
对数极坐标系下尺度不变特征点的检测与描述;陶涛 等;《中国图象图形学报》;20151231;第20卷(第12期);第1639-1651页 *

Also Published As

Publication number Publication date
CN111141208A (en) 2020-05-12

Similar Documents

Publication Publication Date Title
CN106920245B (en) Boundary detection method and device
CN111141208B (en) Parallel line detection method and device
US20150093028A1 (en) Performing a histogram using an array of addressable registers
CN112634343A (en) Training method of image depth estimation model and processing method of image depth information
US20210004940A1 (en) Method and device for inpainting image
JP6937782B2 (en) Image processing method and device
CN111524112A (en) Steel chasing identification method, system, equipment and medium
CN112991374B (en) Canny algorithm-based edge enhancement method, canny algorithm-based edge enhancement device, canny algorithm-based edge enhancement equipment and storage medium
CN112534469A (en) Image detection method, image detection device, image detection apparatus, and medium
CN108960012B (en) Feature point detection method and device and electronic equipment
CN110084155A (en) A kind of method, apparatus, equipment and storage medium that intensive number counts
CN111611925A (en) Building detection and identification method and device
CN111986299A (en) Point cloud data processing method, device, equipment and storage medium
CN112053427A (en) Point cloud feature extraction method, device, equipment and readable storage medium
CN111242017A (en) Multi-marking-line pavement crack identification method, device, equipment and storage medium
CN114638891A (en) Target detection positioning method and system based on image and point cloud fusion
CN114647816B (en) Lane determination method, device, equipment and storage medium
CN111429399B (en) Linear detection method and device
CN115147442B (en) Vectorization method of grid pattern, mobile terminal, electronic device and medium
CN111275693A (en) Counting method and counting device for objects in image and readable storage medium
CN109416748B (en) SVM-based sample data updating method, classification system and storage device
US10248876B2 (en) Method and apparatus for avoiding non-aligned loads using multiple copies of input data
CN112308836B (en) Corner detection method and device, electronic equipment and readable storage medium
CN115760996A (en) Corner screening method and device, computer equipment and computer-readable storage medium
EP3929870A1 (en) Method for subpixel disparity calculation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: Room 18F-1802 (01), Building 11, the Taihu Lake Photon Science Park, No. 198, Jialingjiang Road, High tech Zone, Suzhou City, Jiangsu Province, 215163

Patentee after: Galaxy Water Drop Technology (Jiangsu) Co.,Ltd.

Country or region after: China

Patentee after: ZHONGKE SHUIDI TECHNOLOGY (SHENZHEN) Co.,Ltd.

Address before: 0711, 7th Floor, No. 51 Xueyuan Road, Haidian District, Beijing

Patentee before: Watrix Technology (Beijing) Co.,Ltd.

Country or region before: China

Patentee before: ZHONGKE SHUIDI TECHNOLOGY (SHENZHEN) Co.,Ltd.