Real-time synchronous detection method for transverse displacement and included angle of through passage of railway vehicle
Technical Field
The invention belongs to the field of through passages of railway vehicles, and particularly relates to a method for measuring transverse displacement and included angle of through passages.
Background
The measurement of the transverse displacement and the included angle of the through passage of the railway vehicle is currently simulated and measured through a test bed, and the test bed cannot truly reflect the motion state of the vehicle in real time, so that the influence of shaking and nodding on the transverse displacement and the included angle of the through passage in the motion process of the vehicle is hardly reflected.
Disclosure of Invention
The purpose of the invention is as follows: in view of the existing problems and disadvantages, the present invention provides a real-time synchronous detection method for lateral displacement and included angle of a through passage of a rail vehicle, which can calculate and obtain vehicle state information such as lateral displacement and deflection included angle of a vehicle in real time, and provide guarantee for safe driving of the vehicle.
The technical scheme is as follows: in order to achieve the purpose, the invention adopts the technical scheme that: a real-time synchronous detection method for transverse displacement and included angle of a through passage of a railway vehicle comprises the following steps:
firstly, four displacement sensors, namely a first displacement sensor LVDT1, a second displacement sensor LVDT2, a third displacement sensor LVDT3 and a fourth displacement sensor LVDT4 are sequentially and respectively arranged at four corners of an ith through passage of the railway vehicle in a clockwise direction, and the distance between the connecting line of the first displacement sensor LVDT1 and the connecting line of the second displacement sensor LVDT2 is the transverse distance L of the through passage of the vehicle5,
Then, obtaining a real-time through passage included angle YAW of the through passage of the railway vehicle through the formula (1)i,
In the formula,L1Is the diagonal distance, L, of the first displacement transducer LVDT1 and the third displacement transducer LVDT32Is the diagonal distance, L, of the second displacement sensor LVDT2 and the fourth displacement sensor LVDT43Distance, L, between the second displacement sensor LVDT2 and the third displacement sensor LVDT34Distance of the first displacement sensor LVDT1 and the fourth displacement sensor LVDT 4;
real-time transverse displacement LD of a through passage of the railway vehicle is obtained through the formula (2),
furthermore, the displacement sensor is respectively arranged on each through passage of the rail vehicle, the deflection angle YAW of the whole rail vehicle is obtained through the following formula (3),
in the formula, N is the number of through passages of the railway vehicle.
Has the advantages that: compared with the prior art, the invention measures the relative position change of four corners of the through passage by using the displacement sensors, acquires the numerical value of each displacement sensor by using the data acquisition instrument, further calculates the transverse displacement and the included angle of the through passage, calculates and obtains the vehicle state information in real time, and provides guarantee for the safe driving of the vehicle.
Drawings
Fig. 1 is a schematic diagram of a method for real-time synchronous detection of lateral displacement and included angle of a through passage of a railway vehicle according to the present invention.
Detailed Description
The present invention is further illustrated by the following figures and specific examples, which are to be understood as illustrative only and not as limiting the scope of the invention, which is to be given the full breadth of the appended claims and any and all equivalent modifications thereof which may occur to those skilled in the art upon reading the present specification.
As shown in FIG. 1, the invention discloses a real-time synchronous detection method for transverse displacement and included angle of a through passage of a railway vehicle, which comprises the following steps: firstly, four displacement sensors, namely a first displacement sensor LVDT1, a second displacement sensor LVDT2, a third displacement sensor LVDT3 and a fourth displacement sensor LVDT4 are sequentially and respectively arranged at four corners of an ith through passage of the railway vehicle in a clockwise direction, and the distance between the connecting line of the first displacement sensor LVDT1 and the connecting line of the second displacement sensor LVDT2 is the transverse distance L of the through passage of the vehicle5,
Then, the included angle alpha of the first displacement sensor LVDT1 and the fourth displacement sensor LVDT4 relative to the second displacement sensor LVDT2 and the included angle beta of the second displacement sensor LVDT2 and the third displacement sensor LVDT3 relative to the fourth displacement sensor LVDT4 are respectively calculated,
and finally, calculating to obtain a real-time through passage included angle YAW of the through passage of the railway vehiclei,
YAWi=α-β (1)
In the formula, L1Is the diagonal distance, L, of the first displacement transducer LVDT1 and the third displacement transducer LVDT32Is the diagonal distance, L, of the second displacement sensor LVDT2 and the fourth displacement sensor LVDT43Distance, L, between the second displacement sensor LVDT2 and the third displacement sensor LVDT34Distance of the first displacement sensor LVDT1 and the fourth displacement sensor LVDT 4;
then, the included angle gamma between the second displacement sensor LVDT2 and the fourth displacement sensor LVDT4 and the first displacement sensor LVDT1 is calculated, then the real-time transverse displacement LD of the railway vehicle through passage is obtained through the formula (2),
LD=L4×cosγ (2)。
furthermore, the displacement sensor is respectively arranged on each through passage of the rail vehicle, the deflection angle YAW of the whole rail vehicle is obtained through the following formula (3),