CN111141055A - Dual-temperature-zone multistage super-cooling CO2Refrigeration system - Google Patents

Dual-temperature-zone multistage super-cooling CO2Refrigeration system Download PDF

Info

Publication number
CN111141055A
CN111141055A CN202010071124.4A CN202010071124A CN111141055A CN 111141055 A CN111141055 A CN 111141055A CN 202010071124 A CN202010071124 A CN 202010071124A CN 111141055 A CN111141055 A CN 111141055A
Authority
CN
China
Prior art keywords
stage
pressure
evaporator
temperature
cooling evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010071124.4A
Other languages
Chinese (zh)
Other versions
CN111141055B (en
Inventor
代宝民
郝云樱
杨海宁
钱家宝
冯一宁
曹钰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Commerce
Original Assignee
Tianjin University of Commerce
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Commerce filed Critical Tianjin University of Commerce
Priority to CN202010071124.4A priority Critical patent/CN111141055B/en
Publication of CN111141055A publication Critical patent/CN111141055A/en
Application granted granted Critical
Publication of CN111141055B publication Critical patent/CN111141055B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/08Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using ejectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

The invention discloses a double-temperature-zone multistage super-cooling CO2A refrigeration system. Dual-temperature-zone multistage super-cooling CO2The intermediate temperature stage evaporators (i.e. the refrigerating chambers) of the refrigerating system are sequentially communicated with CO2The high-pressure compressor, the high-pressure ejector, the gas cooler, the throttle valve, the primary cooling evaporator and the secondary cooling evaporator are used for completing circulation through the medium-pressure ejector; the low-temperature evaporator (i.e. the freezing chamber) is sequentially connected with the low-pressure ejector, the four-stage cooling evaporator, the medium-low pressure ejector, the three-stage cooling evaporator and the final CO2Is sucked by the low-pressure stage compressor. The invention creates the double-temperature-zone multi-stage super-cooling CO2Refrigerating system for CO2Carry out multistage cascade filtrationAnd the irreversible loss in the refrigeration process is obviously reduced, the suction pressure of the compressor is improved, the energy efficiency of the system is obviously improved, and the economic benefit is improved.

Description

Dual-temperature-zone multistage super-cooling CO2Refrigeration system
Technical Field
The invention belongs to the technical field of refrigeration, and particularly relates to a dual-temperature-zone multistage super-cooling CO2A refrigeration system and applications.
Background
Nowadays, energy and environmental problems are increasingly highlighted. For the refrigeration field, the conventional refrigerant will be gradually reduced due to its higher GWP, which causes the greenhouse effect, and therefore, there is a need to find an alternative refrigerant having excellent performance. Natural working medium CO2Has received widespread attention due to its non-toxic, non-flammable nature.
The refrigerating and freezing requirements in the field of commercial refrigeration and super refrigeration are great, the refrigerating and freezing requirements can be met through a refrigerating device with two temperature zones, however, the conventional CO is2When the double-temperature-zone refrigerating system is used in hot and warm climates, CO is not used before throttling2The fluid temperature is too high, which causes large throttling loss and low efficiency, and limits the popularization and application of the fluid in hot and warm climates.
Disclosure of Invention
The invention aims to provide a double-temperature-zone multistage super-cooling CO2The refrigerating system utilizes the components such as an ejector, a subcooler and the like to reduce CO before throttling in a stepped manner2The fluid temperature improves the system efficiency and meets the requirements of simultaneous freezing and refrigeration of the super refrigeration system.
In order to achieve the purpose, the technical scheme of the invention is realized as follows:
dual temperature zone multistage super-cooling CO2The refrigeration system mainly comprises a high-pressure-stage compressor, a low-pressure-stage compressor, a high-pressure-stage ejector, a medium-low-pressure-stage ejector, a first-stage cooling evaporator, a second-stage cooling evaporator, a third-stage cooling evaporator, a fourth-stage cooling evaporator, a medium-temperature-stage evaporator, a low-temperature-stage evaporator and a gas cooler.
The outlet of the low-pressure stage compressor is connected with the main flow inlet of the high-pressure stage ejector; the secondary inflow port of the high-pressure ejector is connected with the refrigerant side outlet of the primary cooling evaporator; the outlet of the high-pressure ejector is connected with the inlet of the gas cooler; the outlet of the gas cooler is respectively connected with the inlet of the first throttling valve, the heat medium side inlet of the first-stage cooling evaporator and the main flow inlet of the middle-low pressure stage ejector; the first-stage cooling evaporator heat medium side outlet is respectively connected with the second-stage cooling evaporator heat medium side inlet and the second throttle valve; the second throttle valve is connected with a refrigerant side inlet of the secondary cooling evaporator; the refrigerant side outlet of the secondary cooling evaporator is connected with the main flow inlet of the medium-pressure ejector; the outlet at the heat medium side of the secondary cooling evaporator is respectively connected with the tertiary cooling evaporator and the inlet of the third throttle valve; the outlet of the third throttle valve is connected with the inlet of the intermediate-temperature-stage evaporator; the outlet of the medium-temperature-stage evaporator is connected with the secondary inflow port of the medium-temperature-stage ejector; the outlet of the medium-temperature-stage ejector is connected with the high-pressure-stage compressor;
the heat medium side outlet of the third-stage cooling evaporator is respectively connected with the main flow inlet of the low-pressure ejector and the heat medium side inlet of the fourth-stage cooling evaporator; a heat medium side outlet of the four-stage cooling evaporator is connected with a fourth throttling valve inlet; the outlet of the fourth throttling valve is connected with the inlet of the low-temperature-stage evaporator; the outlet of the low-temperature evaporator is connected with the secondary inflow port of the low-pressure ejector; the outlet of the low-pressure ejector is connected with the refrigerant side inlet of the four-stage cooling evaporator; the refrigerant side outlet of the cooling evaporator is connected with the secondary inflow port of the medium-low pressure ejector; the outlet of the medium-low pressure level ejector is connected with the refrigerant side inlet of the three-level cooling evaporator; the refrigerant side outlet of the three-stage cooling evaporator is connected with the low-pressure stage compressor; the low-pressure stage compressor is connected with the high-pressure stage compressor.
Further, the CO is2Low temperature stage evaporator, CO2The intermediate temperature grade evaporator and each grade of cooling evaporator respectively adopt a finned tube heat exchanger, a sleeve type heat exchanger or a plate type heat exchanger; the CO is2The gas cooler is a finned tube heat exchanger.
Further, the gas cooler, CO2Intermediate temperature stage evaporator, CO2Low temperature stage evaporator, first stage cooling evaporator heat medium side, second stage cooling evaporator heat medium side, third stageThe working temperature ranges of a heat medium side of a cooling evaporator, a heat medium side of a four-stage cooling evaporator, a refrigerant side of a first-stage cooling evaporator, a refrigerant side of a second-stage cooling evaporator, a refrigerant side of a third-stage cooling evaporator and a refrigerant side of a four-stage cooling evaporator are respectively 15-140 ℃, 15-10 ℃, 50-20 ℃, 10-30 ℃, 5-20 ℃, 15-10 ℃, 30-0 ℃, 5-25 ℃, 10-15 ℃, 20-15 ℃ and 35-5 ℃. CO 22The exhaust pressure range of the high-pressure stage compressor is 7.5-14 MPa; CO 22The exhaust pressure range of the low-pressure stage compressor is 1.97-3.97 MPa.
Further, the medium-temperature-stage evaporator is placed in a refrigerating chamber; the low-temperature evaporator is placed in the freezing chamber so as to meet the requirements of different temperature zones. The refrigeration temperature is slightly higher, and dairy products, vegetables, fruits, eggs and the like can be stored; the frozen food can be used for storing meat, fish, etc.
Compared with the prior art, the invention has the advantages and positive effects that:
(1) two temperature zones CO2The refrigerant of the refrigerating system is only natural working medium CO2. ODP is 0, GWP is 1, the catalyst can not be decomposed at high temperature, and the catalyst is safe, non-toxic, environment-friendly, capable of greatly relieving greenhouse effect and obvious in environmental protection advantage.
(2)CO2The fluid is subjected to continuous two-time cascade supercooling before throttling and entering the medium-temperature evaporator and the low-temperature evaporator, so that the irreversible heat exchange loss in the freezing and refrigerating throttling process can be greatly reduced, and the refrigerating capacity of freezing and refrigerating application is increased.
(3) The high-pressure ejector is arranged to reduce CO entering the gas cooler2The pressure of the fluid is higher, the system operation is safer, the design pressure of the gas cooler is greatly reduced, the manufacturing cost of the gas cooler is reduced, and the weight of the equipment is reduced.
(4) The middle-pressure level ejector is arranged, saturated steam at the outlet of the middle-temperature level evaporator is ejected by high-pressure fluid to form middle pressure slightly higher than the pressure of the middle-temperature level evaporator, the gas-liquid two-phase fluid under the pressure is throttled and reduced in pressure without using a throttle valve, the ejector is used for obtaining the middle pressure, and throttling loss is reduced.
(5) The middle-low pressure level ejector is arranged, high-pressure fluid from the gas cooler is used for ejecting super-cooled steam at the refrigerant side outlet of the four-level cooling evaporator to form intermediate pressure slightly higher than the pressure of the four-level cooling evaporator, throttling and pressure reduction are not carried out on the pressure through a throttling valve in a traditional mode, the ejector is used for obtaining the intermediate pressure, expansion work is recovered, throttling loss is reduced, the suction pressure of a low-pressure level compressor is improved, the compression ratio is reduced, and the system efficiency is improved.
(6) The low-pressure ejector is arranged, saturated steam at the outlet of the low-temperature evaporator is ejected by high-pressure fluid to form intermediate pressure slightly higher than the pressure of the low-temperature evaporator, the gas-liquid two-phase fluid under the pressure is not throttled and depressurized by the throttle valve, the ejector is used for obtaining the intermediate pressure, expansion work is recovered, and throttling loss is reduced.
(7) The system is provided with CO2The high-pressure compressor and the low-pressure compressor have small pressure ratio, are suitable for freezing and refrigerating at lower temperature, can be applied to superstores, cold storages and supermarkets with lower requirements on freezing and refrigerating temperature, and can also be applied to the application fields of slaughterhouses, food processing plants and the like which need freezing and refrigerating at the same time.
Drawings
FIG. 1 shows the present invention of two-temperature zone multi-stage super-cooling CO2A simple schematic of a refrigeration system;
FIG. 2 shows two-temperature zone multi-stage super-cooling CO2And the temperature entropy T-s diagram of the refrigerating system.
Detailed Description
For further understanding of the contents, features and effects of the present invention, the following embodiments are specifically mentioned and will be described in detail with reference to the accompanying drawings:
as shown in FIG. 1, a two-temperature zone multi-stage super-cooling CO2Refrigeration system comprising CO2A medium-temperature stage evaporator and a low-temperature stage evaporator; the intermediate temperature stage evaporator (i.e. the refrigerating chamber) is communicated with CO in sequence2The high-pressure compressor, the high-pressure ejector, the gas cooler, the throttle valve, the primary cooling evaporator and the secondary cooling evaporator are used for completing circulation through the medium-pressure ejector; low temperatureThe stage evaporator (i.e. freezing chamber) is sequentially connected with a low-pressure stage ejector, a four-stage cooling evaporator, a medium-low pressure stage ejector, a three-stage cooling evaporator and final CO2Is sucked by the low-pressure stage compressor.
Specifically, the working process is as follows:
the first step is as follows: the high-pressure stage compressor 1 compresses CO which is injected by the medium-pressure stage ejector 10 and compressed and mixed with the low-pressure stage compressor 172After passing through a section of pipeline (state a2 in fig. 2), the gas enters the high-pressure ejector 2 (state A3 in fig. 2), and the ejected gas then enters the gas cooler 3 (state a4 in fig. 2).
The second step is that: cooled CO2Dividing into three paths: one path is depressurized through the first throttle valve 4 (as shown in state A20 of FIG. 2), then undergoes evaporative heat absorption in the primary cooler 5 to become a saturated gas state (as shown in state A21 of FIG. 2), and then enters the high-pressure stage ejector 2; the other path of the gas enters the medium-low pressure level ejector 11 as a primary flow, as shown in a state A16 in FIG. 2; the third path is respectively connected with a second throttle valve 6 and a secondary cooling evaporator through a primary cooling evaporator 5 (as shown in a state A5 in figure 2).
The third step: CO throttled by the second throttle 62(state a22 in fig. 2) enters the secondary cooling evaporator 7 to be evaporated and absorbed to become saturated gas (state a13 in fig. 2), and enters the intermediate-pressure ejector 10 as a primary flow; and CO flowing out of the heat medium side of the secondary cooling evaporator 72(as shown in a state A6 of FIG. 2) is divided into two parts, one part enters the third throttle valve 8 for throttling, then is evaporated and absorbed heat in the intermediate-temperature-stage evaporator 9 (as shown in a state A11 of FIG. 2) to become saturated gas (as shown in a state A12 of FIG. 2), the saturated gas A12 is injected by the primary flow A13 in the intermediate-pressure-stage injector 10 as a secondary flow, and the saturated gas A13 and the secondary flow are mixed to a state A14 of FIG. 2 and are finally sucked by the high-pressure-stage compressor 1 to complete the circulation of the refrigerating chamber.
The fourth step: another part of CO flowing out from the heat medium side of the secondary cooling evaporator 72Cooling the heat medium side of the three-stage cooling evaporator 12 (as shown in state a7 in fig. 2), and then dividing the heat medium side into two paths, wherein one path enters the main flow inlet of the low-pressure stage ejector 13 as a primary flow; one path enters the four-stage condenser evaporator 14 for heat medium side evaporative cooling (as shown in state A8 in FIG. 2), and then enters the fourth stageThe throttle valve 15 is throttled to reduce the pressure (state a9 in fig. 2), and then enters the low-temperature stage evaporator 16 to evaporate and absorb heat into a saturated gas state to state a10 in fig. 2.
The fifth step: CO from the three stage cooled evaporator 12 and the low temperature stage evaporator 162The gas is stored in the low-pressure ejector 13, the secondary flow A10 is ejected by the primary flow A7, the two flows are mixed to the state A15 in the figure 2, and lower-pressure CO is formed2. The outlet of the low-pressure ejector 13 is connected with the refrigerant side of a four-stage cooling evaporator 14, and CO is2The evaporation endotherm becomes a saturated gas (state a16 in fig. 2).
And a sixth step: low temperature low pressure CO2Saturated gas A16 enters the ejector 11 as secondary flow and enters the ejector with medium-low pressure level and is simultaneously mixed with one path of CO from the gas cooler 32Merging, injecting the secondary flow A16 by the primary flow A4, and spraying the medium-low pressure medium-low temperature gas-liquid two-phase CO2(as in state a17 of fig. 2).
The seventh step: medium and low pressure and temperature CO2The refrigerant side of the three-stage cooling evaporator 12 evaporates and absorbs heat to become a saturated gas (see state a1 in fig. 2). CO at this time2Is sucked by the low-pressure stage compressor 17 (as in state a18 of fig. 2), and is finally sucked by the high-pressure stage compressor 1 (as in state a19 of fig. 2), completing the refrigeration cycle.
The invention creates the double-temperature-zone multi-stage super-cooling CO2In the refrigeration system, when in use, one preferable process condition is as follows: CO 22The evaporation temperature of the low-temperature stage evaporator 16 is-35 ℃, the temperature of the medium-temperature stage evaporator 9 is-5 ℃, the temperature of the first-stage cooling evaporator 5 is 25 ℃, and the temperature of the second-stage cooling evaporator 7 is 15 ℃; the temperature of the tertiary cooling evaporator 12 is 5 ℃; the temperature of the four-stage cooling evaporator 14 is-5 ℃; CO 22The suction pressure of the high-pressure stage compressor 1 is 3.5MPa, and the exhaust pressure is 10 MPa; CO 22The suction pressure of the low-pressure stage compressor 17 is 2.5 MPa; CO 22The secondary flow of the high-pressure ejector 2 has the air suction temperature of 14.2 ℃, the pressure of 5MPa, the main flow temperature of 110 ℃, the pressure of 10MPa and the ejector outlet pressure of 8 MPa. CO 22The secondary flow of the medium-pressure ejector 10 has the air suction temperature of-5 ℃, the pressure of 3.05MPa, the main flow temperature of 5.3 ℃, the pressure of 4MPa and the ejector outlet pressure of 3.5 MPa. CO 22The secondary flow of the medium-low pressure level ejector 13 has the air suction temperature of minus 19 ℃, the pressure of 2MPa, the main flow temperature of 35 ℃, the pressure of 8MPa and the ejector outlet pressure of 2.5 MPa. CO 22The secondary flow of the low-pressure ejector 16 has the air suction temperature of-35 ℃, the pressure of 1.2MPa, the main flow temperature of 5 ℃, the pressure of 3.05MPa and the ejector outlet pressure of 1.2 MPa.
The specific working process is as follows: compressed natural high-temperature high-pressure working medium CO2(10MPa, 110 ℃) enters an ejector device and then CO is ejected out2(8MPa, 35 ℃) and is cooled to 25 ℃ by a gas cooler 3; compressed CO2(8MPa,25 ℃) is divided into three paths: one path is throttled and reduced to 5MPa by a first throttle valve 4, and then is evaporated and absorbed heat to 14.2 ℃ in a refrigerant side of a primary cooler 5, wherein CO is generated at the moment2(5MPa, 14.2 ℃) as secondary flow to enter the high-pressure ejector 2 to complete circulation; another path is to CO2(8MPa,25 ℃) as a primary flow to a medium-low pressure ejector 11; the third path is respectively connected with a second throttling valve 6 and a second cooling evaporator 7 through a first-stage cooling evaporator 5. CO after 6 throttling2(4MPa,25 ℃) enters a refrigerant side 7 of a secondary cooling evaporator to carry out secondary evaporation and heat absorption, and the temperature is reduced to 5.3 ℃ to be used as CO at medium pressure and medium temperature2(4MPa, 5.3 ℃) enters a medium-pressure level ejector 10; and CO flowing out of the heat medium side of the secondary cooling evaporator 72A part of (8MPa,15 ℃) enters a third throttle valve 8 to throttle and reduce the pressure of CO to 3.05MPa2Enters a medium temperature grade evaporator 9 to evaporate and absorb heat to-5 ℃, and CO is absorbed at the moment2Injecting the secondary fluid (3.05MPa and-5 ℃) in the medium-temperature ejector 10; CO of which the pressure is 3.5MPa after injection2Fluid is drawn into the high pressure stage compressor 1, completing the cycle.
Another part of CO flowing out from the heat medium side of the secondary cooling evaporator 72(3.05MPa,15 ℃) enters a heat medium side of a three-stage cooling evaporator 12, is cooled to 5 ℃, and then is divided into two paths, wherein one path enters a low-pressure stage ejector 13 as a primary flow; one path of the CO enters a14 heat medium side of a four-stage condensation evaporator to be cooled to minus 5 ℃, then enters a fourth throttle valve 15 to be throttled and decompressed to 1.2MPa, enters a low-temperature stage evaporator 16 to be cooled to minus 35 ℃, and at the moment, the CO is cooled2(1.2MPa, -35 ℃) as a secondThe flow enters a low pressure stage ejector 13 to produce 2MPa of low pressure CO2A gas. The low-pressure ejector 13 is connected with the refrigerant side of the four-stage cooling evaporator 14 for cooling CO2To-19 ℃. CO 22(2MPa and 19 ℃) as secondary flow low-pressure gas enters the ejector 11 with medium and low pressure level to generate CO22.5 MPa; then evaporating and absorbing heat to-12 ℃ CO at the refrigerant side of the three-stage cooling evaporator 122A gas. CO 22(2.5 MPa-12 ℃) enters a low-pressure stage compressor 17, and is finally sucked into a high-pressure stage compressor 1 to complete the circulation.
As an alternative embodiment of the invention, a particularly preferred embodiment is that the CO is introduced into the reactor2Low temperature stage evaporator, CO2The intermediate temperature grade evaporator and each grade of cooling evaporator respectively adopt a finned tube heat exchanger, a sleeve type heat exchanger or a plate type heat exchanger; the CO is2The gas cooler is a finned tube heat exchanger.
As an alternative embodiment of the invention, a two-temperature zone CO is created2The circulating heat exchange fluid being CO2
The above description is only for the purpose of illustrating the preferred embodiments of the present invention and should not be taken as limiting the invention, so that any modifications, equivalents, improvements and the like, which are within the spirit and principle of the present invention, should be included in the scope of the present invention.

Claims (4)

1. Dual-temperature-zone multistage super-cooling CO2The refrigeration system is characterized by comprising a high-pressure-stage compressor, a low-pressure-stage compressor, a high-pressure-stage ejector, a medium-low-pressure-stage ejector, a first-stage cooling evaporator, a second-stage cooling evaporator, a third-stage cooling evaporator, a fourth-stage cooling evaporator, a medium-temperature-stage evaporator, a low-temperature-stage evaporator and a gas cooler;
the outlet of the low-pressure stage compressor (1) is connected with the main flow inlet of the high-pressure stage ejector (2); the secondary inflow port of the high-pressure ejector (2) is connected with the refrigerant side outlet of the primary cooling evaporator (5); the outlet of the high-pressure ejector (2) is connected with the inlet of the gas cooler (3); the outlet of the gas cooler (3) is respectively connected with the inlet of the first throttle valve (4), the heat medium side inlet of the first-stage cooling evaporator (5) and the main flow inlet of the medium-low pressure stage ejector (11); the outlet of the heat medium side of the primary cooling evaporator (5) is respectively connected with the inlet of the heat medium side of the secondary cooling evaporator (7) and the second throttle valve (6); the second throttle valve (6) is connected with a refrigerant side inlet of the secondary cooling evaporator (7); a refrigerant side outlet of the secondary cooling evaporator (7) is connected with a main flow inlet of the medium-pressure ejector (10); a heat medium side outlet of the secondary cooling evaporator is respectively connected with a heat medium side inlet of the tertiary cooling evaporator (12) and an inlet of the third throttle valve (8); the outlet of the third throttle valve (8) is connected with the inlet of the medium-temperature-stage evaporator (9); the outlet of the medium-temperature-stage evaporator (9) is connected with a secondary inflow port of the medium-temperature-stage ejector (10); the outlet of the medium-temperature-stage ejector (10) is connected with the high-pressure-stage compressor (1);
the outlet of the heat medium side of the three-stage cooling evaporator (12) is respectively connected with the main flow inlet of the low-pressure ejector (13) and the heat medium side inlet of the four-stage cooling evaporator (14); the outlet of the heat medium side of the four-stage cooling evaporator (13) is connected with the inlet of a fourth throttling valve (15); the outlet of the fourth throttling valve (15) is connected with the inlet of the low-temperature-stage evaporator (16); the outlet of the low-temperature evaporator (16) is connected with the secondary inflow port of the low-pressure ejector (13); the outlet of the low-pressure ejector (13) is connected with the refrigerant side inlet of the four-stage cooling evaporator (14); the refrigerant side outlet of the cooling evaporator (14) is connected with the secondary inflow port of the medium-low pressure ejector (11); the outlet of the medium-low pressure level ejector (11) is connected with the refrigerant side inlet of the three-level cooling evaporator (12); the refrigerant side outlet of the three-stage cooling evaporator (12) is connected with a low-pressure stage compressor (17); the low-pressure stage compressor (17) is connected with the high-pressure stage compressor (1).
2. The dual temperature zone multi-stage subcooling CO according to claim 12A refrigeration system, characterized by: the gas cooler (3), CO2Intermediate temperature stage evaporator (9), CO2The low-temperature grade evaporators (16) all adopt finned tube heat exchangers.
3. The dual temperature zone multi-stage subcooling CO according to claim 12Refrigeration systemThe system is characterized in that: the CO is2The primary cooling evaporator (5), the secondary cooling evaporator (7), the tertiary cooling evaporator (12) and the quaternary cooling evaporator (14) all adopt a double-pipe heat exchanger or a plate heat exchanger.
4. The dual temperature zone multi-stage subcooling CO according to claim 12A refrigeration system, characterized by: transcritical CO2The heat exchange fluid circulated in the two temperature zones is CO2(ii) a CO discharged from high pressure compressor2The pressure range is 7.5MPa to 14 MPa; CO discharge from low pressure stage compressor2The pressure range is 1.97MPa to 3.97 MPa; the CO is2Gas cooler (3), CO2The working temperature ranges of the medium-temperature evaporator (9) and the low-temperature evaporator (16) are respectively 15-140 ℃, 15-10 ℃ and 50-20 ℃; the working temperature ranges of the heat medium side of the first-stage cooling evaporator (5), the second-stage cooling evaporator (7), the third-stage cooling evaporator (12) and the fourth-stage cooling evaporator (14) are respectively 10-30 ℃, -5-20 ℃, -15-10 ℃, -30-0 ℃; the working temperature ranges of the refrigerant side of the first-stage cooling evaporator (5), the second-stage cooling evaporator (7), the third-stage cooling evaporator (12) and the fourth-stage cooling evaporator (14) are respectively 5-25 ℃, 10-15 ℃, 20-15 ℃ and 35-5 ℃.
CN202010071124.4A 2020-01-21 2020-01-21 Double-temperature-zone multistage supercooling CO 2 Refrigerating system Active CN111141055B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010071124.4A CN111141055B (en) 2020-01-21 2020-01-21 Double-temperature-zone multistage supercooling CO 2 Refrigerating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010071124.4A CN111141055B (en) 2020-01-21 2020-01-21 Double-temperature-zone multistage supercooling CO 2 Refrigerating system

Publications (2)

Publication Number Publication Date
CN111141055A true CN111141055A (en) 2020-05-12
CN111141055B CN111141055B (en) 2023-11-28

Family

ID=70526861

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010071124.4A Active CN111141055B (en) 2020-01-21 2020-01-21 Double-temperature-zone multistage supercooling CO 2 Refrigerating system

Country Status (1)

Country Link
CN (1) CN111141055B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114459179A (en) * 2021-12-27 2022-05-10 华北理工大学 Carbon dioxide direct evaporation type ice making system for artificial ice rink and using method thereof
CN115264977A (en) * 2022-07-29 2022-11-01 哈尔滨工业大学 High-temperature water working medium heat pump circulating system with intermediate multi-stage cooling in compression process

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020037606A (en) * 2000-11-15 2002-05-22 선우중호 Cooling method of double evaporation type airconditioner using vapor ejector and it sapparatus
WO2009048463A1 (en) * 2007-10-10 2009-04-16 Carrier Corporation Multi-stage refrigerant system with different compressor types
US20100223939A1 (en) * 2006-03-27 2010-09-09 Biswajit Mitra Refrigerating system with parallel staged economizer circuits discharging to interstage pressures of a main compressor
CN103759449A (en) * 2014-01-09 2014-04-30 西安交通大学 Two-stage steam compression circulating system with two ejectors for efficiency enhancement
KR20150093949A (en) * 2014-02-10 2015-08-19 국립대학법인 울산과학기술대학교 산학협력단 Ejector type Refrigeration cycle
CN109855323A (en) * 2019-03-26 2019-06-07 天津商业大学 Refrigeration system is subcooled in injecting type
CN212029921U (en) * 2020-01-21 2020-11-27 天津商业大学 Double-temperature-zone multistage supercooling CO2 refrigeration system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020037606A (en) * 2000-11-15 2002-05-22 선우중호 Cooling method of double evaporation type airconditioner using vapor ejector and it sapparatus
US20100223939A1 (en) * 2006-03-27 2010-09-09 Biswajit Mitra Refrigerating system with parallel staged economizer circuits discharging to interstage pressures of a main compressor
WO2009048463A1 (en) * 2007-10-10 2009-04-16 Carrier Corporation Multi-stage refrigerant system with different compressor types
CN103759449A (en) * 2014-01-09 2014-04-30 西安交通大学 Two-stage steam compression circulating system with two ejectors for efficiency enhancement
KR20150093949A (en) * 2014-02-10 2015-08-19 국립대학법인 울산과학기술대학교 산학협력단 Ejector type Refrigeration cycle
CN109855323A (en) * 2019-03-26 2019-06-07 天津商业大学 Refrigeration system is subcooled in injecting type
CN212029921U (en) * 2020-01-21 2020-11-27 天津商业大学 Double-temperature-zone multistage supercooling CO2 refrigeration system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114459179A (en) * 2021-12-27 2022-05-10 华北理工大学 Carbon dioxide direct evaporation type ice making system for artificial ice rink and using method thereof
CN114459179B (en) * 2021-12-27 2023-05-12 华北理工大学 Artificial ice rink carbon dioxide direct evaporation type ice making system and application method thereof
CN115264977A (en) * 2022-07-29 2022-11-01 哈尔滨工业大学 High-temperature water working medium heat pump circulating system with intermediate multi-stage cooling in compression process
CN115264977B (en) * 2022-07-29 2024-03-29 哈尔滨工业大学 Intermediate multistage cooling high-temperature water working medium heat pump circulating system in compression process

Also Published As

Publication number Publication date
CN111141055B (en) 2023-11-28

Similar Documents

Publication Publication Date Title
CN212029921U (en) Double-temperature-zone multistage supercooling CO2 refrigeration system
CN110345690B (en) Double-ejector synergistic refrigeration cycle system for double-temperature refrigerator and working method
CN111141054B (en) Transcritical two-stage supercooling injection carbon dioxide system and application
CN111141055B (en) Double-temperature-zone multistage supercooling CO 2 Refrigerating system
Chi et al. Performance evaluation of NH3/CO2 cascade refrigeration system with ejector subcooling for low-temperature cycle
CN111141062B (en) Solar energy absorption injection composite transcritical CO 2 Refrigerating system
CN109737622B (en) Two-stage auto-cascade low-temperature refrigeration cycle system and circulation method for enhancing efficiency of two-stage ejector
CN110736262A (en) injection supercharging two-stage supercooling transcritical CO2Dual temperature system and application
CN110701810A (en) Injection supercharging two-stage series connection supercooling double-temperature-zone refrigerating system and application
Chen et al. Performance comparison of ultra-low temperature cascade refrigeration cycles using R717/R170, R717/R41 and R717/R1150 to replace R404A/R23
CN211316632U (en) Supercritical CO is striden in ejector pressure boost subcooling expander coupling2System for controlling a power supply
CN110500876B (en) Multistage compression multi-condenser intermediate complete cooling heat pump drying system
CN110701812A (en) Supercritical CO is striden in ejector pressure boost subcooling expander coupling2System and application
CN210861850U (en) Double-stage throttling non-azeotropic working medium mechanical supercooling CO2Transcritical refrigeration cycle system
CN211060434U (en) Injection supercharging two-stage supercooling transcritical CO2Dual temperature system
CN210861778U (en) Super-cooled CO of non-azeotropic working medium supercharging machinery2Transcritical circulation refrigerating system
CN211823247U (en) Injection throttling double-temperature-zone CO2 refrigeration system
CN211575597U (en) Solar energy absorbs and penetrates compound transcritical CO2 refrigerating system of penetrating
CN211120091U (en) Cascade refrigeration system with supercooling and injection depressurization
CN111141051B (en) Absorption compression injection composite cascade supercooling transcritical CO 2 Cold and hot combined supply system
CN212157715U (en) Injection supercharging step supercooling transcritical CO2System for controlling a power supply
CN210089172U (en) Partially-overlapped supercritical CO2 transcritical two-stage compression refrigeration system for commercial use and super use
CN211060436U (en) Injection supercharging two-stage series connection supercooling double-temperature-zone refrigerating system
CN111189248B (en) Injection throttling double-temperature-zone CO 2 Refrigerating system and application
Yu et al. Theoretical study on an innovative ejector enhanced Joule‐Thomson cycle

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant