CN111123214B - Polynomial rotation-polynomial Fourier transform high-speed high-maneuvering target detection method - Google Patents

Polynomial rotation-polynomial Fourier transform high-speed high-maneuvering target detection method Download PDF

Info

Publication number
CN111123214B
CN111123214B CN201911311705.4A CN201911311705A CN111123214B CN 111123214 B CN111123214 B CN 111123214B CN 201911311705 A CN201911311705 A CN 201911311705A CN 111123214 B CN111123214 B CN 111123214B
Authority
CN
China
Prior art keywords
polynomial
search
target
speed
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911311705.4A
Other languages
Chinese (zh)
Other versions
CN111123214A (en
Inventor
芮义斌
吕宁
谢仁宏
李鹏
郭山红
王丽妍
王欢
孙泽渝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201911311705.4A priority Critical patent/CN111123214B/en
Publication of CN111123214A publication Critical patent/CN111123214A/en
Application granted granted Critical
Publication of CN111123214B publication Critical patent/CN111123214B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/32Shaping echo pulse signals; Deriving non-pulse signals from echo pulse signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/04Systems determining presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/295Means for transforming co-ordinates or for evaluating data, e.g. using computers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/415Identification of targets based on measurements of movement associated with the target
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

The invention discloses a polynomial rotation-polynomial Fourier transformation high-speed high-mobility target detection method, which comprises the steps of respectively performing digital sampling and pulse compression processing on M radar pulse echoes in accumulation time to obtain a fast-slow two-dimensional radar echo data matrix; then determining the order and range of the search parameter set according to the motion characteristics of the target to be detected and initializing the search parameter set; performing coherent accumulation on the data matrix in the whole parameter search space by utilizing polynomial rotation-polynomial Fourier transformation to obtain a distance-Doppler distribution diagram; finally, whether the target exists or not is judged by utilizing the constant false alarm detection, and if the target exists, the distance and the motion state information of the target can be obtained. The polynomial rotation-polynomial Fourier transform can achieve the same theoretical optimal accumulation effect with the polynomial rotation-polynomial Fourier transform under the condition that the computational complexity is far less than Yu Anyi radon transform, and realize the coherent accumulation of high-speed and high-maneuvering targets in the near space under the environment of low signal-to-noise ratio.

Description

多项式旋转-多项式傅里叶变换的高速高机动目标检测方法High-speed and high-maneuvering target detection method based on polynomial rotation-polynomial Fourier transform

技术领域technical field

本发明属于雷达信号处理及检测技术领域,具体涉及一种多项式旋转-多项式傅里叶变换的高速高机动目标检测方法。The invention belongs to the technical field of radar signal processing and detection, and in particular relates to a polynomial rotation-polynomial Fourier transform high-speed and high-mobility target detection method.

背景技术Background technique

近些年来随着科学技术的发展,临近空间高速高机动目标的出现给雷达检测带来了严峻的挑战,例如在防空领域中超高音速高机动的战斗机和导弹,以及在太空中需要监视的轨道目标和空间碎片等。有些目标飞行速度可达25马赫,而且可以通过翻转、跳跃、大拐角等诸多不规则方式变更飞行轨迹,具有极强的机动性。此外,由于隐身技术的成熟和飞行器在大气层内高速运动产生的等离子体,目标回波信噪比较低,降低了雷达的检测性能。In recent years, with the development of science and technology, the emergence of high-speed and high-mobility targets near space has brought severe challenges to radar detection, such as super-sonic and high-mobility fighter jets and missiles in the air defense field, as well as orbits that need to be monitored in space Targets and space debris, etc. Some targets can fly at a speed of Mach 25, and can change their flight trajectory through many irregular ways such as flipping, jumping, and large corners, and have extremely strong maneuverability. In addition, due to the maturity of the stealth technology and the plasma generated by the high-speed movement of the aircraft in the atmosphere, the signal-to-noise ratio of the target echo is low, which reduces the detection performance of the radar.

脉冲相参积累是一种提高目标检测概率的有效方法,延长雷达凝视目标时间是提高低信噪比目标相参积累增益的有效手段。然而目标超高速和高机动性给积累时间带来了一定限制。一方面,目标的高速度导致目标在积累时间内的距离维中出现跨距门现象;另一方面,目标的高机动性导致目标的多普勒频率维中出现多普勒频率徙动现象。Pulse coherent accumulation is an effective method to increase the probability of target detection, and prolonging the radar staring time is an effective means to increase the gain of coherent accumulation for low signal-to-noise ratio targets. However, the target's ultra-high speed and high maneuverability have brought certain limitations to the accumulation time. On the one hand, the high speed of the target leads to the span gate phenomenon in the distance dimension of the target in the accumulation time; on the other hand, the high maneuverability of the target leads to the Doppler frequency migration phenomenon in the Doppler frequency dimension of the target.

目前相参积累主要围绕动目标检测(MTD)技术、Keystone变换和Radon傅里叶变换及其拓展展开。现有的方法大多在校正距离走动之后利用时频分析方法实现目标运动参数的估计。然而当目标的加速度等更高阶运动参数导致目标非线性的距离走动和多普勒徙动时,大多数现有方法难以同时实现距离走动校正和多普勒徙动补偿,因而不能达到理论的检测性能。At present, coherent accumulation mainly revolves around moving target detection (MTD) technology, Keystone transform and Radon Fourier transform and their extensions. Most of the existing methods use the time-frequency analysis method to estimate the target motion parameters after correcting the distance walking. However, when the target's acceleration and other higher-order motion parameters lead to the target's nonlinear range walking and Doppler migration, most existing methods are difficult to achieve range walking correction and Doppler migration compensation at the same time, so they cannot achieve the theoretical goal. Detection performance.

发明内容Contents of the invention

本发明的目的在于提供一种多项式旋转-多项式傅里叶变换的高速高机动目标检测方法,适用于临近空间高速高机动目标的检测。The object of the present invention is to provide a polynomial rotation-polynomial Fourier transform high-speed and high-maneuvering target detection method, which is suitable for the detection of high-speed and high-maneuvering targets in adjacent spaces.

实现本发明目的的技术解决方案为:一种多项式旋转-多项式傅里叶变换的高速高机动目标检测方法,包括:The technical solution that realizes the object of the present invention is: a kind of polynomial rotation-polynomial Fourier transform high-speed high-mobility target detection method, comprising:

步骤1,对积累时间内的雷达脉冲回波进行数字化采样以及脉冲压缩处理,得到二维回波数据矩阵;Step 1. Perform digital sampling and pulse compression processing on the radar pulse echo within the accumulation time to obtain a two-dimensional echo data matrix;

步骤2,确定待搜索参数数目及范围;Step 2, determine the number and range of parameters to be searched;

步骤3,从初始搜索参数组开始对二维回波数据矩阵进行多项式旋转变换,对变换后的回波数据矩阵进行非相参积累;若叠加后的一维数据最大值大于阈值,则对变换后的回波数据矩阵执行步骤4中多项式傅里叶变换;反之更改搜索参数组执行步骤3;Step 3: Carry out polynomial rotation transformation on the two-dimensional echo data matrix from the initial search parameter group, and perform non-coherent accumulation on the transformed echo data matrix; if the maximum value of the superimposed one-dimensional data is greater than the threshold value, then transform Execute the polynomial Fourier transform in step 4 for the final echo data matrix; otherwise change the search parameter group and execute step 3;

步骤4,对步骤3中满足条件的搜索参数组进行相位补偿然后进行积累,然后更改搜索参数组执行步骤3,直至遍历完全部搜索参数组;Step 4, perform phase compensation and then accumulate the search parameter groups that meet the conditions in step 3, and then change the search parameter group to perform step 3 until all search parameter groups are traversed;

步骤5,对得到的距离-多普勒分布图进行恒虚警检测,判断目标有无;Step 5, performing constant false alarm detection on the obtained range-Doppler distribution map, and judging whether there is a target;

步骤6,确定存在目标位置的坐标,确定目标运动参数。Step 6, determine the coordinates of the target position, and determine the target motion parameters.

对比现有技术相比,本发明的显著优点为:多项式旋转-多项式傅里叶变换可以在计算复杂度远小于广义拉东变换的条件下,与其达到同样的理论最佳积累效果,实现低信噪比环境下临近空间高速高机动目标相参积累。Compared with the prior art, the remarkable advantage of the present invention is: the polynomial rotation-polynomial Fourier transform can achieve the same theoretical best accumulation effect and realize low-signal Coherent accumulation of high-speed and high-maneuvering targets in near space under noise ratio environment.

附图说明Description of drawings

图1为本发明的多项式旋转-多项式傅里叶变换的高速高机动目标检测方法流程图。FIG. 1 is a flow chart of the polynomial rotation-polynomial Fourier transform high-speed and high-mobility target detection method of the present invention.

图2为MTD积累距离-多普勒分布图。Figure 2 is the MTD accumulation distance-Doppler distribution map.

图3为PRPFT积累距离-多普勒分布图。Figure 3 is the PRPFT cumulative range-Doppler distribution map.

图4为单次PRT非相参积累结果图。Figure 4 is a graph of the non-coherent accumulation results of a single PRT.

具体实施方式Detailed ways

如图1所示,本发明的多项式旋转-多项式傅里叶变换(PRPFT)的高速高机动目标检测方法,首先分别对积累时间内的M个雷达脉冲回波进行数字化采样以及脉冲压缩处理,得到快时间-慢时间二维雷达回波数据矩阵;然后根据待检测目标运动特性确定搜索参数组的阶数和范围并初始化搜索参数组;接着利用多项式旋转-多项式傅里叶变换在整个参数搜索空间内对数据矩阵进行相参积累,得到距离-多普勒分布图;最后利用恒虚警检测判断目标的有无,若有目标则可以得到目标的距离和运动状态信息。具体步骤如下:As shown in Figure 1, the high-speed and high-maneuvering target detection method of the polynomial rotation-polynomial Fourier transform (PRPFT) of the present invention first carries out digital sampling and pulse compression processing to the M radar pulse echoes in the accumulation time respectively, and obtains Fast time-slow time two-dimensional radar echo data matrix; then determine the order and range of the search parameter group and initialize the search parameter group according to the motion characteristics of the target to be detected; then use polynomial rotation-polynomial Fourier transform in the entire parameter search space The internal data matrix is coherently accumulated to obtain the range-Doppler distribution map; finally, the constant false alarm detection is used to judge the presence or absence of the target, and if there is a target, the distance and motion state information of the target can be obtained. Specific steps are as follows:

步骤1:回波信号采样和脉冲压缩Step 1: Echo signal sampling and pulse compression

对相参积累的M个周期的回波信号采样并进行脉冲压缩处理,得到二维回波数据矩阵s(n,m),其中n代表距离维采样点标号,n=1,2,...,N,N为单周期回波采样点总数,m代表回波信号个数标号,m=1,2,...,M,M为相参积累回波总数;Sampling the coherently accumulated echo signals of M cycles and performing pulse compression processing to obtain a two-dimensional echo data matrix s(n,m), where n represents the label of the sampling point in the distance dimension, n=1,2,.. ., N, N is the total number of single-cycle echo sampling points, m represents the number label of echo signals, m=1,2,...,M, M is the total number of coherent accumulated echoes;

步骤2:确定参数搜索范围Step 2: Determine the parameter search scope

根据雷达和待检测目标实际情况,确定待搜索参数数目及范围;According to the actual situation of the radar and the target to be detected, determine the number and range of parameters to be searched;

设定搜索速度范围为[vmin,vmax],其中是vmin是速度搜索范围的下界,vmax是速度搜索范围的上界;设置其速度搜索间隔为Δv,Δv=λ/2T,其中λ为载波波长,T为积累时间;有Nv个速度搜索点,Nv=round((vmax-vmin)/Δv),其中round(·)为取整函数;设定搜索加速度范围为[amin,amax],其中是amin是加速度搜索范围的下界,amax是加速度搜索范围的上界;设置其加速度搜索间隔为Δa,有Na个加速度搜索点,Na=round((amax-amin)/Δa);若存在更高阶运动参数,其参数搜索范围依次设置。确定搜索参数组(α12,...,αk),其中αi,i=1,2,...,k对应目标第i阶运动参数且αi包含Ni个搜索点数。Set the search speed range as [v min , v max ], where v min is the lower bound of the speed search range, and v max is the upper bound of the speed search range; set its speed search interval as Δv, Δv=λ/2T, where λ is the carrier wavelength, T is the accumulation time; there are N v speed search points, N v = round((v max -v min )/Δv), where round(·) is a rounding function; the search acceleration range is set as [a min , a max ], wherein a min is the lower bound of the acceleration search range, a max is the upper bound of the acceleration search range; the acceleration search interval is set to be Δa, there are N a acceleration search points, Na = round( (a max -a min )/Δa); if there are higher-order motion parameters, the parameter search range is set in turn. Determine the search parameter group (α 12 ,...,α k ), where α i ,i=1,2,...,k corresponds to the i-th order motion parameter of the target and α i contains N i search points .

步骤3:多项式旋转变换Step 3: Polynomial Rotation Transformation

从初始搜索参数组(α12,...,αk)开始对二维回波数据矩阵s(n,m)进行多项式旋转变换得到旋转后的数据矩阵s(n′,m′),变换关系如下:Starting from the initial search parameter set (α 12 ,...,α k ), perform polynomial rotation transformation on the two-dimensional echo data matrix s(n,m) to obtain the rotated data matrix s(n′,m′ ), the transformation relationship is as follows:

其中,B为线性调频信号带宽,Tr为脉冲重复间隔,c为光速。对变换后的回波数据矩阵进行非相参积累,即对M个回波信号包络进行叠加。若叠加后的一维数据最大值大于阈值Ath,则对s(n′,m′)执行步骤4中多项式傅里叶变换,阈值AthAmong them, B is the bandwidth of the chirp signal, T r is the pulse repetition interval, and c is the speed of light. Non-coherent accumulation is performed on the transformed echo data matrix, that is, M echo signal envelopes are superimposed. If the maximum value of the superimposed one-dimensional data is greater than the threshold A th , perform the polynomial Fourier transform in step 4 on s(n′,m′), and the threshold A th is

其中,abs(·)为取模函数,N为单周期回波采样点总数,M为相参积累回波总数;反之更改搜索参数组执行步骤3。Among them, abs(·) is the modulo function, N is the total number of single-period echo sampling points, and M is the total number of coherent accumulated echoes; otherwise, change the search parameter group and execute step 3.

步骤4:多项式傅里叶变换Step 4: Polynomial Fourier Transform

对步骤3中满足条件的搜索参数组进行相位补偿然后进行积累,方法如下Perform phase compensation on the search parameter groups that meet the conditions in step 3 and then accumulate, the method is as follows

其中,s(n′,m′)为旋转变换后的数据矩阵,(α12,...,αk)为搜索参数组,λ为载波波长,Tr为脉冲重复间隔。然后更改搜索参数组执行步骤3,直至遍历完全部搜索参数组。Among them, s(n′,m′) is the data matrix after rotation transformation, (α 12 ,...,α k ) is the search parameter group, λ is the carrier wavelength, and T r is the pulse repetition interval. Then change the search parameter group and perform step 3 until all search parameter groups are traversed.

步骤5:恒虚警检测Step 5: Constant False Alarm Detection

对得到的距离-多普勒分布图进行恒虚警检测,判断目标有无。Constant false alarm detection is performed on the obtained range-Doppler distribution map to judge whether there is a target or not.

步骤6:运动参数估计Step 6: Motion Parameter Estimation

确定存在目标位置的坐标,确定目标运动参数。Determine the coordinates of the existing target position, and determine the target motion parameters.

下面通过实施例和附图对本发明进行详细说明。The present invention will be described in detail below through embodiments and accompanying drawings.

实施例Example

一种多项式旋转-多项式傅里叶变换的高速高机动目标检测方法,包括:A polynomial rotation-polynomial Fourier transform high-speed and high-mobility target detection method, comprising:

步骤1:对雷达相参积累时间T内的M个周期雷达信号回波分别以采样频率fs进行数字化采样,接着对采样数据进行脉冲压缩处理,得到快时间-慢时间二维雷达回波数据矩阵s(n,m)。其中n代表距离维采样点标号,n=1,2,...,N,N为单周期回波采样点总数,m代表回波信号个数标号,m=1,2,...,M,M为相参积累回波总数。Step 1: Digitally sample M periodic radar signal echoes within the radar coherent accumulation time T at the sampling frequency f s , and then perform pulse compression processing on the sampled data to obtain fast time-slow time two-dimensional radar echo data Matrix s(n,m). Among them, n represents the number of sampling points in the distance dimension, n=1,2,...,N, N is the total number of sampling points of single-cycle echoes, m represents the number of echo signals, m=1,2,..., M, M is the total number of coherent accumulated echoes.

步骤2:针对待检测高速高机动目标存在加速度以上更高阶的运动状态,设定搜索速度范围为[vmin,vmax],其中是vmin是速度搜索范围的下界,vmax是速度搜索范围的上界。设置其速度搜索间隔为Δv,Δv=λ/2T,其中λ为载波波长,T为积累时间。有Nv个速度搜索点,Nv=round((vmax-vmin)/Δv),其中round(·)为取整函数;设定搜索加速度范围为[amin,amax],其中是amin是加速度搜索范围的下界,amax是加速度搜索范围的上界。设置其加速度搜索间隔为Δa,Δa=λ/4T2。有Na个加速度搜索点,Na=round((amax-amin)/Δa);若存在更高阶运动参数,其参数搜索范围依次设置。确定搜索参数组(α12,...,αk),其中αi,i=1,2,...,k对应目标第i阶运动参数且αi包含Ni个搜索点数。Step 2: For the high-speed and high-maneuvering target to be detected has a higher-order motion state above acceleration, set the search speed range to [v min , v max ], where v min is the lower bound of the speed search range, and v max is the speed search The upper bound of the range. Set the speed search interval as Δv, Δv=λ/2T, where λ is the carrier wavelength, and T is the accumulation time. There are N v speed search points, N v = round((v max -v min )/Δv), where round( ) is a rounding function; set the search acceleration range to [a min ,a max ], where is a min is the lower bound of the acceleration search range, and a max is the upper bound of the acceleration search range. Set its acceleration search interval as Δa, Δa=λ/4T 2 . There are N a acceleration search points, N a =round((a max -a min )/Δa); if there are higher-order motion parameters, the parameter search ranges are set sequentially. Determine the search parameter group (α 12 ,...,α k ), where α i ,i=1,2,...,k corresponds to the i-th order motion parameter of the target and α i contains N i search points .

为了方便说明,在以下详细说明中忽略雷达目标三阶及其以上运动参数,即目标相对雷达做匀加速直线运动,则可以确定搜索参数组为(v,a),初始化参数组为(vmin,amin)。For the convenience of explanation, the third-order and above motion parameters of the radar target are ignored in the following detailed description, that is, the target moves in a uniformly accelerated linear motion relative to the radar, then the search parameter group can be determined as (v,a), and the initialization parameter group is (v min , a min ).

步骤3:利用搜索参数组可以得到多项式旋转变换关系Step 3: The polynomial rotation transformation relationship can be obtained by using the search parameter group

其中(vi,aj)为当前的搜索参数组,B为线性调频信号带宽,Tr为脉冲重复间隔,c为光速。利用多项式旋转变换关系将s(n,m)变换为s(n',m'),得到旋转后的快时间-慢时间二维回波数据矩阵,在慢时间维对雷达回波进行非相参积累,方法如下Where (v i , a j ) is the current search parameter set, B is the bandwidth of the chirp signal, T r is the pulse repetition interval, and c is the speed of light. Use the polynomial rotation transformation relationship to transform s(n,m) into s(n',m'), obtain the fast time-slow time two-dimensional echo data matrix after rotation, and perform non-phased radar echo in the slow time dimension Parameter accumulation, the method is as follows

其中,abs(·)为取模函数。设定阈值AthAmong them, abs(·) is a modulo function. Set the threshold A th as

当max(R(n′))>Ath时,则执行步骤3中多项式傅里叶变换,否则更新搜索参数组再次进行多项式旋转变换,直至遍历完全部搜索参数组。When max(R(n′))>A th , perform polynomial Fourier transform in step 3, otherwise update the search parameter set and perform polynomial rotation transformation again until all search parameter sets are traversed.

步骤4:对当前的搜索参数组(vi,aj)进行多项式傅里叶变换实现相参积累。多项式旋转变换筛选出可能的搜索参数组进行多项式傅里叶变换,减少了算法计算复杂度。傅里叶变换如下Step 4: Perform polynomial Fourier transform on the current search parameter set (v i , a j ) to realize coherent accumulation. The polynomial rotation transformation screens out possible search parameter groups for polynomial Fourier transformation, which reduces the computational complexity of the algorithm. The Fourier transform is as follows

其中,s(n′,m′)为旋转变换后的数据矩阵,(vi,aj)为搜索参数组,λ为载波波长,Tr为脉冲重复间隔。然后更新搜索参数组执行步骤3,直至遍历完全部搜索参数组。Among them, s(n′,m′) is the data matrix after rotation transformation, (v i , a j ) is the search parameter group, λ is the carrier wavelength, and T r is the pulse repetition interval. Then update the search parameter group and execute step 3 until all search parameter groups are traversed.

遍历全部搜索参数组方法(v,a)为:循环总次数为NvNa,设当前循环次数为k,k=1,2,...,NvNa,假设第k组搜索参数组为(vi,aj),其中i=floor(k/Nv),floor(·)为向下取整函数,j=mod(k,Nv),mod(·)为取余函数。k=NvNa代表全部搜索参数空间被遍历结束。此时可以得到相参积累后的距离-多普勒分布图。The method of traversing all search parameter groups (v, a) is: the total number of cycles is N v N a , the current number of cycles is k, k=1, 2,..., N v N a , assuming the kth group of search parameters The group is (v i , a j ), where i=floor(k/N v ), floor(·) is the rounding down function, j=mod(k,N v ), mod(·) is the remainder function . k=N v Na represents that all search parameter spaces have been traversed. At this time, the range-Doppler distribution map after coherent accumulation can be obtained.

步骤5:对距离-多普勒分布图进行恒虚警检测,判断有无目标,判断方法如下Step 5: Carry out constant false alarm detection on the range-Doppler distribution map, and judge whether there is a target. The judgment method is as follows

式中,(vi,aj)为搜索参数组,η为检测门限,N为单周期回波采样点总数。若检测单元的幅度值高于门限则判定该检测单元存在目标,否则判定不存在目标,继续后续单元的检测处理。In the formula, (vi, aj) is the search parameter group, η is the detection threshold, and N is the total number of single-cycle echo sampling points. If the amplitude value of the detection unit is higher than the threshold, it is determined that the detection unit has a target, otherwise it is determined that there is no target, and the detection process of the subsequent unit is continued.

步骤6:若存在目标,则提取出目标位置信息为n′,速度信息为vi,加速度信息为ajStep 6: If there is a target, extract the target position information as n′, velocity information as v i , and acceleration information as a j .

本发明的效果通过Matlab验证如下:Effect of the present invention is verified as follows by Matlab:

仿真参数设置为:载频f0=1GHz,脉宽T=60us,带宽B=2MHz,脉冲重复频率Tr=600us,积累脉冲数Npulse=64,采样频率fs=4MHz,目标初始的距离R0=4000km,径向初始速度V0=4000m/s,加速度为a=100m/s2The simulation parameters are set as follows: carrier frequency f 0 = 1GHz, pulse width T = 60us, bandwidth B = 2MHz, pulse repetition frequency T r = 600us, accumulated pulse number N pulse = 64, sampling frequency f s = 4MHz, initial target distance R 0 =4000km, radial initial velocity V 0 =4000m/s, acceleration a=100m/s 2 .

仿真结果及分析:由图2可以看出,传统的MTD算法面对高速高机动目标时积累性能较差。目标距离走动导致目标估计的距离单元发生较大偏差,多普勒徙动导致无法通过FFT使得目标能量得到很好聚集。从而最终的积累性能不能到达恒虚警检测的要求。由图3可以看出,进过多项式旋转-多项式傅里叶变换后目标积累后能量得到很好的聚集,明显优于MTD算法。图4为PRT非相参积累后结果,可以看出目标能量峰值明显但噪声基底过高,不适用于目标检测,仅可用于目标是否存在的参考。Simulation results and analysis: As can be seen from Figure 2, the traditional MTD algorithm has poor cumulative performance when facing high-speed and high-maneuvering targets. The distance movement of the target leads to a large deviation in the range unit of the target estimate, and the Doppler migration makes it impossible to gather the target energy well through FFT. Therefore, the final cumulative performance cannot meet the requirements of constant false alarm detection. It can be seen from Figure 3 that after the polynomial rotation-polynomial Fourier transform, the energy of the target accumulation is well gathered, which is obviously better than the MTD algorithm. Figure 4 shows the results of PRT non-coherent accumulation. It can be seen that the peak energy of the target is obvious but the noise floor is too high. It is not suitable for target detection and can only be used as a reference for the existence of the target.

Claims (6)

1.一种多项式旋转-多项式傅里叶变换的高速高机动目标检测方法,其特征在于,包括:1. a kind of polynomial rotation-polynomial Fourier transform high-speed high maneuvering target detection method, it is characterized in that, comprising: 步骤1,对积累时间内的雷达脉冲回波进行数字化采样以及脉冲压缩处理,得到二维回波数据矩阵;Step 1. Perform digital sampling and pulse compression processing on the radar pulse echo within the accumulation time to obtain a two-dimensional echo data matrix; 步骤2,确定待搜索参数数目及范围;Step 2, determine the number and range of parameters to be searched; 步骤3,从初始搜索参数组开始对二维回波数据矩阵进行多项式旋转变换,对变换后的回波数据矩阵进行非相参积累;若叠加后的一维数据最大值大于阈值,则对变换后的回波数据矩阵执行步骤4中多项式傅里叶变换;反之更改搜索参数组执行步骤3;具体方法为:Step 3: Perform polynomial rotation transformation on the two-dimensional echo data matrix starting from the initial search parameter group, and perform non-coherent accumulation on the transformed echo data matrix; if the maximum value of the superimposed one-dimensional data is greater than the threshold value, then transform Execute the polynomial Fourier transform in step 4 for the final echo data matrix; otherwise change the search parameter group and execute step 3; the specific method is: 从初始搜索参数组(α12,...,αk)开始对二维回波数据矩阵s(n,m)进行多项式旋转变换得到旋转后的数据矩阵s(n′,m′),其中αi对应目标第i阶运动参数且αi包含Ni个搜索点数,n代表距离维采样点标号,n=1,2,...,N,N为单周期回波采样点总数,m代表回波信号个数标号,m=1,2,...,M,M为相参积累回波总数;Starting from the initial search parameter set (α 12 ,...,α k ), perform polynomial rotation transformation on the two-dimensional echo data matrix s(n,m) to obtain the rotated data matrix s(n′,m′ ), where α i corresponds to the i-th order motion parameter of the target and α i includes N i search points, n represents the label of the sampling point in the distance dimension, n=1,2,...,N, and N is the sampling point of the single-cycle echo The total number, m represents the label of the number of echo signals, m=1,2,...,M, M is the total number of coherent accumulated echoes; 变换关系如下:The conversion relationship is as follows: 其中,k为多项式阶数,B为线性调频信号带宽,Tr为脉冲重复间隔,c为光速;对变换后的回波数据矩阵进行非相参积累,即对M个回波信号包络进行叠加;若叠加后的一维数据最大值大于阈值Ath,则对s(n′,m′)执行步骤4中多项式傅里叶变换,阈值AthAmong them, k is the order of the polynomial, B is the bandwidth of the chirp signal, T r is the pulse repetition interval, and c is the speed of light; non-coherent accumulation is performed on the transformed echo data matrix, that is, M echo signal envelopes are Superposition; if the maximum value of the superimposed one-dimensional data is greater than the threshold A th , then perform the polynomial Fourier transform in step 4 on s(n′,m′), and the threshold A th is 其中,abs(·)为取模函数;Among them, abs( ) is a modulo function; 反之更改搜索参数组执行步骤3;Otherwise, change the search parameter group and execute step 3; 步骤4,对步骤3中满足条件的搜索参数组进行相位补偿然后进行积累,然后更改搜索参数组执行步骤3,直至遍历完全部搜索参数组;Step 4, perform phase compensation and then accumulate the search parameter groups that meet the conditions in step 3, and then change the search parameter group to perform step 3 until all search parameter groups are traversed; 步骤5,对得到的距离-多普勒分布图进行恒虚警检测,判断目标有无;Step 5, performing constant false alarm detection on the obtained range-Doppler distribution map, and judging whether there is a target; 步骤6,确定存在目标位置的坐标,确定目标运动参数。Step 6, determine the coordinates of the target position, and determine the target motion parameters. 2.根据权利要求1所述的多项式旋转-多项式傅里叶变换的高速高机动目标检测方法,其特征在于,步骤1具体为:2. the high-speed high maneuvering target detection method of polynomial rotation-polynomial Fourier transform according to claim 1, it is characterized in that, step 1 is specially: 对相参积累的M个周期的回波信号采样并进行脉冲压缩处理,得到二维回波数据矩阵s(n,m)。The coherently accumulated echo signals of M cycles are sampled and processed by pulse compression to obtain a two-dimensional echo data matrix s(n,m). 3.根据权利要求1所述的多项式旋转-多项式傅里叶变换的高速高机动目标检测方法,其特征在于,步骤2具体为:设定搜索速度范围为[vmin,vmax],其中vmin是速度搜索范围的下界,vmax是速度搜索范围的上界;设置其速度搜索间隔为Δv,Δv=λ/2T,其中λ为载波波长,T为积累时间;有Nv个速度搜索点,Nv=round((vmax-vmin)/Δv),其中round(·)为取整函数;设定搜索加速度范围为[amin,amax],其中amin是加速度搜索范围的下界,amax是加速度搜索范围的上界;设置其加速度搜索间隔为Δa,有Na个加速度搜索点,Na=round((amax-amin)/Δa);若存在更高阶运动参数,其参数搜索范围依次设置;确定搜索参数组(α12,...,αk)。3. the method for detecting high-speed and high-maneuvering targets of polynomial rotation-polynomial Fourier transform according to claim 1, characterized in that, step 2 is specifically: setting the search speed range as [v min , v max ], where v min is the lower limit of the speed search range, v max is the upper limit of the speed search range; set the speed search interval to Δv, Δv=λ/2T, where λ is the carrier wavelength, T is the accumulation time; there are N v speed search points , N v = round((v max -v min )/Δv), where round( ) is a rounding function; set the search acceleration range to [a min , a max ], where a min is the lower bound of the acceleration search range , a max is the upper bound of the acceleration search range; set the acceleration search interval to Δa, there are N a acceleration search points, N a = round((a max -a min )/Δa); if there are higher-order motion parameters , and its parameter search range is set sequentially; determine the search parameter group (α 12 ,...,α k ). 4.根据权利要求1所述的多项式旋转-多项式傅里叶变换的高速高机动目标检测方法,其特征在于,步骤4具体为:4. the high-speed high maneuvering target detection method of polynomial rotation-polynomial Fourier transform according to claim 1, it is characterized in that, step 4 is specially: 对步骤3中满足条件的搜索参数组进行相位补偿然后进行积累,方法如下Perform phase compensation on the search parameter groups that meet the conditions in step 3 and then accumulate, the method is as follows 其中,s(n′,m′)为旋转变换后的数据矩阵,(α12,...,αk)为搜索参数组,λ为载波波长,Tr为脉冲重复间隔;然后更改搜索参数组执行步骤3,直至遍历完全部搜索参数组。Among them, s(n′,m′) is the data matrix after rotation transformation, (α 12 ,...,α k ) is the search parameter group, λ is the carrier wavelength, T r is the pulse repetition interval; then To change the search parameter group, perform step 3 until all search parameter groups have been traversed. 5.根据权利要求1所述的多项式旋转-多项式傅里叶变换的高速高机动目标检测方法,其特征在于,步骤5具体为:5. the high-speed high maneuvering target detection method of polynomial rotation-polynomial Fourier transform according to claim 1, it is characterized in that, step 5 is specially: 对距离-多普勒分布图进行恒虚警检测,判断有无目标,判断方法如下:Perform constant false alarm detection on the range-Doppler distribution map to judge whether there is a target. The judgment method is as follows: 式中,(vi,aj)为搜索参数组,η为检测门限,N为单周期回波采样点总数;若检测单元的幅度值高于门限则判定该检测单元存在目标,否则判定不存在目标,继续后续单元的检测处理。In the formula, (v i , a j ) is the search parameter group, η is the detection threshold, and N is the total number of single-cycle echo sampling points; if the amplitude value of the detection unit is higher than the threshold, it is determined that the detection unit has a target, otherwise it is determined that there is no target. If there is a target, the detection process of the subsequent unit is continued. 6.根据权利要求1所述的多项式旋转-多项式傅里叶变换的高速高机动目标检测方法,其特征在于,步骤6中目标运动参数包括目标速度和加速度信息。6. The high-speed and high-maneuvering target detection method of polynomial rotation-polynomial Fourier transform according to claim 1, characterized in that, in step 6, target motion parameters include target velocity and acceleration information.
CN201911311705.4A 2019-12-18 2019-12-18 Polynomial rotation-polynomial Fourier transform high-speed high-maneuvering target detection method Active CN111123214B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911311705.4A CN111123214B (en) 2019-12-18 2019-12-18 Polynomial rotation-polynomial Fourier transform high-speed high-maneuvering target detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911311705.4A CN111123214B (en) 2019-12-18 2019-12-18 Polynomial rotation-polynomial Fourier transform high-speed high-maneuvering target detection method

Publications (2)

Publication Number Publication Date
CN111123214A CN111123214A (en) 2020-05-08
CN111123214B true CN111123214B (en) 2023-09-01

Family

ID=70499780

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911311705.4A Active CN111123214B (en) 2019-12-18 2019-12-18 Polynomial rotation-polynomial Fourier transform high-speed high-maneuvering target detection method

Country Status (1)

Country Link
CN (1) CN111123214B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111537985B (en) * 2020-05-15 2022-07-12 北京润科通用技术有限公司 Vehicle-mounted radar target detection method and device
CN111817797B (en) * 2020-06-22 2021-09-24 电子科技大学 Signal Transmitting Method Based on IRS Phase Rotation to Maximize Received Signal-to-Noise Ratio
CN111880173A (en) * 2020-08-03 2020-11-03 中国人民解放军32286部队50分队 Staring radar system and direction-finding method of amplitude-comparison phase thereof
CN112255609A (en) * 2020-10-14 2021-01-22 哈尔滨工业大学 Constant-acceleration maneuvering target coherent accumulation detection method
CN113406592B (en) * 2021-06-15 2022-06-10 哈尔滨工业大学 High-frequency ground wave radar weak target accumulation detection method and computing device
CN113933012B (en) * 2021-10-14 2024-01-30 西安现代控制技术研究所 Propeller speed measurement method based on K-means clustering
CN114509735B (en) * 2022-01-17 2025-05-09 南京理工大学 Parameter Estimation Method of Phase Polynomial Coefficients Based on HoWVD
CN115712102B (en) * 2022-10-26 2025-03-25 中国航空工业集团公司西安航空计算技术研究所 Radar target detection method
CN118282440A (en) * 2022-12-30 2024-07-02 北京三星通信技术研究有限公司 Node equipment in communication system and method thereof
CN117784077B (en) * 2024-02-27 2024-05-24 南京奥联智驾科技有限公司 Weak and small target detection method, terminal and medium based on frequency accumulation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103176178A (en) * 2013-02-04 2013-06-26 中国人民解放军海军航空工程学院 Radar moving target radon-fractional Fourier transform long-time phase-coherent accumulation detection method
CN105652258A (en) * 2016-03-15 2016-06-08 中国人民解放军海军航空工程学院 Hypersonic speed target detecting method for polynomial Radon-polynomial Fourier transform
CN106896358A (en) * 2017-04-27 2017-06-27 电子科技大学 A kind of high-speed target phase-coherent accumulation detection method based on position rotation transformation
CN107561508A (en) * 2017-08-24 2018-01-09 电子科技大学 A kind of phase-coherent accumulation detection method for even accelerated motional objects
CN108549067A (en) * 2018-07-27 2018-09-18 电子科技大学 A kind of phase-coherent accumulation detection method being applied to three rank maneuvering targets

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103176178A (en) * 2013-02-04 2013-06-26 中国人民解放军海军航空工程学院 Radar moving target radon-fractional Fourier transform long-time phase-coherent accumulation detection method
CN105652258A (en) * 2016-03-15 2016-06-08 中国人民解放军海军航空工程学院 Hypersonic speed target detecting method for polynomial Radon-polynomial Fourier transform
CN106896358A (en) * 2017-04-27 2017-06-27 电子科技大学 A kind of high-speed target phase-coherent accumulation detection method based on position rotation transformation
CN107561508A (en) * 2017-08-24 2018-01-09 电子科技大学 A kind of phase-coherent accumulation detection method for even accelerated motional objects
CN108549067A (en) * 2018-07-27 2018-09-18 电子科技大学 A kind of phase-coherent accumulation detection method being applied to three rank maneuvering targets

Also Published As

Publication number Publication date
CN111123214A (en) 2020-05-08

Similar Documents

Publication Publication Date Title
CN111123214B (en) Polynomial rotation-polynomial Fourier transform high-speed high-maneuvering target detection method
CN103176178B (en) Radon-Fractional Fourier Transform Long-term Coherent Accumulation Detection Method for Radar Moving Targets
CN111736128B (en) Coherent accumulation method based on SKT-SIAF-MSCFT
CN103399310B (en) Method for detecting radar weak moving target based on PD (Phase Differentiation) RLVD (Radon-Lv Distribution)
CN105158748B (en) A kind of high-speed target multichannel compensation is focused on and mixes accumulation detection method with TBD
CN107450055B (en) A high-speed maneuvering target detection method based on discrete linear frequency modulation Fourier transform
CN110456315B (en) Position prediction-based stagger repetition frequency target detection method
CN107843892B (en) A Doppler Velocity Measurement Method of High Speed Target Based on Least Squares Method
KR102275960B1 (en) System and method for searching radar targets based on deep learning
CN111198359B (en) A Rotor UAV Detection Method Based on Target Doppler Width
CN103344949A (en) Radar slightly-moving target detection method based on Radon-linear canonical ambiguity function
CN109613506B (en) A Random Frequency Hopping Repeated Frequency Agility Radar Target Echo Signal Detection Method
CN104730498A (en) Target detection method based on Keystone and weighting rotating FFT
CN105652258B (en) Multinomial draws the hypersonic object detection method of eastern multinomial Fourier transformation
CN105301584B (en) The IPPHDF multiple-moving target tracking methods of fuzzy distance solution simultaneously
CN104459661B (en) Method for detecting rapid artillery type dim target
CN113391284A (en) Temporary high-speed target detection method based on long-time accumulation
CN110824439B (en) A fast long-term coherent accumulation method for radar targets
CN104808188B (en) The high speed Stealthy Target detection method of multinomial Hough Fourier transformations
CN106646395B (en) A kind of radar return deduction method of airbound target
CN105182283B (en) A kind of passive radar fixes target time domain direction-finding method
CN109655802A (en) A kind of multi-objective particle swarm long time integration detection method based on CLEAN algorithm
CN109100696A (en) Microinching target removing method based on point clutter figure
CN108549066A (en) A kind of wideband radar high-speed target integration detection method based on scale RFT
CN116449320A (en) Long-time accumulation and parameter estimation method under frequency agile radar system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant