CN111119860B - Pressure bar for sensing pressure distribution state in hole - Google Patents

Pressure bar for sensing pressure distribution state in hole Download PDF

Info

Publication number
CN111119860B
CN111119860B CN201911340064.5A CN201911340064A CN111119860B CN 111119860 B CN111119860 B CN 111119860B CN 201911340064 A CN201911340064 A CN 201911340064A CN 111119860 B CN111119860 B CN 111119860B
Authority
CN
China
Prior art keywords
pressure
central
flexible film
hole
pressure sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911340064.5A
Other languages
Chinese (zh)
Other versions
CN111119860A (en
Inventor
张强
刘伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Science and Technology
Original Assignee
Shandong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Science and Technology filed Critical Shandong University of Science and Technology
Priority to CN201911340064.5A priority Critical patent/CN111119860B/en
Publication of CN111119860A publication Critical patent/CN111119860A/en
Application granted granted Critical
Publication of CN111119860B publication Critical patent/CN111119860B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/18Special adaptations of signalling or alarm devices

Abstract

The invention discloses a compression bar for sensing pressure distribution state in a hole, which comprises a plurality of central compression bars, a plurality of pressure sensors and a plurality of pressure sensors, wherein the central compression bars can be connected with each other and can extend into and out of a drill hole; the flexible film pressure sensor is in a ring shape, is attached to the outer surface of the central pressure rod in a clinging manner, and is used for measuring the pressure applied to the inner wall of the drill hole and the pressure distribution state; the power supply module is used for providing electric quantity for each power utilization module; and the data collection module is used for collecting the pressure measurement result of the flexible film pressure sensor in real time, storing the result and transmitting the result to the computer through the WIFI communication module. The invention can simultaneously measure the pressure states of different positions and different directions in the drill hole by using the flexible film pressure sensor, can directly output the three-dimensional stress distribution cloud chart in the drill hole through the display after signal processing of the computer, and the hard protective shell is matched with the flexible rubber layer for use, thereby avoiding the influence of moisture and dust on the measurement precision of the sensor, providing a good working environment, prolonging the service life of the sensor and reducing the production cost.

Description

Pressure bar for sensing pressure distribution state in hole
Technical Field
The invention belongs to the technical field of coal mine stress monitoring, and particularly relates to a pressure lever for sensing the pressure distribution state in a hole.
Background
At present, the redistribution of stratum stress is caused by coal mining, the new stress distribution has important influence on the stability of a roadway, and rock burst is easy to occur due to high concentration of the stratum stress. The accurate monitoring of the formation stress state has important significance for pressure relief of the drill hole and stability protection of the roadway. At present, the formation stress is detected by firstly drilling, then a sensor is used for detecting the internal stress state of a hole, the sensor is mostly used for single-point detection, if the stress state of different points and different directions in the hole needs to be detected, the depth and the angle of the sensor need to be adjusted, the operation is complex, and the pressure distribution state in the hole can not be visually displayed; the flexible film pressure sensor can effectively measure the pressure distribution state, the environment in a drill hole is severe, the moist dust can influence the measurement precision of the sensor, the sensor is damaged due to friction with the hole wall, the pressure detection efficiency is seriously influenced, and the production cost is increased.
Therefore, it is necessary to design a pressure lever for sensing the pressure distribution in the hole to solve the above problems.
Disclosure of Invention
Based on the defects of the prior art, the technical problem to be solved by the invention is to provide the pressure lever for sensing the pressure distribution state in the hole, the pressure distribution state in the hole can be detected, a three-dimensional stress distribution cloud picture can be obtained, the structure is simple, the work is reliable, and the pressure measurement efficiency and the measurement precision in the hole are effectively improved.
In order to solve the technical problem, the invention is realized by the following technical scheme: the invention provides a pressure lever for sensing the pressure distribution state in a hole, which comprises:
a plurality of central compression bars which can be mutually connected and can extend into and out of the drill holes;
the flexible film pressure sensor is in a ring shape, is attached to the outer surface of the central pressure rod in a clinging manner, and is used for measuring the pressure and the pressure distribution state on the inner wall of the drill hole;
the power module is arranged in the inner space of the central pressure rod and used for providing electric quantity for each power utilization module;
and the data collection module is placed in the inner space of the central pressure rod and used for collecting the pressure measurement result of the flexible film pressure sensor in real time, storing the result and transmitting the result to the computer through the WIFI communication module.
Optionally, the flexible film pressure sensor is formed by arranging a plurality of pressure sensitive units in an array.
Furthermore, a soft rubber layer covers the flexible film pressure sensor, and the flexible film pressure sensor and the outer side of the central pressure rod are wrapped by the soft rubber layer to form a closed space. The rubber layer is wrapped with a flexible steel wire mesh, one part of the flexible steel wire mesh is buried in the soft rubber layer, and the other part of the flexible steel wire mesh is exposed in the air.
Optionally, the flexible steel wire mesh is sleeved with a removable hard protective shell for protecting the soft rubber layer from being abraded by the hole wall in the process that the pressure bar extends into and is taken out of the drilling hole.
Furthermore, a certain number of through holes are formed in the surface of the central pressure rod and are used for being communicated with a data transmission lead, and the flexible film pressure sensor is connected with the data collection module.
Optionally, one end of the central pressure lever is solid, and the other end of the central pressure lever is a blind hole, and the end of the blind hole is provided with an internal thread for connecting the central pressure levers.
According to the pressure lever for sensing the pressure distribution state in the hole, the pressure distribution state in the hole is detected by using the flexible film pressure sensor, pressure measurement points in the hole are changed from single points to uniformly distributed multiple points, and measurement data are processed to obtain the three-dimensional stress cloud picture of the pressure distribution state in the hole. In order to protect the flexible film pressure sensor from being influenced by moisture and dust, the flexible film pressure sensor is sealed by the soft rubber layer, and in order to protect the flexible film pressure sensor from being scratched by the hole wall in the process of entering and exiting the drill hole, the flexible film pressure sensor is protected by the extractable hard protective shell.
The invention can simultaneously measure the pressure states of different positions and different directions in the drill hole by using the flexible film pressure sensor, can directly output a three-dimensional stress distribution cloud picture in the drill hole through a display after signal processing of a computer, effectively avoids that a protective shell cannot be automatically recovered after being deformed, and isolates the film pressure sensor from the hole wall by using the rubber layer, thereby avoiding the influence of moisture and dust on the measurement precision of the sensor, providing a good working environment, prolonging the service life of the sensor and reducing the production cost of enterprises.
The foregoing description is only an overview of the technical solutions of the present invention, and in order to make the technical means of the present invention more clearly understood, the present invention may be implemented in accordance with the content of the description, and in order to make the above and other objects, features, and advantages of the present invention more clearly understood, the following detailed description is given with reference to the preferred embodiments in conjunction with the accompanying drawings.
Drawings
To more clearly illustrate the technical solutions of the embodiments of the present invention, the drawings of the embodiments will be briefly described below.
FIG. 1 is a schematic structural diagram of a pressure bar for sensing pressure distribution in a hole according to the present invention;
FIG. 2 is a schematic representation of the use of the flexible membrane pressure sensor of the present invention;
FIG. 3 is a schematic view of the internal structure of the pressure lever for sensing the pressure distribution in the hole according to the present invention;
FIG. 4 is a schematic diagram of a cross-sectional protective layer of the pressure bar for sensing the pressure distribution in the hole according to the present invention;
FIG. 5 is a schematic diagram of data transfer according to the present invention;
FIG. 6 is a schematic view of the pressure rod entering and exiting the bore hole for sensing the pressure distribution in the bore hole according to the present invention;
fig. 7 is a schematic drawing illustrating the removable hard shell of the present invention;
FIG. 8 is a flow chart of the operation of the pressure bar for sensing the pressure distribution in the hole according to the present invention.
In the figure, 1-central depression bar, 2-removable stereoplasm protective housing, 3-flexible film pressure sensor, 4-data transmission wire, 5-data collection module, 6-WIFI communication module, 7-power module, 8-soft rubber layer, 9-flexible wire net.
Detailed Description
Other aspects, features and advantages of the present invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, which form a part of this specification, and which illustrate, by way of example, the principles of the invention. In the referenced drawings, the same or similar components in different drawings are denoted by the same reference numerals.
As shown in fig. 1 to 8, the present invention provides a pressure bar capable of sensing a pressure distribution state in a hole, which structurally comprises a plurality of center pressure bars 1, a flexible thin film pressure sensor 3, a power module 7, a data collection module 5, a WIFI communication module 6, a computer processing module, a display, a flexible steel wire mesh 9, a soft rubber layer 8 and a removable hard protective shell 2, wherein the center pressure bars 1 are used for bearing the flexible thin film pressure sensor 3 and other components, so as to ensure sufficient rigidity of the overall structure of the pressure bar, one end of each center pressure bar 1 is solid, the other end of each center pressure bar 1 is a blind hole, and the end of each blind hole is provided with an internal thread for connecting the center pressure bars. As shown in fig. 3, the inner blind hole space of the central pressure lever 1 is used for storing a power module 7, a data collection module 5 and a WIFI communication module 6, and the power module 7 provides electric quantity for each power utilization module, so that normal work of each part is ensured. The data collection module 5 collects pressure measurement results of the flexible film pressure sensor 3 in real time, stores the results, transmits the results to a computer through the WIFI communication module 6, and processes a three-dimensional stress cloud picture of the pressure distribution state in the hole output by the display through the computer to visually reflect the pressure distribution state in the hole. The actual space inside the central pressure bar 1 for placing the power module 7, the data collection module 5 and the WIFI communication module 6 can be adjusted as required.
As shown in fig. 2, a certain number of through holes are formed in the surface of a central pressure rod 1 and used for being communicated with a data transmission wire 4, so that the connection between a flexible film pressure sensor 3 and a data collection module 4 is realized, the flexible film pressure sensor 3 is formed by arranging a plurality of pressure sensitive units in an array manner and is made to be attached to the central pressure rod 1 in an annular manner and used for measuring the pressure and the pressure distribution state of the inner wall of a drill hole, the flexible film pressure sensor 3 is tightly attached to the outer surface of the central pressure rod 1, the flexible film pressure sensor 3 has a certain width and enough length and is covered on the central pressure rod 1 in an annular manner in parallel. As shown in fig. 4, the flexible film pressure sensor 3 and the outer side of the central pressure rod are wrapped by the soft rubber layer 8 to form a closed space, the flexible steel wire mesh 9 is added outside the soft rubber layer 8, a part of the steel wire mesh is buried in the soft rubber layer 8, a part of the steel wire mesh is exposed in the air, and the flexible steel wire mesh 9 is in direct contact with the extractable hard protective shell 2, so that the friction resistance in the extraction process of the extractable hard protective shell 2 is reduced. The soft rubber layer 8 is covered on the flexible film pressure sensor 3, so that a sealed working environment is ensured for the sensor, and the influence of moist dust on the normal work of the sensor is avoided. Soft rubber layer 8 avoids flexible film pressure sensor 3 and pore wall direct contact, and soft rubber layer 8 receives external force to take place to warp, and the change of 3 perception rubber layer pressures of flexible film pressure sensor of parcel in soft rubber layer 8 carries out pressure measurement, and flexible wire net 9 parcel increases soft rubber layer 8's wear-resisting degree in the rubber layer outside. The extractable hard protective shell 2 is used for protecting the soft rubber layer 8 from being abraded by the hole wall in the process that the pressure rod extends into and is taken out of the drill hole, and the service life of the sensor is prolonged.
As shown in fig. 6 and 7, when measuring the internal pressure of a drill hole, the extractable hard protective shell 2 is sleeved on the central pressure rod 1, the length of the pressure rod is increased through threaded connection according to the depth of the drill hole, meanwhile, the length of the extractable hard protective shell 2 is increased through threaded connection, the lengths of the two are ensured to be equal, after the pressure rod reaches a preset measuring position, the extractable hard protective shell 2 is extracted, the soft rubber layer 8 is directly contacted with a hole wall, when the pressure rod is extruded by the hole wall, the soft rubber layer 8 deforms, the hole wall pressure acts on the flexible film pressure sensor 3 through the soft rubber layer 8, the pressure sensitive units in the pressure sensor output signals according to the extrusion output signals, the output signals are specifically the pressure signals generated after the extrusion of the pressure sensitive units, the numbers of the pressure sensitive units and the numbers of the flexible film pressure sensors 3, the data collection module 5 stores the output signals of the sensitive units on the corresponding pressure rods, the communication module 6 transmits the pressure signals to a computer, the computer analyzes the signals, the pressure signals to obtain the pressure of the pressure signals of the sensitive units corresponding to different flexible film pressure sensors in each section of the pressure rod, the central pressure rod is matched with the number of the combined central pressure rod, a layer, a space is formed, and the measuring points are uniformly distributed in the same direction, and the measuring points are uniformly distributed along the direction. The computer adopts an interpolation method to make a pressure distribution cloud picture of the measuring point, and outputs the pressure distribution cloud picture through the display, so that the pressure distribution state in the drill hole can be visually seen. When the pressure rod needs to be taken out, the extractable hard protective shell 2 is sleeved at one end of the pressure rod and reversely pushed along the original path, when the extractable hard protective shell 2 reaches the bottom end of the pressure rod, the extractable hard protective shell 2 is extracted outwards along with the pressure rod, the friction between the pressure rod and the hole wall is avoided, the extractable hard protective shell 2 is separated from the pressure rod after the pressure rod is taken out, and stains on the surface of the pressure rod are cleaned for the next use.
According to the invention, the extractable hard protective shell 2 is extracted after the pressure rod reaches a preset position, so that the soft rubber layer 8 is directly contacted with the hole wall, when the pressure detection work is finished, the extractable hard protective shell 2 is pushed into the drill hole along the original path to reach the original position, and the hard protective shell and the central pressure rod are taken out together. According to the invention, the flexible film pressure sensor 3 is arranged outside the central pressure rod 1 and used for detecting the pressure distribution state of the drill hole, the flexible film pressure sensor 3 is protected by using the two layers of the removable hard protection shell 2 and the flexible rubber layer 8, and the good working environment of the flexible film pressure sensor is ensured. The flexible film pressure sensor 3 can be used for measuring multiple groups of data at the same time, and the computer can process the measured data to obtain a three-dimensional stress cloud picture of the distribution state of the pressure in the hole, so that the measurement efficiency and the measurement precision of the pressure in the hole are effectively improved.
While the foregoing is directed to the preferred embodiment of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.

Claims (3)

1. A pressure bar for sensing the pressure distribution in a bore, comprising:
a plurality of central compression bars which can be connected with each other and can extend into and out of the drill holes;
the flexible film pressure sensor is in a ring shape, is attached to the outer surface of the central pressure rod in a clinging manner, and is used for measuring the pressure applied to the inner wall of the drill hole and the pressure distribution state;
the power supply module is arranged in the inner space of the central pressure rod and used for providing electric quantity for each power utilization module;
the data collection module is placed in the inner space of the central pressure rod and used for collecting pressure measurement results of the flexible film pressure sensor in real time, storing the results and transmitting the results to a computer through the WIFI communication module;
the flexible film pressure sensor is formed by arraying a plurality of pressure sensitive units; the flexible film pressure sensor is covered with a soft rubber layer, and the flexible film pressure sensor and the outer side of the central pressure rod are wrapped by the soft rubber layer to form a closed space;
the outer side of the rubber layer is wrapped with a flexible steel wire mesh, one part of the flexible steel wire mesh is buried in the soft rubber layer, and the other part of the flexible steel wire mesh is exposed in the air; the flexible steel wire mesh is sleeved with a removable hard protective shell for protecting the soft rubber layer from being abraded by the hole wall in the process that the pressure bar extends into and is taken out of the drill hole.
2. The pressure bar for sensing the pressure distribution in the holes according to claim 1, wherein a certain number of through holes are formed in the surface of the central pressure bar for communicating with data transmission wires to connect the flexible film pressure sensor and the data collection module.
3. The strut for sensing the distribution of pressure within a bore as claimed in claim 1, wherein said central strut is solid at one end and blind at the other end, the blind end having internal threads for connection between the central struts.
CN201911340064.5A 2019-12-23 2019-12-23 Pressure bar for sensing pressure distribution state in hole Active CN111119860B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911340064.5A CN111119860B (en) 2019-12-23 2019-12-23 Pressure bar for sensing pressure distribution state in hole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911340064.5A CN111119860B (en) 2019-12-23 2019-12-23 Pressure bar for sensing pressure distribution state in hole

Publications (2)

Publication Number Publication Date
CN111119860A CN111119860A (en) 2020-05-08
CN111119860B true CN111119860B (en) 2023-01-10

Family

ID=70501399

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911340064.5A Active CN111119860B (en) 2019-12-23 2019-12-23 Pressure bar for sensing pressure distribution state in hole

Country Status (1)

Country Link
CN (1) CN111119860B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111721696A (en) * 2020-05-12 2020-09-29 温州大学 Underground soil body effective pressure testing device and testing method

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02178416A (en) * 1988-12-29 1990-07-11 Takechi Koumushiyo:Kk Judging and designing method for performance and quality of basic pile and performance measuring device for ground
JPH0599767A (en) * 1991-10-11 1993-04-23 Riken Corp Pressure sensor
WO2003029614A2 (en) * 2001-09-28 2003-04-10 Shell Internationale Research Maatschappij B.V. Tool and method for measuring properties of an earth formation surrounding a borehole
JP2006125963A (en) * 2004-10-28 2006-05-18 Matsushita Electric Ind Co Ltd Cable-like pressure sensor
DE102009057424A1 (en) * 2009-12-08 2011-06-09 Panasonic Corporation, Kadoma-shi Force measuring module for use in e.g. crutch for measurement of active force at patient lower arm during use of walking support in rehabilitation phase after e.g. leg injury, has transmission device transmitting value to evaluation device
CN102322989A (en) * 2011-08-17 2012-01-18 北京航空航天大学 Device for measuring radial pressure of underground sucker rod
CN104280167A (en) * 2014-10-13 2015-01-14 中国科学院武汉岩土力学研究所 Three-dimensional stress test device for single-hole multi-point hollow fiber grating inclusion in rock mass engineering
CN104727808A (en) * 2015-02-10 2015-06-24 柳州市金旭节能科技有限公司 Down-hole pressure meter
CN105606278A (en) * 2016-03-11 2016-05-25 北京科技大学 Drill hole monitoring probing rod for surrounding rock stress field
CN205638425U (en) * 2016-05-26 2016-10-12 山东科技大学 Tunnel country rock crack growth and evolutionary process observation device thereof
CN205749129U (en) * 2016-07-11 2016-11-30 苏州宝骅机械技术有限公司 Airtight and watertight padding coefficient of horizontal pressure detection device
CN108615807A (en) * 2018-05-22 2018-10-02 华中科技大学 A kind of range and the adjustable flexible sensor of sensitivity and preparation method thereof
CN109441426A (en) * 2018-11-27 2019-03-08 中国矿业大学(北京) A kind of drilling hole stress directional monitoring device and method
WO2019232521A1 (en) * 2018-06-01 2019-12-05 Board Of Regents, University Of Texas System Downhole strain sensor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2662717B2 (en) * 1995-02-14 1997-10-15 水資源開発公団 Non-stress detector for concrete
CN2237237Y (en) * 1995-05-30 1996-10-09 山东矿业学院 Multi-medium strain type stress sensor
AU2010305146B2 (en) * 2009-10-05 2015-02-05 National Oilwell Varco Denmark I/S A flexible unbonded oil pipe system with an optical fiber sensor inside
ITCO20110018A1 (en) * 2011-05-20 2012-11-21 Andrea Segalini EQUIPMENT FOR DETECTING GROUND MOVEMENTS IN THE UNDERLYING AND ARRANGING THAT IT USES IT
CN102505939B (en) * 2011-10-21 2015-04-22 中国科学院武汉岩土力学研究所 Stratified fluid monitoring and sampling device based on pressure pulse
JP6488698B2 (en) * 2014-12-25 2019-03-27 ヤマハ株式会社 External force detection array module

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02178416A (en) * 1988-12-29 1990-07-11 Takechi Koumushiyo:Kk Judging and designing method for performance and quality of basic pile and performance measuring device for ground
JPH0599767A (en) * 1991-10-11 1993-04-23 Riken Corp Pressure sensor
WO2003029614A2 (en) * 2001-09-28 2003-04-10 Shell Internationale Research Maatschappij B.V. Tool and method for measuring properties of an earth formation surrounding a borehole
JP2006125963A (en) * 2004-10-28 2006-05-18 Matsushita Electric Ind Co Ltd Cable-like pressure sensor
DE102009057424A1 (en) * 2009-12-08 2011-06-09 Panasonic Corporation, Kadoma-shi Force measuring module for use in e.g. crutch for measurement of active force at patient lower arm during use of walking support in rehabilitation phase after e.g. leg injury, has transmission device transmitting value to evaluation device
CN102322989A (en) * 2011-08-17 2012-01-18 北京航空航天大学 Device for measuring radial pressure of underground sucker rod
CN104280167A (en) * 2014-10-13 2015-01-14 中国科学院武汉岩土力学研究所 Three-dimensional stress test device for single-hole multi-point hollow fiber grating inclusion in rock mass engineering
CN104727808A (en) * 2015-02-10 2015-06-24 柳州市金旭节能科技有限公司 Down-hole pressure meter
CN105606278A (en) * 2016-03-11 2016-05-25 北京科技大学 Drill hole monitoring probing rod for surrounding rock stress field
CN205638425U (en) * 2016-05-26 2016-10-12 山东科技大学 Tunnel country rock crack growth and evolutionary process observation device thereof
CN205749129U (en) * 2016-07-11 2016-11-30 苏州宝骅机械技术有限公司 Airtight and watertight padding coefficient of horizontal pressure detection device
CN108615807A (en) * 2018-05-22 2018-10-02 华中科技大学 A kind of range and the adjustable flexible sensor of sensitivity and preparation method thereof
WO2019232521A1 (en) * 2018-06-01 2019-12-05 Board Of Regents, University Of Texas System Downhole strain sensor
CN109441426A (en) * 2018-11-27 2019-03-08 中国矿业大学(北京) A kind of drilling hole stress directional monitoring device and method

Also Published As

Publication number Publication date
CN111119860A (en) 2020-05-08

Similar Documents

Publication Publication Date Title
CN107725026A (en) A kind of ground geologic body testing borehole deformation device and its method of testing
CN105484742A (en) Multi-parameter logging while drilling apparatus
CN205561791U (en) Device based on displacement and pressure sensor danger rock mass collapse
CN207163396U (en) Drill section deformation Multipoint synchronous test device
CN111119860B (en) Pressure bar for sensing pressure distribution state in hole
CN101650243A (en) Piezoelectric type device for measuring drilling force of deep hole
CN109580371A (en) The detection device and detection method of bellows anti-pressure ability
CN205605197U (en) Nearly many parameter measurement of drill bit device in pit
CN102323024A (en) Vortex-induced vibration test, measurement and analysis system for deep-sea flexible riser model
US20130234494A1 (en) Sensors on a Degradation Platform
CN203148467U (en) Intelligent digital environmental parameter measuring instrument
CN109113789A (en) Press multidirectional monitoring that can position drilling hole stress sensor in ground
WO2008130888B1 (en) Depth measurement by distributed sensors
CN109606541A (en) A kind of small scale underwater sailing body high speed water exit test measuring device
CN205719324U (en) Multisection type temperature sensor
CN102506822B (en) Mining inclination angle sensor
CN205228583U (en) Accurate liquid level measurement probe
CN109540197A (en) Underground water remote monitoring device and Groundwater Monitoring system with it
CN201943651U (en) Testing device for mechanical parameters of underground compression packer
CN106123964B (en) Ground source rock soil layer vertical temperature distribution test and underground water level measurement device
CN208886244U (en) Beformable body multifunctional pipe inner wall defect detector
CN114059518A (en) Integrated multi-parameter engineering monitoring device and matrix type monitoring system
CN202520304U (en) Integral structure of plug type pressure gauge double-channel sensor
CN108007527A (en) A kind of differential pressure water level measurement system
CN204228684U (en) Gas concentration measuring apparatus under a kind of novel underground deep hole high humidity environment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant