CN111115651B - Nano molecular sieve, synthesis method and application thereof - Google Patents

Nano molecular sieve, synthesis method and application thereof Download PDF

Info

Publication number
CN111115651B
CN111115651B CN201811275601.8A CN201811275601A CN111115651B CN 111115651 B CN111115651 B CN 111115651B CN 201811275601 A CN201811275601 A CN 201811275601A CN 111115651 B CN111115651 B CN 111115651B
Authority
CN
China
Prior art keywords
molecular sieve
sieve
nano
specific surface
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811275601.8A
Other languages
Chinese (zh)
Other versions
CN111115651A (en
Inventor
邹薇
任淑
滕加伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Original Assignee
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Shanghai Research Institute of Petrochemical Technology filed Critical China Petroleum and Chemical Corp
Priority to CN201811275601.8A priority Critical patent/CN111115651B/en
Publication of CN111115651A publication Critical patent/CN111115651A/en
Application granted granted Critical
Publication of CN111115651B publication Critical patent/CN111115651B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/86Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
    • C07C2/862Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms
    • C07C2/864Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms the non-hydrocarbon is an alcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7027Aromatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

The invention provides a high specific surface area nano zeolite molecular sieve which can be directly synthesized without using organic amine or seed crystal or a guiding agent and a synthesis method thereof, and mainly solves the problems that in the prior art, a nano zeolite molecular sieve is mostly synthesized by organic amine, and has small specific surface area, high cost and unfriendly environment. According to the invention, inorganic ammonium or inorganic alkali is used for replacing organic amine, and the nano molecular sieve with the grain size of less than 200nm is obtained by optimizing parameters of a molecular sieve synthesis process, wherein the specific surface area is 300-800 m2The synthesis method has the advantages of good repeatability, low synthesis cost, simple operation and environmental friendliness, and can be used in the industrial fields of catalysis, adsorption separation, drying and purification and the like.

Description

Nano molecular sieve, synthesis method and application thereof
Technical Field
The invention relates to a nano molecular sieve, a synthesis method and application thereof, in particular to a nano molecular sieve which can be directly prepared without using organic amine and seed crystal or a guiding agent and has high specific surface and high hydrophobicity.
Background
At present, the grain size of the zeolite molecular sieve commonly used in industry is 1-5 μm, when the grain size of the molecular sieve is reduced from micron level to nanometer level, the zeolite molecular sieve has obvious and favorable influence on some physicochemical properties of the molecular sieve, such as catalytic performance, thermal stability and adsorption performance, and has excellent performance in the fields of catalysis, adsorption separation, purification and drying, and therefore, in recent years, various research institutions at home and abroad carry out deep research on the structure, composition, preparation process and the like of nano materials.
Generally, the nano molecular sieve is synthesized by using a hydrothermal treatment on a silicon-aluminum gel at a certain time and temperature. The grain size is controlled by adjusting parameters such as stirring speed, crystallization temperature, gel composition, PH value, silicon-aluminum ratio, template concentration and the like.
CN106587101A discloses a synthesis method of a nano zeolite molecular sieve suitable for adsorption of VOCs. By adding surfactant P123, sodium fluoride, organosilane and organic amine, the crystal grain size of 300-450 nm and the BET specific surface area of 350-450m are synthesized2The/g nano ZSM-5 molecular sieve has super-strong hydrophobic property and good VOCs adsorption property.
CN105712378A applies for a method for synthesizing nano ZSM-5 with high yield, adopts a method of mixing and crystallizing a precursor I containing a surfactant and a precursor II containing an organic template agent to obtain nano ZSM-5 with the particle size range of 10-80nm and the yield of more than 95 percent, is applied to the reaction of preparing propylene from methanol, and has better catalytic performance.
CN106698461A provides a method for preparing a nano NaY molecular sieve by in-situ crystallization, which prevents agglomeration among nano crystal particles by adding a non-ionic surfactant and utilizing chemical bond connection between the molecular sieve and a matrix, and solves the problems of difficult separation, poor thermal stability and the like of the nano molecular sieve. In the specific synthesis process, firstly, kaolin and the like are subjected to spray drying, roasting at 950 ℃ and reaction for 5 hours at 45 ℃ in 12mol/L hydrochloric acid solution to obtain acid-treated kaolin microspheres; and then mixing the acid-treated kaolin microspheres with a silicon source, an alkali source, a guiding agent, a surfactant and the like, and then carrying out in-situ crystallization to obtain the nano Y zeolite molecular sieve with the grain size of 200-900 nm.
CN101870478A discloses a method for preparing a nano Y molecular sieve with the average particle size of less than 70nm by mixing a silicon source, an aluminum source, an organic template agent and the like and crystallizing at 90-130 ℃.
CN100453461C discloses a method for synthesizing nano mordenite by taking ordinary mordenite as a seed crystal, adding sodium chloride or sodium sulfate to increase the alkali amount and improve the alkalinity of a system without using a template agent. The method avoids the use of an organic template, but the crystallization time is longer, mostly 80 hours, and the production cost is higher because the template is not used.
CN107758686A provides an anion-guided mordenite, which uses organic amine as a template agent to obtain 250-900nm mordenite by controlling anions and alkalinity.
Although the research makes a certain breakthrough in the preparation of the nano molecular sieve, the prepared product still has the defects of larger particle size, small specific surface area, unfriendly environment due to the use of an organic template agent, long operation time, high production cost and the like.
Disclosure of Invention
The invention aims to solve the technical problems of high synthesis cost, environmental friendliness, large particle size, small specific surface area, poor adsorption performance in the presence of water vapor and the like of the molecular sieve in the prior art. The molecular sieve has the characteristics of high specific surface area, small grain size and the like.
In order to solve the technical problems, the technical scheme adopted by the invention is as follows: a nanometer molecular sieve, the crystal grain size of the nanometer molecular sieve is less than 200 nanometers, and the specific surface area is 300-800 m2The water-soluble organic silicon/inorganic composite material is characterized in that the static adsorption rate is not less than 15% under the water-containing or water-free atmosphere; preferably 15 to 45 percent.
In the above technical solution, the measurement of the static adsorption rate is performed under a dry condition (water-free atmosphere) or under a water vapor condition (water-containing atmosphere).
In the above technical solution, preferably, the determination of the static adsorption rate is realized by a static VOCs adsorption test.
In the above technical solution, preferably, the VOCs are selected from one or at least one of toluene, ethanol, ethyl acetate and ethyl acrylate.
In the above technical scheme, the static adsorption rate is not less than 15%, which means that the static adsorption rate is not less than 15% in different adsorption tests of VOCs, wherein the VOCs at least comprise toluene, ethanol, ethyl acetate and ethyl acrylate.
In the technical scheme, preferably, the static adsorption rate is 18-25% in a water-containing atmosphere; and/or the static adsorption rate is 15-22% in a water-free atmosphere.
In the technical scheme, the nano molecular sieve has high hydrophobicity.
The synthesis method of the nano molecular sieve comprises the following steps:
firstly, mixing a silicon source, an aluminum source and inorganic ammonium or inorganic alkali R to obtain pH>9, the molar ratio of the mixture is as follows: R/SiO2=0.02~2,H2O/SiO2=3~150,SiO2/Al2O3=2~∞;
Secondly, aging part or all of the mixture at 10-120 ℃ for 0-24 hours;
placing the first step into a crystallization kettle for hydrothermal treatment, crystallizing at 60-200 ℃ for 1.5-22 hours, and carrying out quenching, filtering, washing and drying on a crystallized product to obtain crystallized powder;
and fourthly, roasting the powder obtained in the third step for 0.5 to 20 hours at the temperature of 350 to 700 ℃ in the atmosphere to obtain the nano zeolite molecular sieve product with high specific surface.
In the above technical solution, preferably, the molecular sieve is selected from one or at least one of a ZSM molecular sieve, a Y molecular sieve, an X molecular sieve, and a mordenite molecular sieve. .
The grain size of the molecular sieve in the technical scheme is 20-200 nm, preferably 30-150 nm, and more preferably 50-100 nm.
The specific surface area of the molecular sieve in the technical scheme is 320-700 m2Preferably 350 to 680 m/g2(ii)/g; more preferably 420 to 680m2/g。
In the technical scheme, the inorganic ammonium or inorganic base R is selected from one or at least one of ammonia water, sodium hydroxide, ammonium carbonate, potassium hydroxide and potassium carbonate.
The silicon source in the above technical scheme is selected from one or at least one of silicon oxide, silica sol, white carbon black, ethyl orthosilicate and activated clay.
In the technical scheme, the aluminum source is at least one selected from aluminum isopropoxide, aluminum oxide, aluminum hydroxide, metallic aluminum, aluminum sol, aluminum sulfate, aluminum nitrate or aluminum chloride.
The aging temperature of the second step in the technical scheme is 40-120 ℃, preferably 50-100 ℃, more preferably 60-90 ℃, and the aging treatment time is 0-24 hours, preferably 5-20 hours, more preferably 10-15 hours.
The step three in the technical proposal is that the obtained crystallized powder is roasted in one or at least one atmosphere condition of air, nitrogen and water vapor.
The roasting temperature of the crystallized powder is 350-700 ℃, the roasting temperature is preferably 400-600 ℃, the roasting time is preferably 450-500 ℃, the roasting time is 0.5-20 hours, the roasting time is preferably 2-15 hours, and the roasting time is preferably 3-10 hours.
The nano molecular sieve with high specific surface area prepared according to the technical scheme can be used in the industrial fields of catalysis, adsorption separation, drying and purification and the like.
According to the technical scheme, in a synthesis system, inorganic ammonium or inorganic base is used for replacing organic amine, a silicon source, an aluminum source, inorganic ammonium or inorganic base and water to form a mixture, after part or all of the mixture is aged at low temperature, hydrothermal synthesis is carried out for crystallization, and a product is quenched, filtered, washed and dried to obtain crystallized powder; roasting and acid washing in the atmosphere to obtain the nano zeolite molecular sieve product with high specific surface area.
The molecular sieve synthesized by the method has the advantages of low cost, environmental friendliness, small particle size, large specific surface area and good technical effect.
Description of the characterization methods:
TEM adopts JEOL 2011 type transmission electron microscope to analyze the microscopic morphology of the molecular sieve, the accelerating voltage is 200kV, and the hanging net is lifted after the sample is dispersed by ethanol ultrasonic wave. After the ethanol is volatilized and dried, the sample is fixed on a sample table, vacuumized and sent into a sample chamber for observation.
The physical properties of the sample such as specific surface, pore volume and pore distribution are determined by a low-temperature nitrogen adsorption analyzer, and are analyzed by a Micromeritics TriStar model 3000 multichannel physical adsorption analyzer, and for porous solid samples, the sample is measured at 1.3 × 10-2PaTreating under pressure at 350 deg.C for 2 hr, and adsorbing high-purity nitrogen at liquid nitrogen temperature to obtain sample pair N2Adsorption/desorption isotherms. The operating temperature was-196 ℃ and the specific surface and pore distribution were calculated according to the Brunauer-Emmett-Teller (BET) and Barret-Joyner-Halenda (BJH) models, respectively.
Drawings
FIG. 1 is a transmission electron microscope image of the Y molecular sieve prepared in example 4, from which the microscopic morphology of the molecular sieve can be seen, and the particle size is about 100 nm.
FIG. 2 is N of the Y molecular sieve prepared in example 42The adsorption/desorption isotherm, calculated according to the Brunauer-Emmett-Teller (BET) model, of the Y molecular sieve prepared in example 3 had a BET specific surface area of about 650m2/g。
The invention is further illustrated by the following examples.
Detailed Description
The present invention will be further described with reference to the following examples. It should be understood that the following examples are illustrative of the present invention only, and are not intended to limit the scope of the present invention.
Comparative example 1
ZSM-5 samples, available from the national pharmaceutical group, having a silica to alumina ratio of 140, a particle size of about 150nm and a BET specific surface area of 350m2/g。
Comparative example 2
Y zeolite molecular sieve, available from Wenzhou chemical group, with particle size of about 150nm and BET specific surface area of 400m2The ratio of silicon to aluminum is 10.
Comparative example 3
Dissolving 220 g of water glass in 300 g of water to prepare a solution A; dissolving 35 g of sodium metaaluminate in 300 g of waterTo prepare a solution B. Slowly dropwise adding the solution B into the solution A, fully stirring, adding 40 g of tetraethylammonium hydroxide solution, adjusting the pH of a glue forming solution to 11.5 by adding 20 wt% of sodium hydroxide solution, and crystallizing for 72 hours at 180 ℃ to obtain a mordenite sample, wherein the particle size of the mordenite sample is about 200nm, and the BET specific surface area of the mordenite sample is 300m2G, silicon to aluminum ratio 21.
Example 1
40 g of silica sol (40 percent), 5 ml of ammonia water, 2 g of sodium hydroxide and 50 ml of deionized water are mixed and stirred for 1 hour at room temperature to form a solution A, 0.5 g of aluminum nitrate and 30 ml of water are stirred and dissolved to form a solution B. Solution A was slowly added to solution B and stirred vigorously for 2 hours to give mixture C.
Taking out 10% of the mixture C, aging at 100 ℃ for 5 hours, adding the rest mixture C and 65 ml of ammonia water, stirring strongly for 2 hours, transferring the mixed system into a stainless steel crystallization kettle, crystallizing at 190 ℃ for 12 hours, quenching, filtering, washing and drying to obtain crystallized powder D.
Calcining the obtained D powder at 500 ℃ in 100% water vapor atmosphere for 5 times, wherein the XRD pattern of the obtained sample has the characteristic diffraction peak of a ZSM-5 zeolite molecular sieve, the particle size of the molecular sieve in the SEM picture is about 80nm, and the BET specific surface area is 450m2G, silicon to aluminum ratio 140.
Example 2
4 g of white carbon black, 2.5 ml of ammonia water, 1 g of sodium hydroxide and 50 ml of deionized water are mixed, stirred for 1 hour at room temperature and aged for 24 hours at 60 ℃ to obtain a mixture A.
25 g tetraethyl orthosilicate, 20 ml ammonia water, 1.5 g sodium hydroxide, 1.5 g alumina sol (30%) and 20 g deionized water, stirring for 24 hours at normal temperature to obtain a mixture B,
mixing A and B, adding 25 ml ammonia water, stirring strongly for 2 hours, transferring the mixed system into a stainless steel crystallization kettle, crystallizing for 12 hours at 190 ℃, and obtaining crystallized powder C through quenching, filtering, washing and drying.
Calcining the obtained C powder in air atmosphere containing 10% of water vapor at 650 ℃ for 10h, wherein the XRD pattern of the obtained sample has the characteristic diffraction peak of a ZSM-5 zeolite molecular sieve, the particle size is about 180nm,BET specific surface area of 450m2/g。
Example 3
25 g of deionized water, 5.2 g of ammonia water and 2.3 g of aluminum isopropoxide are stirred until the solution is clear, 1.5 g of white carbon black is added, the mixture is heated to 40 ℃ for curing for 15 hours, and 0.03 g of sodium hydroxide is added. Crystallizing at 120 deg.C under autogenous pressure for 15 hr, cooling, centrifuging, washing, drying to obtain white powder, calcining at 600 deg.C for 15 hr in nitrogen atmosphere, and calcining at 700 deg.C for 5 hr in 100% water vapor atmosphere to obtain XRD pattern with characteristic diffraction peak of Y zeolite molecular sieve, particle size of 60nm, and BET specific surface area of 800m2The silicon-aluminum ratio is 10.8.
Example 4
Stirring 25 g of deionized water and 2.3 g of sodium metaaluminate until the solution is clear, adding 7 g of silica sol and 0.5 g of sodium hydroxide, stirring until the solution is semitransparent, heating to 50 ℃, curing for 10 hours, and adding 0.13 g of sodium hydroxide. Crystallizing at 100 deg.C under autogenous pressure for 22 hr, cooling, centrifuging, washing, drying to obtain white powder, calcining at 350 deg.C for 0.5 hr in air atmosphere, calcining at 700 deg.C in 100% steam atmosphere for 15 hr to obtain XRD pattern with characteristic diffraction peak of Y zeolite molecular sieve, particle size of about 100nm, and BET specific surface area of 650m2/g。
Example 5
50 g of tetraethyl orthosilicate, 5 ml of ammonia water, 0.5 g of sodium hydroxide, 0.3 g of sodium metaaluminate and 50 ml of deionized water are mixed, stirred at room temperature for 1 hour and aged at 120 ℃ for 16 hours to obtain a mixture A.
25 g of silica sol, 1.5 g of sodium hydroxide, 1.5 g of aluminum sol (30%) and 80 g of deionized water are mixed, stirred at normal temperature for 24 hours to obtain a mixture B,
mixing A and B, adding 25 ml ammonia water, stirring strongly for 2 hours, transferring the mixed system into a stainless steel crystallization kettle, crystallizing for 20 hours at 170 ℃, and obtaining crystallized powder C through quenching, filtering, washing and drying.
Calcining the obtained C powder in air atmosphere containing 50% of water vapor at 550 ℃ for 10h, and obtaining a sample with XRD pattern having characteristic diffraction of mordenite molecular sievePeak, particle size of about 120nm, BET specific surface area of 380m2(g), the silicon-aluminum ratio is 23.
Example 6
Mixing 40 g of silica sol (40%), 15 ml of ammonia water, 2 g of sodium hydroxide and 50 ml of deionized water, and stirring at room temperature for 1 hour to obtain a solution A; 15.5 g of aluminum sulfate and 30 ml of water are stirred and dissolved to form a solution B. Solution A was slowly added to solution B and stirred vigorously for 2 hours to give mixture C.
Taking out 10 wt% of sample from the mixture C, aging for 15 hours at 100 ℃, adding the aging liquid into the rest mixture C, adding 35 ml of ammonia water, stirring strongly for 2 hours, transferring the mixed system into a stainless steel crystallization kettle, crystallizing for 22 hours at 170 ℃, and obtaining crystallized powder D through quenching, filtering, washing and drying.
Calcining the obtained D powder in air atmosphere containing 50% water vapor at 550 deg.C for 5h to obtain sample with XRD pattern having characteristic diffraction peak of mordenite molecular sieve, particle diameter of about 200nm, and BET specific surface area of 300m2/g。
Example 7
Evaluation of benzene and methanol alkylation reaction
After burning the samples of example 1, example 2, example 5, example 6 and comparative example 1 and comparative example 3 at 550 ℃, sodium ions were removed by exchange with ammonium chloride solution, and the pellets were pressed and crushed to 20 to 40 mesh to prepare a catalyst, 0.5 g of which was taken for evaluation of catalytic performance in the alkylation reaction of benzene with methanol.
Benzene and methanol liquid are mixed according to a molar ratio of 2: 1, evenly stirring, introducing into the top of the reactor after vaporization, dispersing and preheating by upper layer porcelain balls, and entering into a catalyst bed layer at a weight space velocity WHSV4.0hr-1The reaction is carried out at the reaction temperature of 400 ℃ and the pressure of 0.5Mpa, the reaction product is cooled from the lower end of the reactor and is introduced into a gas-liquid separator for separation, and the liquid product is sampled and analyzed, and the technical indexes are listed in Table 1.
TABLE 1
Figure BDA0001846905330000081
Example 8
Adsorption test of static VOCs under dry conditions
Each of the samples of examples 1 to 6 and comparative examples 1 to 3 was dried at 180 ℃ for 2 hours, placed in an open beaker, and adsorbed in a desiccator containing several typical organic substances of VOCs, such as toluene, ethanol, ethyl acetate, etc., at a constant temperature for 24 hours, and the static adsorption value under drying conditions of each sample was calculated, and the static adsorption properties of VOCs under drying conditions were compared as shown in Table 2. The calculation formula is as follows:
Figure BDA0001846905330000082
TABLE 2
Figure BDA0001846905330000083
Figure BDA0001846905330000091
Example 9
Adsorption test of static VOCs under water vapor condition
Each sample of examples 1 to 6 and comparative examples 1 to 3 was dried at 180 ℃ for 2 hours, placed in an open beaker, and adsorbed at a constant temperature for 24 hours in a drier containing several typical VOCs organic substances such as toluene, ethanol, ethyl acetate, etc. in a saturated aqueous solution of sodium chloride, and the static adsorption value of each sample under saturated water vapor conditions was calculated, and the static adsorption performance of VOCs under water-containing conditions was compared as shown in table 3. The calculation formula is as follows:
Figure BDA0001846905330000092
TABLE 3
Figure BDA0001846905330000093

Claims (22)

1. A nanometer molecular sieve, the crystal grain size of the nanometer molecular sieve is less than 200 nanometers, and the specific surface area is 300-800 m2The water-soluble organic silicon/inorganic composite material is characterized in that the static adsorption rate is 15-45% in a water-containing or water-free atmosphere;
the method is characterized in that the method for synthesizing the nano molecular sieve comprises the following specific steps:
firstly, mixing a silicon source, an aluminum source and inorganic ammonium or inorganic alkali R to obtain pH>9, the molar ratio of the mixture is as follows: R/SiO2=0.02~2,H2O/SiO2=3~150,SiO2/Al2O3=2~∞;
Ageing part or all of the mixture;
thirdly, putting the product obtained in the second step into a crystallization kettle for hydrothermal synthesis, filtering, washing and drying to obtain crystallized powder;
fourthly, the powder obtained in the third step is roasted in the atmosphere to obtain the nano molecular sieve with high specific surface;
wherein, the aging temperature in the second step is 40-120 ℃, and the aging treatment time is 0-24 h;
wherein the roasting temperature in the step IV is 350-700 ℃, and the time is 0.5-20 h;
wherein, no organic amine template agent or seed crystal or guiding agent is added in the synthesis process of the nano molecular sieve;
wherein the static adsorption is carried out under the condition of water-containing or water-free atmosphere;
wherein the statically adsorbed gas is at least one selected from ethanol, toluene, ethyl acetate and methyl acrylate.
2. The nanomolecular sieve according to claim 1, characterized in that the molecular sieve is selected from at least one of MFI molecular sieve, Y molecular sieve, X molecular sieve and mordenite molecular sieve.
3. The nanomolecular sieve of claim 1, wherein the molecular sieve has a grain size of 20 to 200 nm.
4. The nanomolecular sieve of claim 3, wherein the molecular sieve has a grain size of 30 to 150 nm.
5. The nanomolecular sieve of claim 4, wherein the size of the molecular sieve is 50 to 100 nm.
6. The nano molecular sieve of claim 1, wherein the specific surface area of the molecular sieve is 320-700 m2/g。
7. The nano molecular sieve of claim 6, wherein the specific surface area of the molecular sieve is 350-680 m2/g。
8. The nano molecular sieve of claim 7, wherein the specific surface area of the molecular sieve is 420-680 m2/g。
9. The nanomolecular sieve of claim 1, characterized in that the static adsorption is performed under aqueous conditions.
10. A method for synthesizing a nano molecular sieve is characterized by comprising the following specific steps:
firstly, mixing a silicon source, an aluminum source and inorganic ammonium or inorganic alkali R to obtain pH>9, the molar ratio of the mixture is as follows: R/SiO2=0.02~2,H2O/SiO2=3~150,SiO2/Al2O3=2~∞;
Ageing part or all of the mixture;
thirdly, putting the product obtained in the second step into a crystallization kettle for hydrothermal synthesis, filtering, washing and drying to obtain crystallized powder;
fourthly, the powder obtained in the third step is roasted in the atmosphere to obtain the nano molecular sieve with high specific surface;
wherein, the aging temperature in the second step is 40-120 ℃, and the aging treatment time is 0-24 h;
wherein the roasting temperature in the step IV is 350-700 ℃, and the time is 0.5-20 h;
wherein, no organic amine template agent or seed crystal or directing agent is added in the synthesis process;
wherein the grain size of the nano molecular sieve is less than 200 nanometers, and the specific surface area is 300-800 m2/g;
Wherein, under the atmosphere containing water or not containing water, the static adsorption rate is 15-45%;
wherein the statically adsorbed gas is at least one selected from ethanol, toluene, ethyl acetate and methyl acrylate.
11. The method for synthesizing nano molecular sieve of claim 10, wherein the inorganic ammonium or inorganic base R is at least one selected from ammonia, sodium hydroxide, ammonium carbonate, potassium hydroxide and potassium carbonate.
12. The method for synthesizing nano molecular sieve of claim 10, wherein the silicon source used in the synthesis method is at least one selected from silica, water glass, silica sol, silica white, ethyl orthosilicate and activated clay.
13. The method for synthesizing nano molecular sieve of claim 10, wherein the aluminum source used in the synthesis method is at least one selected from aluminum isopropoxide, aluminum oxide, aluminum hydroxide, metallic aluminum, aluminum sol, aluminum sulfate, aluminum nitrate or aluminum chloride.
14. The method for synthesizing the nano molecular sieve according to claim 10, wherein the aging temperature in the second step is 50-100 ℃; and/or the aging treatment time is 5-20 h.
15. The method for synthesizing nano molecular sieve of claim 14, wherein the aging temperature of the step (II) is 60-90 ℃.
16. The method for synthesizing the nano molecular sieve of claim 14, wherein the aging time of the step (II) is 10-15 hours.
17. The method for synthesizing nano molecular sieve of claim 10, wherein the crystallized powder obtained in step (iii) is calcined at least once in at least one atmosphere of air, nitrogen, and water vapor.
18. The method for synthesizing nano molecular sieve of claim 17, wherein the calcined powder is acid-washed.
19. A molecular sieve composition comprising the nanomolecular sieve of any of claims 1 to 9 or obtained according to the synthesis method of any of claims 10 to 18, and a binder.
20. An adsorption or purification method characterized by a step of subjecting an adsorbed body or a purified body to adsorption or purification in the presence of an adsorbent or a purification agent, wherein the adsorbent or purification agent comprises or is produced from the nanomolecular sieve according to any of claims 1 to 9, the nanomolecular sieve obtained by the synthesis method according to any of claims 10 to 18, or the molecular sieve composition according to claim 19;
wherein the gas to be adsorbed or purified is at least one selected from the group consisting of ethanol, toluene, ethyl acetate and methyl acrylate.
21. A process for the conversion of aromatic hydrocarbons, characterized by the step of subjecting aromatic hydrocarbons to a conversion reaction in the presence of a catalyst, wherein the catalyst comprises or is produced from a nanomolecular sieve according to any of claims 1 to 9, a nanomolecular sieve obtained according to a synthesis process according to any of claims 10 to 18, or a molecular sieve composition according to claim 19.
22. The method of claim 21, wherein the feedstock comprises benzene, methanol, and the product comprises toluene and/or xylene.
CN201811275601.8A 2018-10-30 2018-10-30 Nano molecular sieve, synthesis method and application thereof Active CN111115651B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811275601.8A CN111115651B (en) 2018-10-30 2018-10-30 Nano molecular sieve, synthesis method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811275601.8A CN111115651B (en) 2018-10-30 2018-10-30 Nano molecular sieve, synthesis method and application thereof

Publications (2)

Publication Number Publication Date
CN111115651A CN111115651A (en) 2020-05-08
CN111115651B true CN111115651B (en) 2022-05-24

Family

ID=70484286

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811275601.8A Active CN111115651B (en) 2018-10-30 2018-10-30 Nano molecular sieve, synthesis method and application thereof

Country Status (1)

Country Link
CN (1) CN111115651B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112607747B (en) * 2020-12-29 2023-03-17 安徽纳蓝环保科技有限公司 Green and efficient synthesis method of high-silicon Beta molecular sieve
CN114904357B (en) * 2021-02-10 2024-02-09 中国科学院大连化学物理研究所 Method for adsorbing styrene
CN113083227A (en) * 2021-04-29 2021-07-09 钛纶新材料(昆山)有限公司 Modified 13X molecular sieve method for adsorbing VOCs
CN114684830A (en) * 2022-03-16 2022-07-01 美埃(中国)环境科技股份有限公司 Method for preparing CHA zeolite by bleaching earth

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102627294A (en) * 2012-04-18 2012-08-08 浙江师范大学 Method for rapidly synthesizing nanometer 3A molecular sieve
CN103420394A (en) * 2013-09-01 2013-12-04 山东理工大学 Method for preparing X-type molecular sieve with rice husks serving as silicon source
CN107055567A (en) * 2016-12-27 2017-08-18 常州大学 A kind of preparation method of nanometer of Y zeolite aggregation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102627294A (en) * 2012-04-18 2012-08-08 浙江师范大学 Method for rapidly synthesizing nanometer 3A molecular sieve
CN103420394A (en) * 2013-09-01 2013-12-04 山东理工大学 Method for preparing X-type molecular sieve with rice husks serving as silicon source
CN107055567A (en) * 2016-12-27 2017-08-18 常州大学 A kind of preparation method of nanometer of Y zeolite aggregation

Also Published As

Publication number Publication date
CN111115651A (en) 2020-05-08

Similar Documents

Publication Publication Date Title
CN111115651B (en) Nano molecular sieve, synthesis method and application thereof
Chen et al. A facile method to synthesize the photocatalytic TiO2/montmorillonite nanocomposites with enhanced photoactivity
CN108855197B (en) The method of propane dehydrogenation catalyst and preparation method thereof and preparing propylene by dehydrogenating propane
CN114272892B (en) CO (carbon monoxide)2Trapping adsorbent and preparation method and application thereof
CN111437870A (en) Metal @ MFI multi-level pore structure encapsulated catalyst and encapsulation method and application thereof
Chen et al. Hierarchical ZSM-5 nanocrystal aggregates: seed-induced green synthesis and its application in alkylation of phenol with tert-butanol
CN107512728A (en) The preparation method of card plugging structure multi-stage porous FAU type zeolite molecular sieves
CN107128947A (en) A kind of preparation method of the middle zeolite molecular sieves of micro-diplopore ZSM 5
CN108421556B (en) Method for synthesizing Al-SBA-15 high-efficiency anthraquinone hydrogenation catalyst from FCC spent catalyst
CN112694101A (en) Core-shell molecular sieve, synthesis method and application thereof
US20210394158A1 (en) Silica Alumina Composition with Improved Stability and Method for Making Same
CN111250151A (en) Ni @ ZSM-5 multi-stage pore structure bifunctional catalyst, packaging method and application thereof
CN110424070A (en) A kind of porous aluminum oxide nano fiber and preparation method thereof
CN113135578A (en) Preparation method of silicon-germanium ISV zeolite molecular sieve
CN109999819B (en) Preparation of porous perovskite LaFeO3In-situ carbon template method and application thereof
CN112439445B (en) ZSM-48 molecular sieve, catalyst carrier, preparation method of catalyst carrier, catalyst and application of catalyst
CN114426300A (en) Preparation method of macroporous alumina carrier
Mokhtari et al. Insights to the hydrothermal synthesis of highly crystalline aluminum-free Na [Co] ZSM-5 zeolites and their CO2 adsorption performance
CN110732341A (en) Isobutane dehydrogenation catalyst with spherical aluminum-containing double mesoporous molecular sieve silica gel composite as carrier and preparation method and application thereof
CN111468154A (en) Carbon-coated transition metal nanocomposite and preparation method and application thereof
WO2021129760A1 (en) Dlm-1 molecular sieve, manufacturing method therefor, and use thereof
CN113559920A (en) ZSM-5 molecular sieve/titanium dioxide composite material and preparation method thereof
CN115920961A (en) Preparation method of silicon-containing pseudo-boehmite slurry
CN107686119B (en) hierarchical porous silicon-aluminum molecular sieve nanoclusters and preparation method thereof
CN115010146A (en) Hierarchical pore ZSM-5 nano aggregate molecular sieve and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant