CN111111392A - 电厂cems表反吹时so2浓度在线自动控制的方法 - Google Patents

电厂cems表反吹时so2浓度在线自动控制的方法 Download PDF

Info

Publication number
CN111111392A
CN111111392A CN201911405916.4A CN201911405916A CN111111392A CN 111111392 A CN111111392 A CN 111111392A CN 201911405916 A CN201911405916 A CN 201911405916A CN 111111392 A CN111111392 A CN 111111392A
Authority
CN
China
Prior art keywords
value
flue gas
gas desulfurization
concentration
desulfurization system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911405916.4A
Other languages
English (en)
Other versions
CN111111392B (zh
Inventor
肖扬尖
江爱朋
张涵羽
刘志峰
孔俊东
姜家骥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201911405916.4A priority Critical patent/CN111111392B/zh
Publication of CN111111392A publication Critical patent/CN111111392A/zh
Application granted granted Critical
Publication of CN111111392B publication Critical patent/CN111111392B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/346Controlling the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/80Semi-solid phase processes, i.e. by using slurries
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D11/00Control of flow ratio
    • G05D11/02Controlling ratio of two or more flows of fluid or fluent material
    • G05D11/13Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means
    • G05D11/139Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means by measuring a value related to the quantity of the individual components and sensing at least one property of the mixture

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Treating Waste Gases (AREA)

Abstract

本发明公开了一种电厂CEMS表反吹时SO2浓度在线自动控制的方法。本发明首先对烟气脱硫系统CEMS表所采集到的数据进行反吹判断,判断系统开始反吹时,设计三次指数平滑预测处理,建立三次指数平滑处理的预测模型,从而得出反吹时刻的SO2浓度预测值;然后对烟气脱硫系统进行DMC预测控制,有效的实现了对烟气脱硫系统出口SO2浓度值的控制;最后,判断反吹结束后,对采集到的烟气脱硫系统出口SO2浓度值进行滤波处理,以得到出口SO2浓度值趋于稳定,最终达到安全排放标准。本发明弥补了现有的对反吹处理方法的不足,便于电厂实现自动控制,有效地减缓了电厂工作人员的工作压力,提高了工作效率。

Description

电厂CEMS表反吹时SO2浓度在线自动控制的方法
技术领域
本发明属于燃煤电厂烟气SO2污染物控制技术领域,具体来说是涉及一种电厂CEMS表反吹时SO2浓度在线自动控制的方法。
背景技术
煤泥是煤洗选过程中的副产品,是由微细的粒煤、粉化骨石和水组成的粘稠物。在堆积状态下形态极不稳定,遇水即流失污染水体,风干即飞扬污染空气。为了保护矿区的环境,合理的利用资源,采用煤泥流化床锅炉将其燃烧发电是最为有效的途径。然而煤泥流化床锅炉燃烧运行时会产生大量的SO2,这对大气环境造成了严重的污染。大气污染造成的自然灾害在我们的身边频繁发生,酸雨泛滥、气候异常、光化学烟雾等严重影响了我们的生活和健康。
随着环境质量的日益下降,国家也因此出台了一些相应的政策,对工业中有害物质的排放做出了严格的要求,这对电厂烟气脱硫系统的控制带来了极大的挑战。烟气脱硫技术主要是利用吸收剂或吸附剂去除烟气中的SO2,并使其转化成稳定的硫化合物或硫。常见的烟气脱硫方式可分为干法、半干法和湿法三大类,新建的大型电厂锅炉一般采用湿法脱硫技术,但该方法存在着占用面积大、投资费用高等缺点,对于中小型电厂来说,一般采用干法或者半干法脱硫。
采用半干法烟气脱硫技术目前存在着一些问题,煤泥流化床锅炉烟气脱硫系统经常会出现CEMS(烟气自动监控系统)表在反吹投运时SO2浓度的测量值会有瞬时升高后再恢复正常的现象,有时SO2浓度测量值会达到几千mg/Nm3,这对电厂自动控制的实现来说带来了很大的挑战。电厂对反吹和相关控制常见的处理方法包括:1)CEMS表根据特定条件进行反吹,监控系统判断反吹开始,然后将烟气脱硫系统的自动控制改成手动控制,当反吹结束后再将手动调整到自动模式;2)对烟气脱硫系统进行定时反吹处理,烟气脱硫系统不采用自动控制或者在反吹前后将自动控制改成手动控制。前者有时会导致工作人员判断不准确,手自动切换不及时,工作强度大,对设备损伤大、存在安全隐患;后者也需要切换且很难实现对SO2浓度值的精确控制。对于烟气脱硫系统,由于存在着大滞后大惯性的特性,传统的采用人工控制和普通的PID控制无法实现对SO2浓度的精确控制。基于以上问题,本发明给出了一种电厂CEMS表反吹时SO2浓度在线自动控制的方法,该方法采用三次指数平滑处理、DMC(动态矩阵控制)预测控制相结合的方式,为实现半干法脱硫系统的全自动优化控制提供了有利的保障。
发明内容
本发明专利的目的是针对现有的煤泥流化床半干法烟气脱硫中自动控制技术的不足,提出了一种三次指数平滑预测处理、DMC预测控制相结合的控制方法。该方法通过加入三次指数平滑预测处理来进行对反吹时候的SO2浓度值进行处理,并根据烟气脱硫系统非线性、大滞后和快时变的特点,采用DMC预测控制对烟气脱硫系统进行优化控制。该方法弥补了现有的烟气脱硫系统中因CEMS表反吹时SO2浓度值瞬时升高而导致无法在线自动控制以及控制不精确等不足,便于电厂实现自动控制,有效地减缓了电厂工作人员的工作压力,提高了工作效率。
本发明涉及一种电厂CEMS表反吹时SO2浓度在线自动控制的方法,该方法主要步骤如下:
步骤1、通过对CEMS表所采集到的烟气脱硫系统出口SO2浓度值数据进行反吹判断,如果没有出现反吹,则直接进入步骤2,当判断到开始反吹时,进行三次指数平滑预测处理,建立三次指数平滑处理的预测模型,得出反吹时刻烟气脱硫系统出口SO2浓度预测值,然后进入步骤2;
步骤2、采用DMC预测控制方法对烟气脱硫系统出口SO2浓度值进行控制,实现烟气脱硫系统SO2浓度值的精稳控制,同时对反吹是否停止进行判断,如果反吹停止,则进入步骤3;
步骤3、对系统是否需要滤波进行判断以及滤波处理,将这时采集到的烟气脱硫系统出口的SO2浓度值与反馈控制的设定值进行比较;设定阈值δ,δ取值为(0.2~1)*反馈控制的设定值;若烟气脱硫塔系统SO2浓度设定值与实际SO2浓度输出值的差值的绝对值大于所设定的阈值δ,则将此SO2浓度值进行滤波处理后作为反馈值,然后参与到系统的闭环自动控制;当烟气脱硫系统SO2浓度设定值与采集到的烟气脱硫系统出口的SO2浓度值的差值小于所设定的阈值δ,则不需要经过滤波处理模块,则直接将此SO2浓度值作为反馈值,然后参与到系统的闭环自动控制;
步骤4、继续采集烟气脱硫系统出口SO2浓度值,并与SO2浓度反馈值进行比较,如果两个值绝对差值小于设定阈值δ,则重新进入步骤1。
所述的步骤1具体的实施步骤如下:
步骤A1:对烟气脱硫系统CEMS表所采集到的数据进行反吹判断。采集k时刻SO2浓度值y(k)与k-1时刻的SO2浓度值y(k-1),采样周期为T;根据两个时刻采集到的数据求取其增量,其增量(以绝对值表示)与两次采样允许的最大误差Δy比较,如果小于等于Δy,则认为反吹并未开始,如果大于Δy,则认为烟气脱硫系统反吹开始,即:
Figure BDA0002348617300000031
其中,Δy为是一个可选择的常数,正确选择该值是应用该方法的关键,Δy值视被调量的变化速度而定,在煤泥流化床锅炉烟气脱硫系统中,根据实际情况可取Δy=(1~10)*sp,这里的sp为烟气脱硫系统反馈控制的设定值。判断反吹开始时,舍弃反吹开始后的数据,进行三次指数平滑预测处理,建立三次指数平滑处理的预测模型,得出反吹时刻烟气脱硫系统出口的SO2浓度预测值,然后进入步骤2;若判断没有出现反吹,则直接进入步骤2,进行DMC预测控制。
步骤A2:在步骤A1中,判断反吹开始时,通过以下表达式对所述CEMS表采样的SO2浓度值进行三次指数平滑值的计算:
Figure BDA0002348617300000032
Figure BDA0002348617300000033
Figure BDA0002348617300000034
其中,α是平滑参数,平滑参数α反应的是不同时期历史数据在指数平滑值中所占的比重,取值越大,说明离预测值越近的历史数据对当前的预测值的影响越大,权重下降的越快。反之说明权重变化的越慢,预测值越接近于算术平均值,α的值通常可以多尝试几次以达到最佳效果,这里的α取值范围为0<α<1。
Figure BDA0002348617300000035
为k-1时刻的一次指数平滑值,
Figure BDA0002348617300000036
为k-1时刻的二次指数平滑值,
Figure BDA0002348617300000037
为k-1时刻的三次指数平滑值,
Figure BDA0002348617300000038
为k时刻的一次指数平滑值,
Figure BDA0002348617300000039
为k时刻二次指数平滑值,
Figure BDA00023486173000000310
为k时刻三次指数平滑值。
步骤A3:根据步骤A2中计算的三次指数平滑值,通过以下表达式对烟气脱硫系统反吹处理时SO2浓度值进行预测:
Figure BDA0002348617300000041
Figure BDA0002348617300000042
Figure BDA0002348617300000043
Figure BDA0002348617300000044
其中,m为单步预测得到的周期,即需要预测的期数与当前期数的间隔数,y(k+m)为预测值,所述的预测值y(k+m)将在反吹开始时依次取代烟气脱硫系统中反吹时刻的SO2浓度值,Ek、Fk、Gk为中间变量,Ek为预测值表达式的常数项,Fk为预测值表达的一次项,Gk为预测值表达式的二次项。
所述的步骤2具体实施步骤如下:
步骤B1:首先测定烟气脱硫系统控制对象的单位阶跃响应的采样值ai=a(iT)(i=1,2,…,N),其中N为建模时域,N的值可根据模型辨识在烟气脱硫系统控制对象阶跃响应后的某一时刻ai(i>N)系统采样值趋于平稳,同时采样值ai(i=1,2,…,N)具有相同的数量级的量化误差时来取得,即aN为在该时刻采样值近似为被控对象阶跃响应的稳态值a。在M个连续控制增量Δu(k),…Δu(k+M-1)作用下,对未来时刻的输出预测值为:
Figure BDA0002348617300000045
其中,M为控制时域,即控制增量变化的次数,其值根据实际调节情况选取,M个控制增量能够依次求取,Δu(k)=u(k)-u(k-1),…,Δu(k+M-1)=u(k+M-1)-u(k+M-2),
Figure BDA0002348617300000046
为在第M个控制增量Δu(k+M-1)下对未来的输出值,
Figure BDA0002348617300000047
表示为未来N个时刻的输出初始预测值,k+i/k表示在k时刻对k+i时刻的预测。
步骤B2:通过上式(9),导出
Figure BDA0002348617300000048
与Δu之间的向量形式关系为:
Figure BDA0002348617300000049
其中,A为阶跃响应曲线ai组成的P×M矩阵,表示为
Figure BDA0002348617300000051
Figure BDA0002348617300000052
对于每一时刻k,确定从该时刻起的M个控制增量Δu(k),…Δu(k+M-1),使得在其作用下被控对象未来P个时刻的输出预测值
Figure BDA0002348617300000053
尽可能接近给定的期望值w(k+i),i=1,…P。在k时刻的优化性能指标:
Figure BDA0002348617300000054
式中,wP(k)=[w(k+1),…,w(k+P)]T为期望输出,其值为P行1列的单位列向量与烟气脱硫系统的设定值sp的乘积,Q=diag(q1,…,qP)为误差权矩阵;R=diag(r1,…,rM)为控制权矩阵,这两个矩阵可根据经验选取,Q一般取单位对角矩阵,R一般取零矩阵,P为优化时域,即所预测输出的个数,通常规定M≤P≤N。要使得J(k)取极小的ΔuM(k),可通过极值必要条件dJ(k)/dΔuM(k)=0求出:
Figure BDA0002348617300000055
通过上式,求出k时刻优化得到的Δu(k),Δu(k+1/k),…,Δu(k+M-1/k)的最优值,DMC只取Δu(k)构成实际控制量u(k)=u(k-1)+Δu(k)作用于被控对象。到下一时刻,它又求解类似的优化问题,得到Δu(k+1)。
步骤B3:在求解上式(12)中的
Figure BDA0002348617300000056
时,由于实际过程中存在非线性、模型失配、环境干扰等未知因素,基于不变模型的预测输出不可能与系统的实际输出完全吻合,这时需要利用实时信息进行反馈校正,DMC在k+1时刻的实际输出为y(k+1),其所在的模型预测的该时刻的输出为
Figure BDA0002348617300000057
两者的误差构成了输出误差为:
Figure BDA0002348617300000058
采用对e(k+1)加权的方式修正对未来输出的预测:
Figure BDA0002348617300000059
式中:
Figure BDA00023486173000000510
为被控对象在k时刻的输出N维初始预测向量;
Figure BDA00023486173000000511
为校正后的N维预测输出向量;h=[h1,…,hN]T为由权系数组成的N维校正向量,其值可以取
Figure BDA00023486173000000512
向量a=[a1,…,aN]T为模型向量。
对上式(14)中的
Figure BDA0002348617300000061
进行移位处理,得到新的初始预测值
Figure BDA0002348617300000062
即:
Figure BDA0002348617300000063
式中:
Figure BDA0002348617300000064
为移位矩阵,其定义为
Figure BDA0002348617300000065
Figure BDA0002348617300000066
为k+1时刻初始预测值,对下一时刻进行优化计算了。
通过上述步骤B1~B4,完成了对烟气脱硫系统的DMC预测控制。整个DMC预测控制过程就是以这种结合反馈校正的滚动优化方式反复在线进行,实现对烟气脱硫系统采集到的出口SO2浓度值精稳控制。
步骤B5:在上述的DMC预测控制完之后,判断反吹过程是否结束,采集k时刻的CEMS表SO2浓度值y(k)与k-1时刻的SO2浓度值y(k-1),采样周期为T;将两个时刻采集到的数据求取其增量,其值(以绝对值表示)与两次采样允许的最大误差Δy比较,如果小于等于Δy,则认为反吹结束,停止三次指数平滑预测数据,进入步骤3;如果大于Δy,则可认为烟气脱硫系统反吹并未结束,继续进行三次指数平滑预测处理。
步骤3所述的滤波处理采用一阶惯性滤波法,即一阶低通滤波,其滤波算法为:
x(k)=sy(k)+(1-s)x(k-1) (16);
s=T/(T+Tf) (17);
式中,s为滤波系数,滤波系数s的取值范围为0<s<1,x(k-1)为上一次滤波输出值,x(k)为本次滤波输出值,Tf为滤波时间,其值根据其滤波结果的灵敏度和平稳度来获取。
与现有的技术相比,本发明专利具有如下优点:
本发明专利通过对CEMS表实时采集到的SO2浓度值进行预处理,采用三次指数平滑预测法准确的预测了反吹过程中SO2浓度值的数据,预测结果具有一定的客观性;通过对烟气脱硫系统进行DMC预测控制,有效的保证了烟气脱硫系统的稳定运行;对反吹结束后采集到的烟气脱硫系统出口SO2浓度值进行滤波,减小了反馈值误差,便于系统的闭环自动控制,最终提高了数据的可靠性,这对于实现电厂超低排放系统的实时自动控制具有重要的意义。
附图说明
图1为本发明反吹处理的流程框图;
图2为本发明反吹处理时的反馈控制框图;
图3为本发明反吹结束后滤波处理的反馈控制框图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步的分析。
如图1所示,一种电厂CEMS表反吹时SO2浓度在线自动控制的方法,具体实施采用以下步骤:
步骤1、通过对CEMS表所采集到的烟气脱硫系统出口SO2浓度值数据进行反吹判断,如果没有出现反吹,则直接进入步骤2,当判断到开始反吹时,进行三次指数平滑预测处理,建立三次指数平滑处理的预测模型,得出反吹时刻烟气脱硫系统出口SO2浓度预测值,然后进入步骤2;
具体的实施步骤如下:
步骤A1:对烟气脱硫系统CEMS表所采集到的数据进行反吹判断。采集k时刻SO2浓度值y(k)与k-1时刻的SO2浓度值y(k-1),采样周期为T;根据两个时刻采集到的数据求取其增量,其增量(以绝对值表示)与两次采样允许的最大误差Δy比较,如果小于等于Δy,则认为反吹并未开始,如果大于Δy,则可认为烟气脱硫系统反吹开始,即:
Figure BDA0002348617300000071
其中,Δy为是一个可选择的常数,正确选择该值是应用该方法的关键,Δy值视被调量的变化速度而定,在煤泥流化床锅炉烟气脱硫系统中,根据实际情况可取Δy=(1~10)*sp,这里的sp为烟气脱硫系统反馈控制的设定值。判断反吹开始时,舍弃反吹开始后的数据,进行三次指数平滑预测处理,建立三次指数平滑处理的预测模型,得出反吹时刻烟气脱硫系统出口的SO2浓度预测值,然后进入步骤2;若判断没有出现反吹,则直接进入步骤2,进行DMC预测控制。
步骤A2:在步骤A1中,判断反吹开始时,通过以下表达式对所述CEMS表采样的SO2浓度值进行三次指数平滑值的计算:
Figure BDA0002348617300000072
Figure BDA0002348617300000081
Figure BDA0002348617300000082
其中,α是平滑参数,平滑参数α反应的是不同时期历史数据在指数平滑值中所占的比重,取值越大,说明离预测值越近的历史数据对当前的预测值的影响越大,权重下降的越快。反之说明权重变化的越慢,预测值越接近于算术平均值,α的值通常可以多尝试几次以达到最佳效果,这里的α取值范围为0<α<1。
Figure BDA0002348617300000083
为k-1时刻的一次指数平滑值,
Figure BDA0002348617300000084
为k-1时刻的二次指数平滑值,
Figure BDA0002348617300000085
为k-1时刻的三次指数平滑值,
Figure BDA0002348617300000086
为k时刻的一次指数平滑值,
Figure BDA0002348617300000087
为k时刻二次指数平滑值,
Figure BDA0002348617300000088
为k时刻三次指数平滑值。
步骤A3:根据步骤A2中计算的三次指数平滑值,通过以下表达式对烟气脱硫系统反吹处理时SO2浓度值进行预测:
Figure BDA0002348617300000089
Figure BDA00023486173000000810
Figure BDA00023486173000000811
Figure BDA00023486173000000812
其中,m为单步预测得到的周期,即需要预测的期数与当前期数的间隔数,y(k+m)为预测值,所述的预测值y(k+m)将在反吹开始时依次取代烟气脱硫系统中反吹时刻的SO2浓度值,Ek、Fk、Gk为中间变量,Ek为预测值表达式的常数项,Fk为预测值表达的一次项,Gk为预测值表达式的二次项。
步骤2、采用DMC预测控制方法对烟气脱硫系统出口SO2浓度值进行控制,实现烟气脱硫系统SO2浓度值的精稳控制,同时对反吹是否停止进行判断,如果反吹停止,则进入步骤3;如图2所示,具体实施步骤如下:
步骤B1:首先测定烟气脱硫系统控制对象的单位阶跃响应的采样值ai=a(iT)(i=1,2,…,N),其中N为建模时域,N的值可根据模型辨识在烟气脱硫系统控制对象阶跃响应后的某一时刻ai(i>N)系统采样值趋于平稳,同时采样值ai(i=1,2,…,N)具有相同的数量级的量化误差时来取得,即aN可认为在该时刻采样值近似为被控对象阶跃响应的稳态值a。在M个连续控制增量Δu(k),…Δu(k+M-1)作用下,对未来时刻的输出预测值为:
其中,M为控制时域,即控制增量变化的次数,其值可根据实际调节情况选取,M个控制增量可依次求取,Δu(k)=u(k)-u(k-1),…,Δu(k+M-1)=u(k+M-1)-u(k+M-2),
Figure BDA0002348617300000092
为在第M个控制增量Δu(k+M-1)下对未来的输出值,
Figure BDA0002348617300000093
表示为未来N个时刻的输出初始预测值,k+i/k表示在k时刻对k+i时刻的预测。
步骤B2:通过上式(9),可以导出
Figure BDA0002348617300000094
与Δu之间的向量形式关系为:
Figure BDA0002348617300000095
其中,A为阶跃响应曲线ai组成的P×M矩阵,可以表示为
Figure BDA0002348617300000096
Figure BDA0002348617300000097
对于每一时刻k,确定从该时刻起的M个控制增量Δu(k),…Δu(k+M-1),使得在其作用下被控对象未来P个时刻的输出预测值
Figure BDA0002348617300000098
尽可能接近给定的期望值w(k+i),i=1,…P。在k时刻的优化性能指标:
Figure BDA0002348617300000099
式中,wP(k)=[w(k+1),…,w(k+P)]T为期望输出,其值为P行1列的单位列向量与sp的乘积,Q=diag(q1,…,qP)为误差权矩阵;R=diag(r1,…,rM)为控制权矩阵,这两个矩阵可根据经验选取,Q一般取单位对角矩阵,R一般取零矩阵,P为优化时域,即所预测输出的个数,通常规定M≤P≤N。要使得J(k)取极小的ΔuM(k),可通过极值必要条件dJ(k)/dΔuM(k)=0求出:
Figure BDA00023486173000000910
通过上式,可以求出k时刻优化得到的Δu(k),Δu(k+1/k),…,Δu(k+M-1/k)的最优值,DMC只取Δu(k)构成实际控制量u(k)=u(k-1)+Δu(k)作用于被控对象。到下一时刻,它又求解类似的优化问题,得到Δu(k+1)。
步骤B3:在求解上式(12)中的
Figure BDA0002348617300000101
时,由于实际过程中存在非线性、模型失配、环境干扰等未知因素,基于不变模型的预测输出不可能与系统的实际输出完全吻合,这时需要利用实时信息进行反馈校正,DMC在k+1时刻的实际输出为y(k+1),其所在的模型预测的该时刻的输出为
Figure BDA0002348617300000102
两者的误差构成了输出误差为:
Figure BDA0002348617300000103
采用对e(k+1)加权的方式修正对未来输出的预测:
Figure BDA0002348617300000104
式中:
Figure BDA0002348617300000105
为被控对象在k时刻的输出N维初始预测向量;
Figure BDA0002348617300000106
为校正后的N维预测输出向量;h=[h1,…,hN]T为由权系数组成的N维校正向量,其值可以取
Figure BDA0002348617300000107
Figure BDA0002348617300000108
向量a=[a1,…,aN]T为模型向量。
对上式(14)中的
Figure BDA0002348617300000109
进行移位处理,得到新的初始预测值
Figure BDA00023486173000001010
即:
Figure BDA00023486173000001011
式中:
Figure BDA00023486173000001012
为移位矩阵,其定义为
Figure BDA00023486173000001013
Figure BDA00023486173000001014
为k+1时刻初始预测值,这样就可以对下一时刻进行优化计算了。
通过上述步骤B1~B4,完成了对烟气脱硫系统的DMC预测控制。整个DMC预测控制过程就是以这种结合反馈校正的滚动优化方式反复在线进行,实现对烟气脱硫系统采集到的出口SO2浓度值精稳控制。
步骤B5:在上述的DMC预测控制完之后,判断反吹过程是否结束,采集k时刻的CEMS表SO2浓度值y(k)与k-1时刻的SO2浓度值y(k-1),采样周期为T;将两个时刻采集到的数据求取其增量,其值(以绝对值表示)与两次采样允许的最大误差Δy比较,如果小于等于Δy,则认为反吹结束,停止三次指数平滑预测数据,进入步骤3;如果大于Δy,则可认为烟气脱硫系统反吹并未结束,继续进行三次指数平滑预测处理。
步骤3、对系统是否需要滤波进行判断以及滤波处理,将这时采集到的烟气脱硫系统出口SO2浓度值与反馈控制的设定值进行比较,如果差值比较大,则将此SO2浓度值进行滤波处理后作为反馈值,然后参与到系统的闭环自动控制。如果差值比较小,则直接将此SO2浓度值作为反馈值,然后参与到系统的闭环自动控制;如图3所示;
具体的实施步骤如下:
步骤C1:将这时采集到的烟气脱硫系统出口的SO2浓度值y(k)与反馈控制的设定值sp进行比较,包括设定阈值δ,其中δ可取值为(0.2~1)*sp;若烟气脱硫塔系统SO2浓度设定值sp与系统的实际SO2浓度输出值y(k)的差值的绝对值大于所设定的阈值δ,则将此SO2浓度值进行滤波处理后作为反馈值,然后参与到系统的闭环自动控制。滤波处理采用一阶惯性滤波法,即一阶低通滤波,其滤波算法为:
x(k)=sy(k)+(1-s)x(k-1) (16);
s=T/(T+Tf) (17);
式中,s为滤波系数,滤波系数s的取值范围为0<s<1,x(k-1)为上一次滤波输出值,x(k)为本次滤波输出值,Tf为滤波时间,其值可根据其滤波结果的灵敏度和平稳度来获取。
步骤C2:当烟气脱硫系统SO2浓度设定值sp与采集到的烟气脱硫系统出口的SO2浓度值y(k)的差值小于所设定的阈值δ,则不需要经过滤波处理模块,则直接将此SO2浓度值作为反馈值,然后参与到系统的闭环自动控制。
步骤4、继续采集烟气脱硫系统出口SO2浓度值,并与SO2浓度反馈值进行比较,如果两个值绝对差值小于设定阈值δ,则重新进入步骤1。
通过上述方法,有效预测出反吹时刻的SO2浓度值,通过三次指数平滑预测处理,有效的预测了反吹时刻的SO2浓度值,对实施烟气脱硫系统的在线自动控制具有重要的实际意义。
以上内容是结合具体的优选实施方式对本发明所做的进一步详细说明,不能认定本发明的具体实施只限于这些说明。对于本发明所属技术领域的技术人员来说,在不脱离发明构思的前提下还可以做出一定程度的简单推演或者替换,都应当视为属于本发明的保护范围。

Claims (4)

1.电厂CEMS表反吹时SO2浓度在线自动控制的方法,其特征在于:主要包括如下步骤:
步骤1、通过对CEMS表所采集到的烟气脱硫系统出口SO2浓度值数据进行反吹判断,如果没有出现反吹,则直接进入步骤2,当判断到开始反吹时,进行三次指数平滑预测处理,建立三次指数平滑处理的预测模型,得出反吹时刻烟气脱硫系统出口SO2浓度预测值,然后进入步骤2;
步骤2、采用DMC预测控制方法对烟气脱硫系统出口SO2浓度值进行控制,实现烟气脱硫系统SO2浓度值的精稳控制,同时对反吹是否停止进行判断,如果反吹停止,则进入步骤3;
步骤3、对系统是否需要滤波进行判断以及滤波处理,将这时采集到的烟气脱硫系统出口的SO2浓度值与反馈控制的设定值进行比较;设定阈值δ,δ取值为(0.2~1)*反馈控制的设定值;若烟气脱硫塔系统SO2浓度设定值与实际SO2浓度输出值的差值的绝对值大于所设定的阈值δ,则将此SO2浓度值进行滤波处理后作为反馈值,然后参与到系统的闭环自动控制;当烟气脱硫系统SO2浓度设定值与采集到的烟气脱硫系统出口的SO2浓度值的差值小于所设定的阈值δ,则不需要经过滤波处理模块,则直接将此SO2浓度值作为反馈值,然后参与到系统的闭环自动控制;
步骤4、继续采集烟气脱硫系统出口SO2浓度值,并与SO2浓度反馈值进行比较,如果两个值绝对差值小于设定阈值δ,则重新进入步骤1。
2.如权利要求1所述的电厂CEMS表反吹时SO2浓度在线自动控制的方法,其特征在于:所述的步骤1具体的实施步骤如下:
步骤A1:对烟气脱硫系统CEMS表所采集到的数据进行反吹判断;采集k时刻SO2浓度值y(k)与k-1时刻的SO2浓度值y(k-1),采样周期为T;根据两个时刻采集到的数据求取其增量,其增量绝对值与两次采样允许的最大误差Δy比较,如果小于等于Δy,则认为反吹并未开始,如果大于Δy,则认为烟气脱硫系统反吹开始,即:
Figure FDA0002348617290000011
其中,Δy为是一个可选择的常数,正确选择该值是应用该方法的关键,Δy值视被调量的变化速度而定,在煤泥流化床锅炉烟气脱硫系统中,根据实际情况可取Δy=(1~10)*sp,这里的sp为烟气脱硫系统反馈控制的设定值;判断反吹开始时,舍弃反吹开始后的数据,进行三次指数平滑预测处理,建立三次指数平滑处理的预测模型,得出反吹时刻烟气脱硫系统出口的SO2浓度预测值,然后进入步骤2;若判断没有出现反吹,则直接进入步骤2,进行DMC预测控制;
步骤A2:在步骤A1中,判断反吹开始时,通过以下表达式对所述CEMS表采样的SO2浓度值进行三次指数平滑值的计算:
Figure FDA0002348617290000021
Figure FDA0002348617290000022
Figure FDA0002348617290000023
其中,α是平滑参数,平滑参数α反应的是不同时期历史数据在指数平滑值中所占的比重,取值越大,说明离预测值越近的历史数据对当前的预测值的影响越大,权重下降的越快;反之说明权重变化的越慢,预测值越接近于算术平均值,α的值通常可以多尝试几次以达到最佳效果,这里的α取值范围为0<α<1;
Figure FDA0002348617290000024
为k-1时刻的一次指数平滑值,
Figure FDA0002348617290000025
为k-1时刻的二次指数平滑值,
Figure FDA0002348617290000026
为k-1时刻的三次指数平滑值,
Figure FDA0002348617290000027
为k时刻的一次指数平滑值,
Figure FDA0002348617290000028
为k时刻二次指数平滑值,
Figure FDA0002348617290000029
为k时刻三次指数平滑值;
步骤A3:根据步骤A2中计算的三次指数平滑值,通过以下表达式对烟气脱硫系统反吹处理时SO2浓度值进行预测:
Figure FDA00023486172900000210
Figure FDA00023486172900000211
Figure FDA00023486172900000212
Figure FDA00023486172900000213
其中,m为单步预测得到的周期,即需要预测的期数与当前期数的间隔数,y(k+m)为预测值,所述的预测值y(k+m)将在反吹开始时依次取代烟气脱硫系统中反吹时刻的SO2浓度值,Ek、Fk、Gk为中间变量,Ek为预测值表达式的常数项,Fk为预测值表达的一次项,Gk为预测值表达式的二次项。
3.如权利要求1所述的电厂CEMS表反吹时SO2浓度在线自动控制的方法,其特征在于:所述的步骤2具体实施步骤如下:
步骤B1:首先测定烟气脱硫系统控制对象的单位阶跃响应的采样值ai=a(iT)(i=1,2,...,N),其中N为建模时域,N的值可根据模型辨识在烟气脱硫系统控制对象阶跃响应后的某一时刻ai(i>N)系统采样值趋于平稳,同时采样值ai(i=1,2,...,N)具有相同的数量级的量化误差时来取得,即aN可认为在该时刻采样值近似为被控对象阶跃响应的稳态值a;在M个连续控制增量Δu(k),...Δu(k+M-1)作用下,对未来时刻的输出预测值为:
Figure FDA0002348617290000031
其中,M为控制时域,即控制增量变化的次数,其值根据实际调节情况选取,M个控制增量能够依次求取,Δu(k)=u(k)-u(k-1),...,Δu(k+M-1)=u(k+M-1)-u(k+M-2),
Figure FDA0002348617290000032
为在第M个控制增量Δu(k+M-1)下对未来的输出值,
Figure FDA0002348617290000033
表示为未来N个时刻的输出初始预测值,k+i/k表示在k时刻对k+i时刻的预测;
步骤B2:通过上式(9),导出
Figure FDA0002348617290000034
与Δu之间的向量形式关系为:
Figure FDA0002348617290000035
其中,A为阶跃响应曲线ai组成的P×M矩阵,表示为
Figure FDA0002348617290000036
Figure FDA0002348617290000037
对于每一时刻k,确定从该时刻起的M个控制增量Δu(k),...Δu(k+M-1),使得在其作用下被控对象未来P个时刻的输出预测值
Figure FDA0002348617290000038
尽可能接近给定的期望值w(k+i),i=1,...P;在k时刻的优化性能指标:
Figure FDA0002348617290000039
式中,wp(k)=[w(k+1),...,w(k+P)]T为期望输出,其值为P行1列的单位列向量与sp的乘积,Q=diag(q1,...,qP)为误差权矩阵;R=diag(r1,...,rM)为控制权矩阵,这两个矩阵可根据经验选取,Q一般取单位对角矩阵,R一般取零矩阵,P为优化时域,即所预测输出的个数,通常规定M≤P≤N;要使得J(k)取极小的ΔuM(k),可通过极值必要条件dJ(k)/dΔuM(k)=0求出:
Figure FDA0002348617290000041
通过上式,可以求出k时刻优化得到的Δu(k),Δu(k+1/k),...,Δu(k+M-1/k)的最优值,DMC只取Δu(k)构成实际控制量u(k)=u(k-1)+Δu(k)作用于被控对象;到下一时刻,它又求解类似的优化问题,得到Δu(k+1);
步骤B3:在求解上式(12)中的
Figure FDA0002348617290000042
时,由于实际过程中存在非线性、模型失配、环境干扰等未知因素,基于不变模型的预测输出不可能与系统的实际输出完全吻合,这时需要利用实时信息进行反馈校正,DMC在k+1时刻的实际输出为y(k+1),其所在的模型预测的该时刻的输出为
Figure FDA0002348617290000043
两者的误差构成了输出误差为:
Figure FDA0002348617290000044
采用对e(k+1)加权的方式修正对未来输出的预测:
Figure FDA0002348617290000045
式中:
Figure FDA0002348617290000046
为被控对象在k时刻的输出N维初始预测向量;
Figure FDA0002348617290000047
为校正后的N维预测输出向量;h=[h1,...,hN]T为由权系数组成的N维校正向量,其值可以取h1=1,
Figure FDA0002348617290000048
向量a=[a1,...,aN]T为模型向量;
对上式(14)中的
Figure FDA0002348617290000049
进行移位处理,得到新的初始预测值
Figure FDA00023486172900000410
即:
Figure FDA00023486172900000411
式中:
Figure FDA00023486172900000412
为移位矩阵,其定义为
Figure FDA00023486172900000413
Figure FDA00023486172900000414
为k+1时刻初始预测值,这样就可以对下一时刻进行优化计算了;
通过上述步骤B1~B4,完成了对烟气脱硫系统的DMC预测控制;整个DMC预测控制过程就是以这种结合反馈校正的滚动优化方式反复在线进行,实现对烟气脱硫系统采集到的出口SO2浓度值精稳控制;
步骤B5:在上述的DMC预测控制完之后,判断反吹过程是否结束,采集k时刻的CEMS表SO2浓度值y(k)与k-1时刻的SO2浓度值y(k-1),采样周期为T;将两个时刻采集到的数据求取其增量,其值(以绝对值表示)与两次采样允许的最大误差Δy比较,如果小于等于Δy,则认为反吹结束,停止三次指数平滑预测数据,进入步骤3;如果大于Ay,则可认为烟气脱硫系统反吹并未结束,继续进行三次指数平滑预测处理。
4.如权利要求1所述的电厂CEMS表反吹时SO2浓度在线自动控制的方法,其特征在于:步骤3所述的滤波处理采用一阶惯性滤波法,即一阶低通滤波,其滤波算法为:
x(k)=sy(k)+(1-s)x(k-1) (16);
s=T/(T+Tf) (17);
式中,s为滤波系数,滤波系数s的取值范围为0<s<1,x(k-1)为上一次滤波输出值,x(k)为本次滤波输出值,Tf为滤波时间,其值根据其滤波结果的灵敏度和平稳度来获取。
CN201911405916.4A 2019-12-30 2019-12-30 电厂cems表反吹时so2浓度在线自动控制的方法 Active CN111111392B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911405916.4A CN111111392B (zh) 2019-12-30 2019-12-30 电厂cems表反吹时so2浓度在线自动控制的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911405916.4A CN111111392B (zh) 2019-12-30 2019-12-30 电厂cems表反吹时so2浓度在线自动控制的方法

Publications (2)

Publication Number Publication Date
CN111111392A true CN111111392A (zh) 2020-05-08
CN111111392B CN111111392B (zh) 2021-08-31

Family

ID=70506307

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911405916.4A Active CN111111392B (zh) 2019-12-30 2019-12-30 电厂cems表反吹时so2浓度在线自动控制的方法

Country Status (1)

Country Link
CN (1) CN111111392B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113190043A (zh) * 2021-05-06 2021-07-30 国网山西省电力公司吕梁供电公司 基于ros平台的六旋翼无人机mpc控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5415025A (en) * 1990-10-22 1995-05-16 Marine Shale Processors, Inc. Mass spectrometer-based continuous emissions monitoring system for hazardous waste stack gas measurements
CN105807736A (zh) * 2014-12-27 2016-07-27 上海麦杰环境科技有限公司 污染物智能核算方法
CN107831651A (zh) * 2017-10-12 2018-03-23 国网河北能源技术服务有限公司 煤粉电站锅炉scr与sncr脱硝系统协同控制方法
CN107952353A (zh) * 2017-12-04 2018-04-24 烟台龙源电力技术股份有限公司 一种烟气净化系统及其控制方法
CN207822767U (zh) * 2017-12-29 2018-09-07 贵州黔东电力有限公司 一种火电厂湿法脱硫出口so2排放控制电路
CN110479053A (zh) * 2019-09-12 2019-11-22 华电国际电力股份有限公司邹县发电厂 一种单pid回路加前馈调节脱硫供浆流量的装置及控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5415025A (en) * 1990-10-22 1995-05-16 Marine Shale Processors, Inc. Mass spectrometer-based continuous emissions monitoring system for hazardous waste stack gas measurements
CN105807736A (zh) * 2014-12-27 2016-07-27 上海麦杰环境科技有限公司 污染物智能核算方法
CN107831651A (zh) * 2017-10-12 2018-03-23 国网河北能源技术服务有限公司 煤粉电站锅炉scr与sncr脱硝系统协同控制方法
CN107952353A (zh) * 2017-12-04 2018-04-24 烟台龙源电力技术股份有限公司 一种烟气净化系统及其控制方法
CN207822767U (zh) * 2017-12-29 2018-09-07 贵州黔东电力有限公司 一种火电厂湿法脱硫出口so2排放控制电路
CN110479053A (zh) * 2019-09-12 2019-11-22 华电国际电力股份有限公司邹县发电厂 一种单pid回路加前馈调节脱硫供浆流量的装置及控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113190043A (zh) * 2021-05-06 2021-07-30 国网山西省电力公司吕梁供电公司 基于ros平台的六旋翼无人机mpc控制方法

Also Published As

Publication number Publication date
CN111111392B (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
CN109343349B (zh) 一种基于喷氨量补偿器的scr烟气脱硝优化控制系统和方法
CN108636094A (zh) 一种湿法脱硫工艺中的精确预测控制与节能系统及方法
CN112506162B (zh) 一种基于数据模型和机理运算的氧化风系统控制方法
CN110263395A (zh) 基于数值模拟和数据分析的电厂脱硝运行优化方法及系统
CN111399458B (zh) 基于扰动抑制广义预测控制的scr脱硝系统控制方法
CN114225662B (zh) 一种基于滞后模型的烟气脱硫脱硝优化控制方法
CN111111392B (zh) 电厂cems表反吹时so2浓度在线自动控制的方法
CN112742187A (zh) 一种脱硫系统中pH值的控制方法及装置
CN113450880A (zh) 一种脱硫系统入口so2浓度智能预测方法
CN112967760A (zh) 基于脱硫系统入口so2含量的石灰石浆液量预估方法
CN115245735A (zh) 基于预测控制模型的水泥窑烟气iSNCR控制方法
CN112364562A (zh) 一种烟气环保岛协同控制方法及系统
CN109032117B (zh) 基于arma模型的单回路控制系统性能评价方法
CN110737198A (zh) 基于bp神经网络的大型燃煤电站co2捕集系统预测控制方法
CN113593653B (zh) 一种湿法脱硫装置整体经济效益最优控制方法
CN109833773B (zh) 一种高效脱硝氨流量精确控制方法
CN112791570A (zh) 一种全工况自适应的ph调节方法
CN110673482A (zh) 一种基于神经网络预测的电站燃煤锅炉智能控制方法和系统
CN105785761A (zh) 水泥生料分解过程温度智能切换控制方法
CN112044270B (zh) 一种基于数据驱动多模型的脱硫氧化风系统控制方法
Odgaard On usage of pareto curves to select wind turbine controller tunings to the wind turbulence level
CN114089636A (zh) Scr脱硝外挂式智能喷氨闭环控制方法与设备
JP2529244B2 (ja) 湿式排煙脱硫装置の吸収液循環量制御装置
CN216772212U (zh) 两炉一烟囱脱硫智能控制系统
JPH04290522A (ja) 湿式排ガス脱硫装置の吸収塔への吸収液循環流量制御方法および制御装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20200508

Assignee: Hangzhou LIANTENG Network Technology Co.,Ltd.

Assignor: HANGZHOU DIANZI University

Contract record no.: X2022330000004

Denomination of invention: On line automatic control method of SO2 concentration during back blowing of CEMS meter in power plant

Granted publication date: 20210831

License type: Common License

Record date: 20220106