CN111103311A - 皮秒激光驱动的超快x射线动态成像方法 - Google Patents
皮秒激光驱动的超快x射线动态成像方法 Download PDFInfo
- Publication number
- CN111103311A CN111103311A CN201911272459.6A CN201911272459A CN111103311A CN 111103311 A CN111103311 A CN 111103311A CN 201911272459 A CN201911272459 A CN 201911272459A CN 111103311 A CN111103311 A CN 111103311A
- Authority
- CN
- China
- Prior art keywords
- ultrafast
- ray
- imaging
- picosecond laser
- dynamic imaging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/04—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- X-Ray Techniques (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
本发明提供一种皮秒激光驱动的超快X射线动态成像方法,包括以下过程:利用啁啾脉冲技术产生千焦量级皮秒激光脉冲,将所述的激光脉冲分光为10束;每一束光经过延迟光路后,在10ps内先后到达对应气体靶;每一束光到达对应气体靶产生的X射线辐射定向发射,穿过样品中激发的超快事件;用十块IP板接收成像,从而得到十幅时间间隔为1ps的超快事件的背光成像图片,反映出超快事件在10ps内的变化过程。本发明提供的皮秒激光驱动的超快X射线动态成像方法,提高了X射线背光成像的时间分辨率,实现了对ps级超快事件的动态成像。
Description
技术领域
本发明提供一种皮秒激光驱动的超快X射线动态成像方法,属于动态成像技术领域。
背景技术
探测物质的瞬态结构和超快动力学最常用方法,是使用超快超强激光产生的X射线进行X射线背光照像。基于激光等离子体加速的Betatron辐射光源在此方面具有很大的优势,因为它产生的宽波段的X射线束发散角小、光子数高,很适合对瞬态样品物质进行背光成像。BetatronX射线辐射已用于生物学和医学领域,例如昆虫的X射线相衬成像和骨骼的硬X射线照相等,都利用的是其空间相干性,能够对物质进行超精细分辨。它同时还具有超快特性,使其非常适合进行高能量密度等离子体、温稠密物质和惯性约束聚变过程的动力学研究。
例如:美国国家点火装置(NIF)的先进射线照相能力(Advanced RadiographicCapability)是一套使用高达四拍瓦(PW)激光器的系统,可产生一系列具有可控延迟的短脉冲--千焦耳级的激光脉冲,用以生成X射线为高密度惯性约束聚变(ICF)靶丸提供背后照明。内爆靶丸的多帧分幅硬X射线照相技术是关系NIF任务成功的关键能力。ARC设计为使用多达八个的具有十皮秒级时间分辨率的背光光源,以记录动力学信息,并生成冷冻氘氚靶压缩与点火的X射线“电影”。ARC将在NIF发次的临界期生成数十皮秒的时间分辨率。
但现有的X射线照相技术无法对超快过程(ps量级时间尺度)进行动态成像。例如,如果要观察一个持续时间为10ps的不可重复的超快事件,每隔1ps成像一次,利用现有的单脉冲成像技术,对应的激光打靶频率要到达109HZ,现有的技术条件远远不能达到该要求。
发明内容
针对上述技术问题,本发明提供一种皮秒激光驱动的超快X射线动态成像方法。利用X射线对ps量级时间尺度的超快事件进行动态成像。
具体技术方案为,皮秒激光驱动的超快X射线动态成像方法,包括以下过程:
(1)利用啁啾脉冲技术产生千焦级皮秒激光脉冲,将所述的激光脉冲分光为10束;
(2)每一束光经过延迟光路后,在10ps内先后到达各自对应的气体靶;
(3)每一束光到达对应气体靶产生的X射线辐射穿过样品的超快事件(通常由激光激发);
(4)用十块或一整块IP板接收成像,从而得到十幅时间间隔为1ps的超快事件的背光成像图片,反映出超快事件在10ps内的变化过程。
本发明提供的皮秒激光驱动的超快X射线动态成像方法,提高了X射线背光成像的时间分辨率,实现了对超快事件的动态成像。
附图说明
图1为本发明的方法光路示意图。
具体实施方式
结合实施例说明本发明的具体技术方案。
如图1所示,利用啁啾脉冲技术产生千焦级皮秒激光脉冲,将其分光为10束,每一束光将有百焦耳量级,经过特定的延迟光路后,在10ps内先后到达对应气体靶,将产生1010/发的数十keV的高能量准直光子束,足以进行单发成像。产生的X射线辐穿过超快事件,并用十块IP板接收成像,从而得到十幅时间间隔为1ps的超快事件的背光成像图片,反映出超快事件在10ps内的变化过程。
Claims (1)
1.皮秒激光驱动的超快X射线动态成像方法,其特征在于,包括以下过程:
(1)利用啁啾脉冲技术产生千焦级皮秒激光脉冲,将所述的激光脉冲分光为10束;
(2)每一束光经过延迟光路后,在10ps内先后到达对应气体靶;
(3)每一束光到达对应气体靶产生的X射线辐射穿过超快事件;
(4)用IP板接收成像,从而得到十幅时间间隔为1ps的超快事件的背光成像图片,反映出超快事件在10ps内的变化过程。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911272459.6A CN111103311A (zh) | 2019-12-12 | 2019-12-12 | 皮秒激光驱动的超快x射线动态成像方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911272459.6A CN111103311A (zh) | 2019-12-12 | 2019-12-12 | 皮秒激光驱动的超快x射线动态成像方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111103311A true CN111103311A (zh) | 2020-05-05 |
Family
ID=70422330
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911272459.6A Pending CN111103311A (zh) | 2019-12-12 | 2019-12-12 | 皮秒激光驱动的超快x射线动态成像方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111103311A (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1657922A (zh) * | 2005-03-10 | 2005-08-24 | 中国科学院上海光学精密机械研究所 | 时间分辨x射线衍射仪 |
CN1673725A (zh) * | 2005-04-08 | 2005-09-28 | 中国科学院上海光学精密机械研究所 | 超快时间分辨x射线衍射仪 |
CN102185250A (zh) * | 2010-12-02 | 2011-09-14 | 中国科学院物理研究所 | 一种产生飞秒级时间分辨的x射线源的装置及方法 |
CN109041393A (zh) * | 2018-06-26 | 2018-12-18 | 中国科学院物理研究所 | 一种超快硬x射线源的产生装置及方法 |
CN109830884A (zh) * | 2019-03-28 | 2019-05-31 | 上海交通大学 | 一种模块化的真空紫外激光装置 |
CN110455837A (zh) * | 2019-09-06 | 2019-11-15 | 中国科学院物理研究所 | 飞秒激光驱动的定向超快x射线分幅成像装置及应用 |
CN110488340A (zh) * | 2019-07-29 | 2019-11-22 | 中国科学院西安光学精密机械研究所 | 一种超小型干涉式超快x射线光纤探测器 |
-
2019
- 2019-12-12 CN CN201911272459.6A patent/CN111103311A/zh active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1657922A (zh) * | 2005-03-10 | 2005-08-24 | 中国科学院上海光学精密机械研究所 | 时间分辨x射线衍射仪 |
CN1673725A (zh) * | 2005-04-08 | 2005-09-28 | 中国科学院上海光学精密机械研究所 | 超快时间分辨x射线衍射仪 |
CN102185250A (zh) * | 2010-12-02 | 2011-09-14 | 中国科学院物理研究所 | 一种产生飞秒级时间分辨的x射线源的装置及方法 |
CN109041393A (zh) * | 2018-06-26 | 2018-12-18 | 中国科学院物理研究所 | 一种超快硬x射线源的产生装置及方法 |
CN109830884A (zh) * | 2019-03-28 | 2019-05-31 | 上海交通大学 | 一种模块化的真空紫外激光装置 |
CN110488340A (zh) * | 2019-07-29 | 2019-11-22 | 中国科学院西安光学精密机械研究所 | 一种超小型干涉式超快x射线光纤探测器 |
CN110455837A (zh) * | 2019-09-06 | 2019-11-15 | 中国科学院物理研究所 | 飞秒激光驱动的定向超快x射线分幅成像装置及应用 |
Non-Patent Citations (2)
Title |
---|
李毅飞: "基于激光与气体靶作用的电子加速和betatron辐射研究", 《中国博士学位论文全文数据库 基础科学辑》 * |
陈黎明 等: "飞秒激光驱动电子束产生的超短X射线辐射", 《第十六届全国等离子体科学技术会议暨第一届全国等离子体医学研讨会》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Marangos | Introduction to the new science with X-ray free electron lasers | |
Chen et al. | Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers | |
Schöbel et al. | Effect of driver charge on wakefield characteristics in a plasma accelerator probed by femtosecond shadowgraphy | |
Badziak et al. | Experimental evidence of differences in properties of fast ion fluxes from short-pulse and long-pulse laser-plasma interactions | |
Simpson et al. | Demonstration of TNSA proton radiography on the national ignition facility advanced radiographic capability (NIF-ARC) laser | |
Grigoriadis et al. | Improving a high-power laser-based relativistic electron source: The role of laser pulse contrast and gas jet density profile | |
Ivanov et al. | Laser-driven pointed acceleration of electrons with preformed plasma lens | |
CN111103311A (zh) | 皮秒激光驱动的超快x射线动态成像方法 | |
Nürnberg | Laser-accelerated proton beams as a new particle source | |
Rusby | Study of escaping electron dynamics and applications from high-power laser-plasma interactions | |
Zhou et al. | Instabilities and mixing in inertial confinement fusion | |
Hohenberger et al. | A combined MeV-neutron and x-ray source for the National Ignition Facility | |
Armstrong | Bremsstrahlung radiation and fast electron transport in laser-plasma interactions | |
Hartemann et al. | Overview of mono-energetic gamma-ray sources & applications | |
Pakhomov | Neutrino generation by high-intensity lasers | |
Matsuoka et al. | On electron betatron motion and electron injection in laser wakefield accelerators | |
Armstrong et al. | Simultaneous co-axial multi-modal inspection using a laser driven x-ray and neutron source | |
Mariscal et al. | Enhancing Laser-driven MeV Electron and Proton Spectra with Pseudo-Shaped Short Pulses | |
Jiao | Neutron Sources from Laser Plasma Interactions | |
Chen | Spectrum and conversion efficiency measurements of suprathermal electrons from relativistic laser plasma interactions | |
Hodge | Radiographic Applications and Control of TNSA Proton Beams | |
Umstadter | Laser-Produced Coherent X-ray Sources. Final report | |
Roth et al. | PHELIX: a petawatt high-energy laser for heavy ion experiments | |
Pagano et al. | Source size of x rays from self-modulated laser wakefield accelerators | |
Peebles | Impact of pre-plasma on electron generation and transport in laser plasma interactions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200505 |
|
RJ01 | Rejection of invention patent application after publication |