CN111091236A - 一种按桨距角分类的多分类深度学习短期风功率预测方法 - Google Patents
一种按桨距角分类的多分类深度学习短期风功率预测方法 Download PDFInfo
- Publication number
- CN111091236A CN111091236A CN201911186151.XA CN201911186151A CN111091236A CN 111091236 A CN111091236 A CN 111091236A CN 201911186151 A CN201911186151 A CN 201911186151A CN 111091236 A CN111091236 A CN 111091236A
- Authority
- CN
- China
- Prior art keywords
- data
- neural network
- wind power
- pitch angle
- deep neural
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Economics (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Strategic Management (AREA)
- Human Resources & Organizations (AREA)
- General Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- Tourism & Hospitality (AREA)
- Marketing (AREA)
- General Health & Medical Sciences (AREA)
- Software Systems (AREA)
- Primary Health Care (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- Molecular Biology (AREA)
- Evolutionary Computation (AREA)
- Data Mining & Analysis (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Development Economics (AREA)
- Game Theory and Decision Science (AREA)
- Entrepreneurship & Innovation (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Wind Motors (AREA)
Abstract
Description
方法误差 | MAE | MAPE | RMSE |
DNN | 141.748 | 0.02284 | 203.638 |
LSSVM | 159.153 | 0.11639 | 210.865 |
BP | 150.017 | 0.21610 | 451.540 |
LSTM | 151.004 | 0.10421 | 467.318 |
ELM | 216.099 | 0.35295 | 584.642 |
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911186151.XA CN111091236B (zh) | 2019-11-27 | 2019-11-27 | 一种按桨距角分类的多分类深度学习短期风功率预测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911186151.XA CN111091236B (zh) | 2019-11-27 | 2019-11-27 | 一种按桨距角分类的多分类深度学习短期风功率预测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111091236A true CN111091236A (zh) | 2020-05-01 |
CN111091236B CN111091236B (zh) | 2023-06-20 |
Family
ID=70393251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911186151.XA Active CN111091236B (zh) | 2019-11-27 | 2019-11-27 | 一种按桨距角分类的多分类深度学习短期风功率预测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111091236B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111832812A (zh) * | 2020-06-27 | 2020-10-27 | 南通大学 | 一种基于深度学习的风电功率短期预测方法 |
CN112085272A (zh) * | 2020-09-07 | 2020-12-15 | 国网甘肃省电力公司电力科学研究院 | 一种风功率预测方法 |
CN112418553A (zh) * | 2020-12-07 | 2021-02-26 | 江苏科技大学 | 一种基于vmd-cnn网络的海上风电控制方法 |
CN115660898A (zh) * | 2022-12-06 | 2023-01-31 | 中国华能集团清洁能源技术研究院有限公司 | 基于svr的分类式风电短期功率预测精度提升方法及设备 |
CN115833102A (zh) * | 2022-12-08 | 2023-03-21 | 南方电网数字电网研究院有限公司 | 基于模型预测控制的风电场频率快速响应控制方法 |
CN117034774A (zh) * | 2023-08-21 | 2023-11-10 | 东北农业大学 | 一种高准确性秸秆酶解多糖产量预测模型的构建方法 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100127495A1 (en) * | 2008-11-26 | 2010-05-27 | Per Egedal | Estimating an achievable power production of a wind turbine by means of a neural network |
CN104036328A (zh) * | 2013-03-04 | 2014-09-10 | 横河电机株式会社 | 自适应风电功率预测系统及预测方法 |
US20140306451A1 (en) * | 2013-04-12 | 2014-10-16 | King Fahd University Of Petroleum And Minerals | Adaptive pitch control system for wind generators |
CN104571262A (zh) * | 2015-01-16 | 2015-04-29 | 江南大学 | 短期风电功率区间概率预测方法 |
CN104747368A (zh) * | 2015-01-27 | 2015-07-01 | 风脉(武汉)可再生能源技术有限责任公司 | 一种风电机组功率优化的方法和系统 |
CN105545595A (zh) * | 2015-12-11 | 2016-05-04 | 重庆邮电大学 | 基于径向基神经网络的风力机反馈线性化功率控制方法 |
CN106650982A (zh) * | 2016-08-30 | 2017-05-10 | 华北电力大学 | 一种基于多点nwp的深度学习功率预测方法 |
CN107061158A (zh) * | 2017-06-27 | 2017-08-18 | 星际(重庆)智能装备技术研究院有限公司 | 一种低风速下风力发电机的预测与跟踪控制方法 |
CN107152377A (zh) * | 2017-07-18 | 2017-09-12 | 北京金风科创风电设备有限公司 | 对风力发电机组的输出功率进行控制的方法和设备 |
EP3260700A1 (en) * | 2016-06-22 | 2017-12-27 | Siemens Aktiengesellschaft | A computer-based method and a prediction device for predicting operating data of a wind turbine |
WO2018082132A1 (zh) * | 2016-11-04 | 2018-05-11 | 江南大学 | 一种用于能源系统输出功率的短期预测方法 |
CN109615146A (zh) * | 2018-12-27 | 2019-04-12 | 东北大学 | 一种基于深度学习的超短时风功率预测方法 |
CN110210660A (zh) * | 2019-05-27 | 2019-09-06 | 河海大学 | 一种超短期风速预测方法 |
-
2019
- 2019-11-27 CN CN201911186151.XA patent/CN111091236B/zh active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100127495A1 (en) * | 2008-11-26 | 2010-05-27 | Per Egedal | Estimating an achievable power production of a wind turbine by means of a neural network |
CN104036328A (zh) * | 2013-03-04 | 2014-09-10 | 横河电机株式会社 | 自适应风电功率预测系统及预测方法 |
US20140306451A1 (en) * | 2013-04-12 | 2014-10-16 | King Fahd University Of Petroleum And Minerals | Adaptive pitch control system for wind generators |
CN104571262A (zh) * | 2015-01-16 | 2015-04-29 | 江南大学 | 短期风电功率区间概率预测方法 |
CN104747368A (zh) * | 2015-01-27 | 2015-07-01 | 风脉(武汉)可再生能源技术有限责任公司 | 一种风电机组功率优化的方法和系统 |
CN105545595A (zh) * | 2015-12-11 | 2016-05-04 | 重庆邮电大学 | 基于径向基神经网络的风力机反馈线性化功率控制方法 |
EP3260700A1 (en) * | 2016-06-22 | 2017-12-27 | Siemens Aktiengesellschaft | A computer-based method and a prediction device for predicting operating data of a wind turbine |
CN106650982A (zh) * | 2016-08-30 | 2017-05-10 | 华北电力大学 | 一种基于多点nwp的深度学习功率预测方法 |
WO2018082132A1 (zh) * | 2016-11-04 | 2018-05-11 | 江南大学 | 一种用于能源系统输出功率的短期预测方法 |
CN107061158A (zh) * | 2017-06-27 | 2017-08-18 | 星际(重庆)智能装备技术研究院有限公司 | 一种低风速下风力发电机的预测与跟踪控制方法 |
CN107152377A (zh) * | 2017-07-18 | 2017-09-12 | 北京金风科创风电设备有限公司 | 对风力发电机组的输出功率进行控制的方法和设备 |
CN109615146A (zh) * | 2018-12-27 | 2019-04-12 | 东北大学 | 一种基于深度学习的超短时风功率预测方法 |
CN110210660A (zh) * | 2019-05-27 | 2019-09-06 | 河海大学 | 一种超短期风速预测方法 |
Non-Patent Citations (6)
Title |
---|
HAN, QK ET AL.: "Non-parametric hybrid models for wind speed forecasting", 《ENERGY CONVERSION AND MANAGEMENT》 * |
宿凤明等: "基于神经网络的风电短期功率预测模型研究", 《节能技术》 * |
张维杰等: "改进型T-S模糊神经网络风电功率预测模型的研究", 《自动化仪表》, no. 12 * |
李立成等: "采用虚拟调节算法的风电场有功功率控制策略", 《电力系统自动化》 * |
许凌峰等: "基于神经网络的风力发电机组变桨距复合控制", 《华北电力大学学报(自然科学版)》, no. 01 * |
陈曦寒等: "考虑定桨距和变桨距风机联合控制的风电场有功功率控制策略", 《电网技术》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111832812A (zh) * | 2020-06-27 | 2020-10-27 | 南通大学 | 一种基于深度学习的风电功率短期预测方法 |
CN112085272A (zh) * | 2020-09-07 | 2020-12-15 | 国网甘肃省电力公司电力科学研究院 | 一种风功率预测方法 |
CN112418553A (zh) * | 2020-12-07 | 2021-02-26 | 江苏科技大学 | 一种基于vmd-cnn网络的海上风电控制方法 |
CN115660898A (zh) * | 2022-12-06 | 2023-01-31 | 中国华能集团清洁能源技术研究院有限公司 | 基于svr的分类式风电短期功率预测精度提升方法及设备 |
CN115833102A (zh) * | 2022-12-08 | 2023-03-21 | 南方电网数字电网研究院有限公司 | 基于模型预测控制的风电场频率快速响应控制方法 |
CN115833102B (zh) * | 2022-12-08 | 2023-08-25 | 南方电网数字电网研究院有限公司 | 基于模型预测控制的风电场频率快速响应控制方法 |
CN117034774A (zh) * | 2023-08-21 | 2023-11-10 | 东北农业大学 | 一种高准确性秸秆酶解多糖产量预测模型的构建方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111091236B (zh) | 2023-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111091236A (zh) | 一种按桨距角分类的多分类深度学习短期风功率预测方法 | |
Yang et al. | Day-ahead wind power forecasting based on the clustering of equivalent power curves | |
CN102663513B (zh) | 利用灰色关联度分析的风电场功率组合预测建模方法 | |
CN103440541B (zh) | 多风电场短期输出功率的联合概率密度预测方法 | |
CN109615146B (zh) | 一种基于深度学习的超短时风功率预测方法 | |
CN109523084A (zh) | 一种基于主元分析和机器学习的风电功率超短期预测方法 | |
CN115115090B (zh) | 一种基于改进lstm-cnn的风功率短期预测方法 | |
CN103488869A (zh) | 一种最小二乘支持向量机的风力发电短期负荷预测方法 | |
CN102567636A (zh) | 基于相关向量机的高精度风电场功率区间预测方法 | |
CN107392368A (zh) | 一种基于气象预报的办公建筑动态热负荷组合预测方法 | |
CN104810860A (zh) | 一种风电场内功率分配方法及分配装置 | |
CN111506868B (zh) | 一种基于hht权值优化的超短期风速预测方法 | |
CN110263971A (zh) | 基于支持向量机的超短期风电功率组合预测方法 | |
CN110737975A (zh) | 基于经验模态分解与自回归模型的风电场风速、功率预测和异常修正方法 | |
CN113761023A (zh) | 一种基于改进广义神经网络的光伏发电短期功率预测方法 | |
Chen et al. | Research on wind power prediction method based on convolutional neural network and genetic algorithm | |
CN115423174A (zh) | 一种计及波动过程划分的短期风电功率预测方法 | |
CN112186761A (zh) | 一种基于概率分布的风电功率场景生成方法及系统 | |
Abbaskhah et al. | Optimization of horizontal axis wind turbine performance with the dimpled blades by using CNN and MLP models | |
CN112288157A (zh) | 一种基于模糊聚类与深度强化学习的风电场功率预测方法 | |
Tao et al. | On comparing six optimization algorithms for network-based wind speed forecasting | |
CN116435987A (zh) | 一种大规模风电集群超短期风电功率预测方法 | |
CN117892099B (zh) | 基于概率神经网络的风电机组服役效能评估方法和系统 | |
CN119275823A (zh) | 一种光功率组合预测方法、系统、设备及介质 | |
CN115563848A (zh) | 一种基于深度学习的分布式光伏总辐射预测方法及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20250611 Address after: 137300 north of Jinshan Bu Village, Jianping Township, Zhenlai County, Baicheng City, Jilin Province Patentee after: Mengdong Xiehe Zhenlai No.1 Wind Power Generation Co.,Ltd. Country or region after: China Address before: No. 6199 Chaoda Road, Changchun High tech Industrial Development Zone, Changchun City, Jilin Province Patentee before: Changchun Jidian Energy Technology Co.,Ltd. Country or region before: China Patentee before: SCIENCE & TECHNOLOGY DEVELOPMENT BRANCH OF JILIN ELECTRIC POWER CO.,LTD. Patentee before: Jilin China Power Investment New Energy Co.,Ltd. Patentee before: NORTHEAST DIANLI University |