CN111082034B - Preparation of tin/tin phosphide/carbon composites as negative electrodes for alkali metal ion batteries - Google Patents
Preparation of tin/tin phosphide/carbon composites as negative electrodes for alkali metal ion batteries Download PDFInfo
- Publication number
- CN111082034B CN111082034B CN201911293737.6A CN201911293737A CN111082034B CN 111082034 B CN111082034 B CN 111082034B CN 201911293737 A CN201911293737 A CN 201911293737A CN 111082034 B CN111082034 B CN 111082034B
- Authority
- CN
- China
- Prior art keywords
- tin
- composite material
- carbon composite
- phosphide
- alkali metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 title claims abstract description 62
- 229910001413 alkali metal ion Inorganic materials 0.000 title claims abstract description 18
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- 150000001721 carbon Chemical class 0.000 title 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 79
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 77
- 239000002131 composite material Substances 0.000 claims abstract description 75
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 claims abstract description 27
- 235000010413 sodium alginate Nutrition 0.000 claims abstract description 27
- 229940005550 sodium alginate Drugs 0.000 claims abstract description 27
- 239000000661 sodium alginate Substances 0.000 claims abstract description 27
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims abstract description 27
- 238000004132 cross linking Methods 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 25
- 229910001887 tin oxide Inorganic materials 0.000 claims abstract description 25
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims abstract description 16
- 229910001432 tin ion Inorganic materials 0.000 claims abstract description 14
- 239000012298 atmosphere Substances 0.000 claims abstract description 12
- KWSLGOVYXMQPPX-UHFFFAOYSA-N 5-[3-(trifluoromethyl)phenyl]-2h-tetrazole Chemical compound FC(F)(F)C1=CC=CC(C2=NNN=N2)=C1 KWSLGOVYXMQPPX-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910001379 sodium hypophosphite Inorganic materials 0.000 claims abstract description 11
- 239000011780 sodium chloride Substances 0.000 claims abstract description 8
- 239000003112 inhibitor Substances 0.000 claims abstract description 7
- 238000004108 freeze drying Methods 0.000 claims abstract description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 22
- 238000006243 chemical reaction Methods 0.000 claims description 18
- 239000008367 deionised water Substances 0.000 claims description 17
- 229910021641 deionized water Inorganic materials 0.000 claims description 17
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 9
- 238000003763 carbonization Methods 0.000 claims description 9
- 239000011574 phosphorus Substances 0.000 claims description 9
- 229910052698 phosphorus Inorganic materials 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 238000004140 cleaning Methods 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 5
- 229910021627 Tin(IV) chloride Inorganic materials 0.000 claims description 5
- 239000011159 matrix material Substances 0.000 claims description 5
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 claims description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 4
- 229910052708 sodium Inorganic materials 0.000 claims description 4
- 239000011734 sodium Substances 0.000 claims description 4
- 229910001415 sodium ion Inorganic materials 0.000 claims description 4
- 238000000227 grinding Methods 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 238000001354 calcination Methods 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- 230000002269 spontaneous effect Effects 0.000 claims description 2
- 229910019142 PO4 Inorganic materials 0.000 claims 1
- 239000002253 acid Substances 0.000 claims 1
- 125000001503 gulosyl group Chemical group C1([C@H](O)[C@H](O)[C@@H](O)[C@H](O1)CO)* 0.000 claims 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims 1
- 239000010452 phosphate Substances 0.000 claims 1
- 239000002245 particle Substances 0.000 abstract description 6
- 239000011148 porous material Substances 0.000 abstract description 6
- 238000005336 cracking Methods 0.000 abstract description 3
- 238000010000 carbonizing Methods 0.000 abstract description 2
- 229920002521 macromolecule Polymers 0.000 abstract description 2
- 238000011031 large-scale manufacturing process Methods 0.000 abstract 1
- 239000002105 nanoparticle Substances 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 11
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 238000001035 drying Methods 0.000 description 7
- 229910021645 metal ion Inorganic materials 0.000 description 7
- 239000002033 PVDF binder Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 6
- 239000002002 slurry Substances 0.000 description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 5
- 229910006404 SnO 2 Inorganic materials 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 229910001416 lithium ion Inorganic materials 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000012300 argon atmosphere Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- 238000002484 cyclic voltammetry Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- -1 that is Chemical compound 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000010405 anode material Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000005087 graphitization Methods 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 241001474374 Blennius Species 0.000 description 1
- AEMOLEFTQBMNLQ-BZINKQHNSA-N D-Guluronic Acid Chemical compound OC1O[C@H](C(O)=O)[C@H](O)[C@@H](O)[C@H]1O AEMOLEFTQBMNLQ-BZINKQHNSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- AEMOLEFTQBMNLQ-UHFFFAOYSA-N beta-D-galactopyranuronic acid Natural products OC1OC(C(O)=O)C(O)C(O)C1O AEMOLEFTQBMNLQ-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 125000005586 carbonic acid group Chemical group 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- LHWGPQPDHDXAPC-UHFFFAOYSA-N oxotin;phosphane Chemical compound P.[Sn]=O LHWGPQPDHDXAPC-UHFFFAOYSA-N 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- NQXGLOVMOABDLI-UHFFFAOYSA-N sodium oxido(oxo)phosphanium Chemical compound [Na+].[O-][PH+]=O NQXGLOVMOABDLI-UHFFFAOYSA-N 0.000 description 1
- BAZAXWOYCMUHIX-UHFFFAOYSA-M sodium perchlorate Chemical compound [Na+].[O-]Cl(=O)(=O)=O BAZAXWOYCMUHIX-UHFFFAOYSA-M 0.000 description 1
- 229910001488 sodium perchlorate Inorganic materials 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 239000011366 tin-based material Substances 0.000 description 1
- 239000002733 tin-carbon composite material Substances 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/387—Tin or alloys based on tin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5805—Phosphides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
技术领域technical field
本发明涉及碱金属离子电池负极材料制备技术领域,具体涉及一种碱金属离子电池负极的锡/磷化锡/碳复合材料的制备。The invention relates to the technical field of preparation of negative electrode materials for alkali metal ion batteries, in particular to the preparation of a tin/tin phosphide/carbon composite material for the negative electrode of alkali metal ion batteries.
背景技术Background technique
锂离子电池是最出名的碱金属离子电池,是一种二次电池,具有能量密度高、环境友好、安全性好等优点。目前锂离子电池使用的负极主要为石墨,石墨成本低,但是容量小,随着对储能要求的提高,石墨难以满足当前的需要。因此开发新的负极材料迫在眉睫。Lithium ion battery is the most famous alkali metal ion battery, which is a kind of secondary battery, which has the advantages of high energy density, environmental friendliness and good safety. At present, the negative electrode used in lithium-ion batteries is mainly graphite, which is low in cost but small in capacity. With the increase in energy storage requirements, graphite is difficult to meet the current needs. Therefore, it is imminent to develop new anode materials.
锡基材料因其环境友好、高比容量等优点成为一种有前景的碱金属离子电池负极材料,但是其在循环过程中体积膨胀率大,这会导致电极粉化脱落,从而引起电池性能的退化。纳米化和碳包覆是一种有效缓解这个问题的策略。纳米化是指将材料尺寸减少至纳米级别,从而减缓其变形产生的影响。而碳包覆不仅可以缓冲体积膨胀,也能提高材料整体的导电性。但是现今的一些纳米化和碳包覆手段较为复杂,且二者往往不能兼顾。例如刘剑洪等人发明的一种碳包覆氧化亚锰的制备方法(专利号:CN201410666514.0),该方法使用丙烯腈低聚物作为原料来进行碳包覆,需要进行多次加热搅拌与干燥,同时耗时较长。陆潇晓等人发明的一种在线裂解雾化复合前驱体制备SnO2/非晶碳复合材料的方法(专利号:CN201810778802.3),该方法使用SnO2醇溶胶和葡萄糖混合物作为前驱体,经过超声雾化器转化成气雾再使用载流气体引入高达1100-1200℃的石英管内进行裂解,方法较为复杂且高于1000度的温度使SnO2的颗粒尺寸较大。Tin-based materials have become a promising anode material for alkali metal ion batteries due to their environmental friendliness and high specific capacity, but their volume expansion rate is large during cycling, which will cause the electrode to pulverize and fall off, which will cause battery performance degradation. degradation. Nanonization and carbon encapsulation is an effective strategy to alleviate this problem. Nanonization refers to reducing the size of a material to the nanometer level, thereby mitigating the effects of its deformation. The carbon coating can not only buffer the volume expansion, but also improve the overall conductivity of the material. However, some of today's nanonization and carbon coating methods are relatively complicated, and the two often cannot be taken into account. For example, Liu Jianhong and others invented a method for preparing carbon-coated manganese oxide (patent number: CN201410666514.0). This method uses acrylonitrile oligomers as raw materials for carbon coating, and requires multiple heating, stirring and drying , and takes a long time. Lu Xiaoxiao et al. invented a method for preparing SnO 2 /amorphous carbon composite materials by cracking atomized composite precursors online (patent number: CN201810778802.3). This method uses SnO 2 alcohol sol and glucose mixture as precursors, and undergoes ultrasonic The atomizer is converted into an aerosol and then the carrier gas is introduced into a quartz tube up to 1100-1200°C for cracking. The method is more complicated and the temperature higher than 1000°C makes the particle size of SnO2 larger.
发明内容Contents of the invention
本发明的目的在于克服上述现有技术存在的不足,提供一种碱金属离子电池负极的锡/磷化锡/碳复合材料的制备:即利用海藻酸钠与锡离子交联的特性,通过海藻酸钠的高分子对锡离子进行纳米级的局部限域,在高温反应过程中产生纳米级别的碳包覆的氧化锡复合材料,并利用气态磷化,在保留该结构同时得到锡和磷化锡碳复合材料。具体为针对海藻酸钠能够和锡离子发生交联反应形成均匀分散的“蛋盒(egg-box)”结构,通过该结构的局部限域效应将其碳化后得到氧化锡/碳纳米复合材料,再利用气态磷化氢能原位磷化氧化锡生成锡和磷化锡而不破坏其结构,制得锡和磷化锡的碳复合材料。The purpose of the present invention is to overcome the above-mentioned deficiencies in the prior art, and provide a kind of preparation of the tin/tin phosphide/carbon composite material of alkali metal ion battery negative electrode: promptly utilize the characteristic of cross-linking of sodium alginate and tin ion, through seaweed The macromolecule of sodium bicarbonate confines tin ions locally at the nanometer level, and produces nanoscale carbon-coated tin oxide composite materials during the high-temperature reaction process, and uses gaseous phosphating to obtain tin and phosphating while retaining the structure. Tin carbon composite material. Specifically, sodium alginate can cross-link with tin ions to form a uniformly dispersed "egg-box" structure, and carbonize it through the local confinement effect of the structure to obtain a tin oxide/carbon nanocomposite material. The gaseous phosphine can be used to phosphine tin oxide in situ to generate tin and tin phosphide without destroying its structure, and a carbon composite material of tin and tin phosphide can be obtained.
本发明的目的是通过以下技术方案来实现的:The purpose of the present invention is achieved through the following technical solutions:
本发明涉及一种用于碱金属离子电池负极的锡/磷化锡/碳复合材料的制备方法,所述方法包括如下步骤:The present invention relates to a kind of preparation method of the tin/tin phosphide/carbon composite material that is used for the negative pole of alkali metal ion battery, and described method comprises the following steps:
S1、在加入钠离子作为抑制剂的条件下,利用海藻酸钠与四价锡离子进行交联反应生成凝胶;S1. Under the condition of adding sodium ions as an inhibitor, use sodium alginate and tetravalent tin ions to perform a cross-linking reaction to form a gel;
S2、所述凝胶经冷冻干燥后在惰性气氛下煅烧碳化,制得氧化锡/碳复合材料;S2. The gel is freeze-dried and then calcined and carbonized in an inert atmosphere to obtain a tin oxide/carbon composite material;
S3、利用次磷酸钠在惰性气氛下磷化所述氧化锡/碳复合材料,即获得所述锡/磷化锡/碳复合材料。S3. Phosphating the tin oxide/carbon composite material with sodium hypophosphite under an inert atmosphere, that is, obtaining the tin/tin phosphide/carbon composite material.
本发明中,步骤S1,利用海藻酸钠能与多价金属离子交联的特性,使其与四价锡离子进行交联生成凝胶小球。采用海藻酸钠交联得到的金属组分具有很好的均匀性,较细的颗粒尺寸和良好的碳包覆结构。In the present invention, step S1 uses the property that sodium alginate can cross-link with polyvalent metal ions to cross-link with tetravalent tin ions to form gel beads. The metal components obtained by crosslinking with sodium alginate have good uniformity, fine particle size and good carbon coating structure.
步骤S3,磷化过程中,次磷酸钠在加热下分解,形成磷化氢气体,磷化氢原位还原氧化锡金属锡,过量的磷化氢继续与锡反应生成磷化锡。Step S3, during the phosphating process, sodium hypophosphite is decomposed under heating to form phosphine gas, and the phosphine reduces tin oxide metal tin in situ, and the excess phosphine continues to react with tin to form tin phosphide.
进一步的,步骤S1中,将海藻酸钠溶解在水中,配制成质量浓度为1~2%的溶胶,再将海藻酸钠溶胶滴入浓度为0.1~0.2mol/L的四氯化锡溶液中进行交联反应。金属离子浓度过低将使交联不完全,过高则产生浪费。Further, in step S1, sodium alginate is dissolved in water to prepare a sol with a mass concentration of 1-2%, and then the sodium alginate sol is dripped into a tin tetrachloride solution with a concentration of 0.1-0.2 mol/L carry out the crosslinking reaction. If the concentration of metal ions is too low, the cross-linking will be incomplete, and if it is too high, it will cause waste.
进一步的,步骤S1中,所述交联反应是在加入钠离子作为抑制剂的条件下进行的。加入钠离子(如氯化钠)作为抑制剂可以使凝胶内金属离子浓度更加均匀。Further, in step S1, the cross-linking reaction is carried out under the condition of adding sodium ions as inhibitors. Adding sodium ions (such as sodium chloride) as an inhibitor can make the concentration of metal ions in the gel more uniform.
进一步的,加入锡:钠摩尔比1:1-5的氯化钠作为抑制剂以使交联时凝胶内部金属离子分布更加均匀;过大比例的氯化钠会影响凝胶强度,导致交联失败;交联反应时长为24h~48h。Further, sodium chloride with tin: sodium molar ratio of 1:1-5 is added as an inhibitor to make the distribution of metal ions inside the gel more uniform during cross-linking; too large a proportion of sodium chloride will affect the gel strength and lead to cross-linking. The linking failed; the crosslinking reaction time was 24h~48h.
进一步的,步骤S1中,海藻酸钠中的G链段即古洛糖醛酸与四价锡离子发生自发的交联反应生成凝胶,在海藻酸钠中形成均匀的“蛋盒(egg-box)”结构。Further, in step S1, the G segment in sodium alginate, that is, guluronic acid, undergoes a spontaneous cross-linking reaction with tetravalent tin ions to form a gel, and a uniform "egg box (egg- box)" structure.
进一步的,步骤S2中,所述冷冻干燥是将用去离子水清洗后的凝胶在-70~-50℃(优选-60℃)下冷冻干燥1~3天。Further, in step S2, the freeze-drying is to freeze-dry the gel washed with deionized water at -70-50°C (preferably -60°C) for 1-3 days.
进一步的,步骤S2中,所述碳化方法具体为:在惰性气氛保护下以5~10℃每分钟的升温速率在500℃~1200℃的条件下,煅烧1~2小时以使碳化反应充分进行。Further, in step S2, the carbonization method specifically includes: under the protection of an inert atmosphere, calcining for 1 to 2 hours at a heating rate of 5 to 10° C. per minute at a temperature of 500° C. to 1200° C. so that the carbonization reaction can fully proceed .
进一步的,步骤S2中,碳化完成后使用去离子水洗涤,再真空干燥12~24小时。Further, in step S2, after the carbonization is completed, the carbonization is washed with deionized water, and then vacuum-dried for 12-24 hours.
进一步的,步骤S3包括磷化前将锡和磷的摩尔比为1:2~1:10的氧化锡/碳复合材料与次磷酸钠进行研磨混合的步骤,研磨混合的时长为15~30分钟以保证二者均匀混合,过少的次磷酸钠将使反应不完全,过多则造成浪费。Further, step S3 includes the step of grinding and mixing the tin oxide/carbon composite material with a molar ratio of tin and phosphorus of 1:2 to 1:10 and sodium hypophosphite before phosphating, and the grinding and mixing time is 15 to 30 minutes To ensure that the two are evenly mixed, too little sodium hypophosphite will make the reaction incomplete, and too much will cause waste.
进一步的,步骤S3中,磷化方法具体为:在惰性气氛下,使用次磷酸钠(NaH2PO2) 作为磷源,以5~10℃每分钟的升温速率在200~400℃下磷化5~30分钟以保证磷化反应充分完成。该磷化方法可以保留氧化锡/碳复合材料的结构。Further, in step S3, the phosphating method is specifically: under an inert atmosphere, using sodium hypophosphite (NaH 2 PO 2 ) as a phosphorus source, phosphating at 200-400° C. at a heating rate of 5-10° C. per minute 5 to 30 minutes to ensure that the phosphating reaction is fully completed. This phosphating method can preserve the structure of the tin oxide/carbon composite.
进一步的,步骤S3中,磷化完成后依次使用去离子水和0.05mol/L的稀盐酸清洗,再真空干燥12-24小时。Further, in step S3, after the phosphating is completed, it is washed with deionized water and 0.05 mol/L dilute hydrochloric acid in sequence, and then vacuum-dried for 12-24 hours.
进一步的,步骤S3中,所述锡/磷化锡/碳复合材料的结构具体为:3-5nm的金属组分均匀分布在碳基体中,并且周围包裹着多层石墨化的碳层。本发明制备条件下,碳化过程中,海藻酸钠在高温时发生裂解生成高碳含量的碳材将氧化锡包裹起来,温度继续升高,氧化锡相互团聚长大,将碳挤出使其包裹在颗粒周围形成碳层。Further, in step S3, the structure of the tin/tin phosphide/carbon composite material is specifically: 3-5nm metal components are evenly distributed in the carbon matrix, and surrounded by multiple layers of graphitized carbon layers. Under the preparation conditions of the present invention, during the carbonization process, sodium alginate is cracked at high temperature to form a carbon material with high carbon content to wrap the tin oxide, the temperature continues to rise, the tin oxide agglomerates and grows up, and the carbon is extruded to wrap it A carbon layer forms around the particles.
与现有技术相比,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1)本发明使用海藻酸钠作为原材料,通过与四价锡离子进行交联、碳化再磷化的方法,得到了锡和磷化锡的碳复合材料;该方法操作简单,工艺成本低,合成容易;此外,在将海藻酸钠与锡离子交联碳化时,会引入均匀的介孔,同时锡在一定程度上可以催化碳层的石墨化,从而提高材料的导电性;1) The present invention uses sodium alginate as a raw material, and obtains a carbon composite material of tin and tin phosphide by crosslinking, carbonizing and rephosphating with tetravalent tin ions; the method is simple to operate, low in process cost, and easy to synthesize Easy; in addition, when sodium alginate and tin ions are cross-linked and carbonized, uniform mesopores will be introduced, and tin can catalyze the graphitization of the carbon layer to a certain extent, thereby improving the conductivity of the material;
2)本发明制备的锡/磷化锡/碳复合材料在应用于碱金属离子电池负极时,内部均匀的孔道可以作为碱金属离子的传输路径,细小金属组分颗粒使碳包覆效果更好,同时碳层可以提高材料的导电性并抑制锡的体积膨胀,磷可以形成基体进一步抑制锡的体积膨胀,因此,这种材料能表现出很好的循环性能和倍率性能。2) When the tin/tin phosphide/carbon composite material prepared by the present invention is applied to the negative electrode of alkali metal ion battery, the internal uniform pores can be used as the transmission path of alkali metal ions, and the fine metal component particles make the carbon coating effect better At the same time, the carbon layer can improve the conductivity of the material and inhibit the volume expansion of tin, and phosphorus can form a matrix to further inhibit the volume expansion of tin. Therefore, this material can exhibit good cycle performance and rate performance.
附图说明Description of drawings
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其他特征、目的和优点将会变得更明显:Other characteristics, objects and advantages of the present invention will become more apparent by reading the detailed description of non-limiting embodiments with reference to the following drawings:
图1为本发明实施例1所得的锡基碳复合材料的透射电镜照片:其中,a,b为氧化锡/碳复合材料的电镜照片,c,d为锡/磷化锡/碳复合材料电镜照片;Fig. 1 is the transmission electron micrograph of the tin-based carbon composite material that the embodiment of the present invention 1 gains: Wherein, a, b are the electron micrograph of tin oxide/carbon composite material, c, d are tin/tin phosphide/carbon composite material electronic microscope photo;
图2为本发明中实施例1所得的锡/磷化锡/碳复合材料的X射线衍射图谱;Fig. 2 is the X-ray diffraction spectrum of the tin/tin phosphide/carbon composite material that embodiment 1 gains among the present invention;
图3为本发明中实施例1所得锡/磷化锡/碳复合材料的拉曼图谱;Fig. 3 is the Raman spectrum of tin/tin phosphide/carbon composite material gained in embodiment 1 in the present invention;
图4为本发明中实施例1所得锡/磷化锡/碳复合材料的氮气吸脱附曲线;Fig. 4 is the nitrogen adsorption-desorption curve of the tin/tin phosphide/carbon composite material obtained in Example 1 of the present invention;
图5为本发明中实施例1所得锡/磷化锡/碳复合材料的孔径分布图;Fig. 5 is the pore size distribution figure of the tin/tin phosphide/carbon composite material obtained in embodiment 1 of the present invention;
图6为本发明中实施例1所得锡/磷化锡/碳复合材料和氧化锡/碳复合材料在锂离子电池负极中的倍率性能对比;Fig. 6 is the rate performance comparison of tin/tin phosphide/carbon composite material and tin oxide/carbon composite material obtained in Example 1 of the present invention in lithium ion battery negative electrode;
图7为本发明中实施例1所得锡/磷化锡/碳复合材料和氧化锡/碳复合材料在锂离子电池负极中的循环性能对比,其中电流密度为0.1A/g;Fig. 7 is the cycle performance comparison of tin/tin phosphide/carbon composite material and tin oxide/carbon composite material obtained in Example 1 of the present invention in lithium-ion battery negative electrode, wherein the current density is 0.1A/g;
图8为本发明中实施例1所得锡/磷化锡/碳复合材料和氧化锡/碳复合材料在锂离子电池负极中的循环性能对比,其中电流密度为1A/g。Figure 8 is a comparison of the cycle performance of the tin/tin phosphide/carbon composite material and the tin oxide/carbon composite material obtained in Example 1 of the present invention in the negative electrode of lithium-ion batteries, where the current density is 1A/g.
具体实施方式Detailed ways
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。The present invention will be described in detail below in conjunction with specific embodiments. The following examples will help those skilled in the art to further understand the present invention, but do not limit the present invention in any form. It should be noted that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention. These all belong to the protection scope of the present invention.
实施例1Example 1
本实施例涉及一种锡/磷化锡/碳复合材料的制备方法,包括如下步骤:This embodiment relates to a preparation method of a tin/tin phosphide/carbon composite material, comprising the following steps:
步骤一,交联反应:将3g海藻酸钠溶于197ml去离子水中,配制成质量分数为1.5%的溶液。将钠:锡摩尔比3:1的氯化钠和结晶四氯化锡溶于500ml去离子水里配制成锡离子浓度0.15mol/L的溶液。将海藻酸钠缓慢滴入金属离子水溶液中,搅拌反应24h,等待交联反应完全结束。将交联产物用去离子水冲洗3次,然后放入冷冻干燥机,在-60℃下冷冻干燥24小时。Step 1, cross-linking reaction: 3 g of sodium alginate was dissolved in 197 ml of deionized water to prepare a solution with a mass fraction of 1.5%. Sodium chloride and crystalline tin tetrachloride with a sodium:tin molar ratio of 3:1 were dissolved in 500ml of deionized water to prepare a solution with a tin ion concentration of 0.15mol/L. Sodium alginate was slowly dropped into the aqueous solution of metal ions, stirred and reacted for 24 hours, and waited for the complete completion of the cross-linking reaction. The cross-linked product was rinsed three times with deionized water, then placed in a freeze dryer, and freeze-dried at -60°C for 24 hours.
步骤二,碳化:将冷冻干燥后的海藻酸钠小球转移到管式炉中,在氮气气氛下,按照5℃/分的速率升温至550℃,并保温1小时,得到氧化锡/碳复合材料。
步骤三,磷化:将氧化锡/碳复合材料清洗干燥后,与次磷酸钠按锡:磷摩尔比1:7进行混合,手工研磨15分钟后,将其置于管式炉内,在惰性气氛下,按照10℃/分的速率升温至280℃,保温5分钟;使用去离子水和0.05mol/L的稀盐酸清洗,再真空干燥 12小时,得到锡/磷化锡/碳复合材料。
实施效果:Implementation Effect:
按照上述方法所得的氧化锡/碳复合材料如图1-a(bar=50nm),1-b(bar=20nm)所示,可以看到3-5nm左右的氧化锡颗粒均匀分布在碳基体中。所得的锡/磷化锡/碳复合材料如图1-c(bar=20nm),1-d(bar=5nm)所示,可以看到3-5nm左右的磷化锡均匀分布在碳基体中,有些锡融化长大形成较大的颗粒。该锡/磷化锡/碳复合材料的X射线衍射图见图2,展示出单质锡和磷化锡的混合物。拉曼射线图见图3,其展示出该复合材料较高的石墨化程度。该材料的氮气吸-脱附曲线以及孔径分布图曲线见图4和图5,其展示出其较好的孔状结构。取0.1g该复合材料,以8:1:1的质量比加入该复合材料、导电炭黑、粘结剂(成分为聚偏氟乙烯PVDF溶于N-甲基吡咯烷酮NMP中,质量浓度 0.02g/ml)搅拌形成浆料,将浆料均匀涂抹在铜箔上,干燥后裁剪为直径11mm的圆形电极片,进行干燥和称重。在水氧含量低于0.5ppm的氩气气氛的手套箱中,以金属锂为对电极,以聚烯烃多孔膜为隔膜,以1mol/L的六氟磷酸锂溶液(溶剂为体积比1:1:1 的碳酸乙烯酯、碳酸甲乙酯、碳酸二甲酯)为电解液,将电极片组装成CR2016型的半电池。对该半电池进行充放电、循环伏安以及交流阻抗测试。图6为该复合材料的倍率性能图,在电流密度为0.1A/g时的比容量为598mAh/g,在5A/g的电流密度下比容量为247mAh/g,相较于SnO2/C复合材料,磷化后倍率性能得到了提升。图7为该复合材料的循环性能图,在电流密度为0.1A/g时,首次库伦效率为50%,循环100圈后容量仍有665mAh/g,相较于SnO2/C复合材料,磷化后循环性能得到了提升。图8为该复合材料在1A/g的电流密度下的循环性能,首次放电比熔炼为1767mAh/g,在一段容量衰减后又继续上升,500圈时具有高达920mAh/g的比容量,相比SnO2/C复合材料,容量明显更高。The tin oxide/carbon composite material obtained according to the above method is shown in Figure 1-a (bar=50nm), 1-b (bar=20nm), and it can be seen that tin oxide particles of about 3-5nm are evenly distributed in the carbon matrix . The obtained tin/tin phosphide/carbon composite material is shown in Figure 1-c (bar=20nm), 1-d (bar=5nm), and it can be seen that the tin phosphide of about 3-5nm is evenly distributed in the carbon matrix , some tin melts and grows to form larger particles. The X-ray diffraction pattern of the tin/tin phosphide/carbon composite is shown in Figure 2, showing a mixture of elemental tin and tin phosphide. The Raman ray diagram is shown in Figure 3, which shows the high degree of graphitization of the composite material. The nitrogen absorption-desorption curve and pore size distribution curve of the material are shown in Figure 4 and Figure 5, which show its better pore structure. Take 0.1g of the composite material, add the composite material, conductive carbon black, and binder (the composition is polyvinylidene fluoride PVDF dissolved in NMP in N-methylpyrrolidone NMP, the mass concentration is 0.02g) with a mass ratio of 8:1:1 /ml) was stirred to form a slurry, and the slurry was evenly spread on the copper foil, and after drying, it was cut into circular electrode sheets with a diameter of 11 mm, dried and weighed. In a glove box with an argon atmosphere with a water oxygen content lower than 0.5ppm, metal lithium is used as a counter electrode, a polyolefin porous membrane is used as a diaphragm, and a 1mol/L lithium hexafluorophosphate solution (a solvent with a volume ratio of 1:1:1) Ethylene carbonate, ethyl methyl carbonate, dimethyl carbonate) were used as the electrolyte, and the electrode sheets were assembled into a CR2016 half-cell. Charge-discharge, cyclic voltammetry, and AC impedance tests were performed on the half-cell. Figure 6 is the rate performance graph of the composite material. The specific capacity is 598mAh/g when the current density is 0.1A/g, and the specific capacity is 247mAh/g when the current density is 5A/g. Compared with SnO 2 /C Composite materials, the rate performance has been improved after phosphating. Figure 7 is the cycle performance diagram of the composite material. When the current density is 0.1A/g, the first Coulombic efficiency is 50%, and the capacity is still 665mAh/g after 100 cycles. Compared with the SnO 2 /C composite material, phosphorus The cycle performance after thawing has been improved. Figure 8 shows the cycle performance of the composite material at a current density of 1A/g. The first discharge specific smelting is 1767mAh/g, and it continues to rise after a period of capacity decay. It has a specific capacity of 920mAh/g at 500 cycles. Compared with SnO 2 /C composite material, the capacity is significantly higher.
实施例2Example 2
本实施例涉及一种锡/磷化锡/碳复合材料的制备方法,包括如下步骤:This embodiment relates to a preparation method of a tin/tin phosphide/carbon composite material, comprising the following steps:
步骤一,交联反应:将2g海藻酸钠溶于198ml去离子水中,配制成质量分数为1%的溶液。将摩尔比1:1的氯化钠和结晶四氯化锡溶于500ml去离子水里配制成锡离子浓度0.10mol/L的溶液。将海藻酸钠缓慢滴入金属离子水溶液中,搅拌反应36h,等待交联反应完全结束。将交联产物用去离子水冲洗3次,然后放入冷冻干燥机,在-50℃下冷冻干燥24小时。Step 1, cross-linking reaction: 2 g of sodium alginate was dissolved in 198 ml of deionized water to prepare a solution with a mass fraction of 1%. Sodium chloride and crystalline tin tetrachloride with a molar ratio of 1:1 were dissolved in 500ml of deionized water to prepare a solution with a tin ion concentration of 0.10mol/L. Sodium alginate was slowly dropped into the metal ion aqueous solution, stirred for 36 hours, and waited for the cross-linking reaction to complete. The cross-linked product was rinsed with deionized water three times, then placed in a freeze dryer, and freeze-dried at -50°C for 24 hours.
步骤二,碳化:将冷冻干燥后的海藻酸钠小球转移到管式炉中,在氮气气氛下,按照5℃/分的速率升温至500℃,并保温1小时,得到氧化锡/碳复合材料。
步骤三,磷化:将氧化锡/碳复合材料清洗干燥后,与次磷酸钠按锡:磷摩尔比1:2进行混合,手工研磨15分钟后,将其置于管式炉内,在惰性气氛下,按照5℃/分的速率升温至200℃,保温15分钟。使用去离子水和0.05mol/L的稀盐酸清洗,再真空干燥 12小时,得到锡/磷化锡/碳复合材料。
实施效果:按照上述方法制备的材料,保留了多孔特性和纳米尺寸特性。取0.1g该复合材料,以8:1:1的质量比加入该复合材料、导电炭黑、粘结剂(成分为聚偏氟乙烯PVDF溶于N-甲基吡咯烷酮NMP中,质量浓度0.02g/ml)搅拌形成浆料,将浆料均匀涂抹在铜箔上,干燥后裁剪为直径11mm的圆形电极片,进行干燥和称重。在水氧含量低于0.5ppm的氩气气氛的手套箱中,以金属钠为对电极,以玻璃纤维为隔膜,以 1mol/L的高氯酸钠溶液(溶剂为体积比1:1的碳酸乙烯酯和碳酸丙烯酯)为电解液,将电极片组装成CR2032型的半电池。对该半电池进行充放电、循环伏安以及交流阻抗测试。该复合材料表现出较好的电化学性能。Implementation effect: the material prepared according to the above method retains the porous characteristics and nanometer size characteristics. Take 0.1g of the composite material, add the composite material, conductive carbon black, and binder (the composition is polyvinylidene fluoride PVDF dissolved in NMP in N-methylpyrrolidone NMP, the mass concentration is 0.02g) with a mass ratio of 8:1:1 /ml) was stirred to form a slurry, and the slurry was evenly spread on the copper foil, and after drying, it was cut into circular electrode sheets with a diameter of 11 mm, dried and weighed. In a glove box with an argon atmosphere with a water oxygen content lower than 0.5ppm, with metal sodium as the counter electrode, glass fiber as the diaphragm, and 1mol/L sodium perchlorate solution (solvent is carbonic acid with a volume ratio of 1:1) Vinyl ester and propylene carbonate) as the electrolyte, and the electrode sheets were assembled into a CR2032 half-cell. Charge-discharge, cyclic voltammetry, and AC impedance tests were performed on the half-cell. The composite material exhibits good electrochemical performance.
实施例3Example 3
本实施例涉及一种锡/磷化锡/碳复合材料的制备方法,包括如下步骤:This embodiment relates to a preparation method of a tin/tin phosphide/carbon composite material, comprising the following steps:
步骤一,交联反应:将3g海藻酸钠溶于147ml去离子水中,配制成质量分数为2%的溶液。将摩尔比5:1的氯化钠和结晶四氯化锡溶于500ml去离子水里配制成锡离子浓度0.2mol/L的溶液。将海藻酸钠缓慢滴入金属离子水溶液中,搅拌反应48h,等待交联反应完全结束。将交联产物用去离子水冲洗3次,然后放入冷冻干燥机,在-70℃下冷冻干燥72小时。Step 1, cross-linking reaction: 3 g of sodium alginate was dissolved in 147 ml of deionized water to prepare a solution with a mass fraction of 2%. Sodium chloride and crystalline tin tetrachloride with a molar ratio of 5:1 were dissolved in 500ml of deionized water to prepare a solution with a tin ion concentration of 0.2mol/L. Sodium alginate was slowly dropped into the aqueous solution of metal ions, stirred and reacted for 48 hours, and waited for the complete completion of the cross-linking reaction. The cross-linked product was rinsed three times with deionized water, then placed in a freeze dryer, and freeze-dried at -70°C for 72 hours.
步骤二,碳化:将冷冻干燥后的海藻酸钠小球转移到管式炉中,在氮气气氛下,按照10℃/分的速率升温至1200℃,并保温1小时,得到氧化锡/碳复合材料。
步骤三,磷化:将氧化锡/碳复合材料清洗干燥后,与次磷酸钠按锡:磷摩尔比1:10进行混合,手工研磨30分钟后,将其置于管式炉内,在惰性气氛下,按照10℃/分的速率升温至400℃,保温30分钟。使用去离子水和0.05mol/L的稀盐酸清洗,再真空干燥 12小时,得到锡/磷化锡/碳复合材料。
实施效果:按照上述方法制备的材料,保留了多孔特性和纳米尺寸特性。取0.1g该复合材料,以8:1:1的质量比加入该复合材料、导电炭黑、粘结剂(成分为聚偏氟乙烯PVDF溶于N-甲基吡咯烷酮NMP中,质量浓度0.02g/ml)搅拌形成浆料,将浆料均匀涂抹在铜箔上,干燥后裁剪为直径11mm的圆形电极片,进行干燥和称重。在水氧含量低于0.5ppm的氩气气氛的手套箱中,以金属钾为对电极,以玻璃纤维为隔膜,以 1mol/L的六氟合硅酸钾溶液(溶剂为体积比1:1的碳酸乙烯酯和碳酸丙烯酯)为电解液,将电极片组装成CR2032型的半电池。对该半电池进行充放电、循环伏安以及交流阻抗测试。该复合材料表现出较好的电化学性能。Implementation effect: the material prepared according to the above method retains the porous characteristics and nanometer size characteristics. Take 0.1g of the composite material, add the composite material, conductive carbon black, and binder (the composition is polyvinylidene fluoride PVDF dissolved in NMP in N-methylpyrrolidone NMP, the mass concentration is 0.02g) with a mass ratio of 8:1:1 /ml) was stirred to form a slurry, and the slurry was evenly spread on the copper foil, and after drying, it was cut into circular electrode sheets with a diameter of 11 mm, dried and weighed. In a glove box with an argon atmosphere with a water oxygen content lower than 0.5ppm, metal potassium is used as the counter electrode, glass fiber is used as the diaphragm, and 1mol/L potassium hexafluorosilicate solution (solvent volume ratio 1:1) Ethylene carbonate and propylene carbonate) were used as the electrolyte, and the electrode sheets were assembled into a CR2032 half-cell. Charge-discharge, cyclic voltammetry, and AC impedance tests were performed on the half-cell. The composite material exhibits good electrochemical performance.
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。Specific embodiments of the present invention have been described above. It should be understood that the present invention is not limited to the specific embodiments described above, and those skilled in the art may make various changes or modifications within the scope of the claims, which do not affect the essence of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911293737.6A CN111082034B (en) | 2019-12-16 | 2019-12-16 | Preparation of tin/tin phosphide/carbon composites as negative electrodes for alkali metal ion batteries |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911293737.6A CN111082034B (en) | 2019-12-16 | 2019-12-16 | Preparation of tin/tin phosphide/carbon composites as negative electrodes for alkali metal ion batteries |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111082034A CN111082034A (en) | 2020-04-28 |
CN111082034B true CN111082034B (en) | 2023-02-28 |
Family
ID=70314774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911293737.6A Expired - Fee Related CN111082034B (en) | 2019-12-16 | 2019-12-16 | Preparation of tin/tin phosphide/carbon composites as negative electrodes for alkali metal ion batteries |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111082034B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112072084B (en) * | 2020-07-31 | 2022-06-14 | 华南理工大学 | A kind of composite electrode material and its preparation method and application |
CN114122386B (en) * | 2020-08-31 | 2024-03-19 | 中南大学 | A kind of tin phosphide@carbon composite negative electrode active precursor material, negative electrode active material, negative electrode and preparation thereof for lithium-sulfur battery |
CN113725436A (en) * | 2021-08-31 | 2021-11-30 | 江苏科技大学 | Phosphorus-based composite material and preparation method thereof, sodium ion secondary battery cathode and secondary battery |
CN116435450A (en) * | 2023-04-20 | 2023-07-14 | 江苏科技大学 | Modification method for tin dioxide-based negative electrode material of lithium ion battery |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107403911A (en) * | 2017-06-20 | 2017-11-28 | 江苏大学 | Graphene/transition metal phosphide/C-base composte material, preparation method and lithium ion battery negative electrode |
CN108511714A (en) * | 2018-03-27 | 2018-09-07 | 燕山大学 | A kind of transition metal phosphide-carbon composite and its preparation method and application |
CN108539197A (en) * | 2018-03-13 | 2018-09-14 | 上海交通大学 | The preparation method of high magnification sodium-ion battery cathode porous graphite hard carbon |
CN109346332A (en) * | 2018-10-17 | 2019-02-15 | 上海交通大学 | Lithium-ion hybrid capacitor based on alginic acid cross-linked structure and preparation method thereof |
CN110034283A (en) * | 2018-09-17 | 2019-07-19 | 南方科技大学 | Tin phosphide composite material and preparation method and application thereof |
-
2019
- 2019-12-16 CN CN201911293737.6A patent/CN111082034B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107403911A (en) * | 2017-06-20 | 2017-11-28 | 江苏大学 | Graphene/transition metal phosphide/C-base composte material, preparation method and lithium ion battery negative electrode |
CN108539197A (en) * | 2018-03-13 | 2018-09-14 | 上海交通大学 | The preparation method of high magnification sodium-ion battery cathode porous graphite hard carbon |
CN108511714A (en) * | 2018-03-27 | 2018-09-07 | 燕山大学 | A kind of transition metal phosphide-carbon composite and its preparation method and application |
CN110034283A (en) * | 2018-09-17 | 2019-07-19 | 南方科技大学 | Tin phosphide composite material and preparation method and application thereof |
CN109346332A (en) * | 2018-10-17 | 2019-02-15 | 上海交通大学 | Lithium-ion hybrid capacitor based on alginic acid cross-linked structure and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
Salt effects on the cross-linking mechanism of cupric-induced sol-gel transition in alginate solutions;Honghe Zheng 等;《Carbohydrate Polymers》;19980430(第35期);第215-221页 * |
Also Published As
Publication number | Publication date |
---|---|
CN111082034A (en) | 2020-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111082034B (en) | Preparation of tin/tin phosphide/carbon composites as negative electrodes for alkali metal ion batteries | |
JP6970617B2 (en) | Silicon: A silicon-silicon oxide-lithium composite material with nanosilicon particles embedded in a lithium silicate composite material, its use in the manufacturing process, and its use in the battery secondary cell negative electrode manufacturing process, and lithium. Ion battery cell | |
CN106099113B (en) | A kind of core-shell structure silicon carbon composite material and preparation method thereof | |
CN108963236B (en) | Silicon material/carbon composite material and preparation method thereof, carbon-coated silicon material/carbon composite material and preparation method thereof | |
WO2017121069A1 (en) | Preparation of hard carbon negative electrode material for lithium ion power battery and modification method therefor | |
CN104716321B (en) | A kind of silicon-nitrogen-doped carbon-nitrogen-doped graphene composite material and its preparation and application | |
CN104577082B (en) | A kind of nano silicon material and application thereof | |
CN111146424B (en) | Metal sulfide/carbon composite material, and preparation method and application thereof | |
CN115092905B (en) | Amorphous carbon material modified by carbon dots, and preparation method and application thereof | |
CN111048764A (en) | A kind of silicon carbon composite material and its preparation method and application | |
CN109148865B (en) | Preparation method of hard carbon composite carbon microsphere negative electrode material for lithium or sodium ion battery | |
CN107068994A (en) | A kind of preparation method of the carbon load nitridation iron complexes anode material of lithium-ion battery of N doping | |
CN107732174B (en) | Carbon-coated LiFePO of lithium ion battery4Preparation method of/CNTs composite positive electrode material | |
CN109326768A (en) | A kind of sodium ion battery negative electrode and preparation method and sodium ion battery | |
CN107946575A (en) | A kind of preparation method of N doping porous charcoal cladding mesocarbon microspheres and the thus composite material of method preparation and its application | |
CN110620226A (en) | Preparation method of nitrogen and boron co-doped carbon fiber loaded molybdenum selenide electrode material | |
CN110957486A (en) | Preparation method of superstructure tin-carbon-molybdenum oxide composite material and application of superstructure tin-carbon-molybdenum oxide composite material to electrode | |
CN111554905B (en) | A kind of preparation method, product and application of zinc oxide-based carbon composite nanomaterial | |
CN105024050B (en) | A kind of bismuth selenide/carbon nano-fiber anode material for sodium-ion battery and preparation method thereof | |
CN110474029B (en) | Lithium-sulfur battery positive electrode composite material and preparation method thereof | |
CN110474025A (en) | A kind of multi-stage buffering structure silicon-carbon cathode material and its preparation method and application | |
CN112357956A (en) | Carbon/titanium dioxide coated tin oxide nanoparticle/carbon assembled mesoporous sphere material and preparation and application thereof | |
CN118763211B (en) | Preparation method of graphene doped silicon carbon material | |
CN108242544A (en) | A kind of biomass activated carbon-based carbon material and its preparation method and application in sodium ion battery | |
CN108682856B (en) | Typha carbon-loaded vanadium sodium phosphate nano composite material and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20230228 |