CN111081312B - 一种基于多序列联配信息的配体绑定残基预测方法 - Google Patents
一种基于多序列联配信息的配体绑定残基预测方法 Download PDFInfo
- Publication number
- CN111081312B CN111081312B CN201911225431.7A CN201911225431A CN111081312B CN 111081312 B CN111081312 B CN 111081312B CN 201911225431 A CN201911225431 A CN 201911225431A CN 111081312 B CN111081312 B CN 111081312B
- Authority
- CN
- China
- Prior art keywords
- residue
- sequence
- protein sequence
- ligand
- msa
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 238000002887 multiple sequence alignment Methods 0.000 title description 8
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 50
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 50
- 239000003446 ligand Substances 0.000 claims abstract description 32
- 239000011159 matrix material Substances 0.000 claims abstract description 8
- 238000002864 sequence alignment Methods 0.000 claims description 7
- 238000011160 research Methods 0.000 description 3
- 125000000539 amino acid group Chemical group 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 241000159610 Roya <green alga> Species 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004883 computer application Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000013277 forecasting method Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002547 new drug Substances 0.000 description 1
- 230000004853 protein function Effects 0.000 description 1
- 230000006916 protein interaction Effects 0.000 description 1
- 238000001273 protein sequence alignment Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B15/00—ICT specially adapted for analysing two-dimensional or three-dimensional molecular structures, e.g. structural or functional relations or structure alignment
- G16B15/30—Drug targeting using structural data; Docking or binding prediction
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Pharmacology & Pharmacy (AREA)
- Crystallography & Structural Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Bioinformatics & Computational Biology (AREA)
- Biotechnology (AREA)
- Evolutionary Biology (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Theoretical Computer Science (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911225431.7A CN111081312B (zh) | 2019-12-04 | 2019-12-04 | 一种基于多序列联配信息的配体绑定残基预测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911225431.7A CN111081312B (zh) | 2019-12-04 | 2019-12-04 | 一种基于多序列联配信息的配体绑定残基预测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111081312A CN111081312A (zh) | 2020-04-28 |
CN111081312B true CN111081312B (zh) | 2021-10-29 |
Family
ID=70312734
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911225431.7A Active CN111081312B (zh) | 2019-12-04 | 2019-12-04 | 一种基于多序列联配信息的配体绑定残基预测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111081312B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111667880A (zh) * | 2020-05-27 | 2020-09-15 | 浙江工业大学 | 一种基于深度残差神经网络的蛋白质残基接触图预测方法 |
CN112149885B (zh) * | 2020-09-07 | 2023-11-24 | 浙江工业大学 | 一种基于序列模板的配体绑定残基预测方法 |
CN112837740B (zh) * | 2021-01-21 | 2024-03-26 | 浙江工业大学 | 一种基于结构特征的dna绑定残基预测方法 |
CN113936741A (zh) * | 2021-09-29 | 2022-01-14 | 浙江工业大学 | 一种基于上下文感知计算的rna溶剂可及性预测方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109147866A (zh) * | 2018-06-28 | 2019-01-04 | 南京理工大学 | 基于采样与集成学习的蛋白质-dna绑定残基预测方法 |
WO2019079594A1 (en) * | 2017-10-18 | 2019-04-25 | The University Of North Carolina At Chapel Hill | METHODS AND COMPOSITIONS FOR VACCINES AGAINST NOVOVIRUS AND DIAGNOSIS OF NOVOVIRUS |
CN109801672A (zh) * | 2018-11-16 | 2019-05-24 | 天津大学 | 多元互信息和残基结合能量蛋白质间相互作用预测方法 |
WO2019161340A1 (en) * | 2018-02-19 | 2019-08-22 | Yale University | Phosphopeptide-encoding oligonucleotide libraries and methods for detecting phosphorylation-dependent molecular interactions |
CN110176272A (zh) * | 2019-04-18 | 2019-08-27 | 浙江工业大学 | 一种基于多序列联配信息的蛋白质二硫键预测方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108875310A (zh) * | 2017-05-12 | 2018-11-23 | 河南师范大学 | Dna结合蛋白序列信息特征提取与分类方法及装置 |
US20210057047A1 (en) * | 2018-01-08 | 2021-02-25 | The Governing Council Of The University Of Toronto | In-silico method for designing a (d)-polypeptide ligand |
CN110197700B (zh) * | 2019-04-16 | 2021-04-06 | 浙江工业大学 | 一种基于差分进化的蛋白质atp对接方法 |
-
2019
- 2019-12-04 CN CN201911225431.7A patent/CN111081312B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019079594A1 (en) * | 2017-10-18 | 2019-04-25 | The University Of North Carolina At Chapel Hill | METHODS AND COMPOSITIONS FOR VACCINES AGAINST NOVOVIRUS AND DIAGNOSIS OF NOVOVIRUS |
WO2019161340A1 (en) * | 2018-02-19 | 2019-08-22 | Yale University | Phosphopeptide-encoding oligonucleotide libraries and methods for detecting phosphorylation-dependent molecular interactions |
CN109147866A (zh) * | 2018-06-28 | 2019-01-04 | 南京理工大学 | 基于采样与集成学习的蛋白质-dna绑定残基预测方法 |
CN109801672A (zh) * | 2018-11-16 | 2019-05-24 | 天津大学 | 多元互信息和残基结合能量蛋白质间相互作用预测方法 |
CN110176272A (zh) * | 2019-04-18 | 2019-08-27 | 浙江工业大学 | 一种基于多序列联配信息的蛋白质二硫键预测方法 |
Non-Patent Citations (2)
Title |
---|
" Ligand Binding Site Structure Influences the Evolution of Protein Complex Function and Topology";Abrusán;《Cell Reports》;20180320;第1-13页 * |
"识别蛋白质配体绑定残基的生物计算方法综述";於东军;《数据采集与处理》;20180331;第195-206页 * |
Also Published As
Publication number | Publication date |
---|---|
CN111081312A (zh) | 2020-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111081312B (zh) | 一种基于多序列联配信息的配体绑定残基预测方法 | |
Klausen et al. | NetSurfP‐2.0: Improved prediction of protein structural features by integrated deep learning | |
CN110689920B (zh) | 一种基于深度学习的蛋白质-配体结合位点预测方法 | |
CN107038348B (zh) | 基于蛋白-配体相互作用指纹图谱的药物靶标预测方法 | |
US20190164320A1 (en) | Methods for the graphical representation of genomic sequence data | |
CN111063389B (zh) | 一种基于深度卷积神经网络的配体绑定残基预测方法 | |
Guo et al. | Prediction of inter-chain distance maps of protein complexes with 2D attention-based deep neural networks | |
Vaudel et al. | Current methods for global proteome identification | |
Hoffmann et al. | Combining peak-and chromatogram-based retention time alignment algorithms for multiple chromatography-mass spectrometry datasets | |
US20220189579A1 (en) | Protein complex structure prediction from cryo-electron microscopy (cryo-em) density maps | |
CN112149881B (zh) | 一种基于卷积神经网络的dna绑定残基预测方法 | |
Meng et al. | Improved structure-related prediction for insufficient homologous proteins using MSA enhancement and pre-trained language model | |
US20230298687A1 (en) | Predicting protein structures by sharing information between multiple sequence alignments and pair embeddings | |
Song et al. | An advanced statistical approach to data-driven earthquake engineering | |
CN111667880A (zh) | 一种基于深度残差神经网络的蛋白质残基接触图预测方法 | |
WO2022112260A1 (en) | Predicting protein structures over multiple iterations using recycling | |
CN112149885B (zh) | 一种基于序列模板的配体绑定残基预测方法 | |
Gao et al. | bSiteFinder, an improved protein-binding sites prediction server based on structural alignment: more accurate and less time-consuming | |
KR20230121880A (ko) | 마스킹된 단백질 표현으로부터 완전한 단백질 표현예측 | |
Kern et al. | Predicting interacting residues using long-distance information and novel decoding in hidden markov models | |
Kong et al. | FALCON2: a web server for high-quality prediction of protein tertiary structures | |
CN112216345B (zh) | 一种基于迭代搜索策略的蛋白质溶剂可及性预测方法 | |
CN115019879A (zh) | 一种基于三段式滑动窗口的dna绑定残基的预测方法 | |
EP4205120A1 (en) | Predicting protein structures using protein graphs | |
CN116325002A (zh) | 使用辅助折叠网络预测蛋白质结构 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20231227 Address after: 518054, D1101, Building 4, Software Industry Base, No. 19, 17, and 18 Haitian 1st Road, Binhai Community, Yuehai Street, Nanshan District, Shenzhen City, Guangdong Province Patentee after: Shenzhen Xinrui Gene Technology Co.,Ltd. Address before: 510075 No. n2248, floor 3, Xingguang Yingjing, No. 117, Shuiyin Road, Yuexiu District, Guangzhou City, Guangdong Province Patentee before: GUANGZHOU ZHAOJI BIOTECHNOLOGY CO.,LTD. Effective date of registration: 20231227 Address after: 510075 No. n2248, floor 3, Xingguang Yingjing, No. 117, Shuiyin Road, Yuexiu District, Guangzhou City, Guangdong Province Patentee after: GUANGZHOU ZHAOJI BIOTECHNOLOGY CO.,LTD. Address before: The city Zhaohui six districts Chao Wang Road Hangzhou City, Zhejiang province 310014 18 Patentee before: JIANG University OF TECHNOLOGY |