CN111080562A - 一种基于增强图像对比的变电场所悬挂物识别方法 - Google Patents

一种基于增强图像对比的变电场所悬挂物识别方法 Download PDF

Info

Publication number
CN111080562A
CN111080562A CN201911244070.0A CN201911244070A CN111080562A CN 111080562 A CN111080562 A CN 111080562A CN 201911244070 A CN201911244070 A CN 201911244070A CN 111080562 A CN111080562 A CN 111080562A
Authority
CN
China
Prior art keywords
image
difference
detected
connected region
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911244070.0A
Other languages
English (en)
Other versions
CN111080562B (zh
Inventor
吴道平
章海兵
褚衍超
许志瑜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Technological University Intelligent Robot Technology Co ltd
Original Assignee
Gsg Intelligent Technology Co ltd
Hefei Technological University Intelligent Robot Technology Co ltd
CSG Smart Electrical Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gsg Intelligent Technology Co ltd, Hefei Technological University Intelligent Robot Technology Co ltd, CSG Smart Electrical Technology Co Ltd filed Critical Gsg Intelligent Technology Co ltd
Priority to CN201911244070.0A priority Critical patent/CN111080562B/zh
Publication of CN111080562A publication Critical patent/CN111080562A/zh
Application granted granted Critical
Publication of CN111080562B publication Critical patent/CN111080562B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/20Image enhancement or restoration using local operators
    • G06T5/30Erosion or dilatation, e.g. thinning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/187Segmentation; Edge detection involving region growing; involving region merging; involving connected component labelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/33Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/46Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features
    • G06V10/462Salient features, e.g. scale invariant feature transforms [SIFT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)

Abstract

本发明公开了一种基于增强图像对比的变电场所悬挂物识别方法,属于变电场所异物识别技术领域,包括对待测图像进行显著性检测,提取待测图像的第一显著性区域,并转化成掩码图像;在通道一中,对待测图像与原始背景图像进行差分处理,并将得到的第一作差图与掩码图像相掩,提取待测图像的第二显著性区域;在第二显著性区域上进行二值化处理,并对二值化图像进行腐蚀膨胀后提取其连通区域;在通道二中,对待测图像与原始背景图像进行图像增强操作后进行差分处理,得到第二作差图;根据连通区域和第二作差图进行处理,识别出待测图像中的异物。与现有技术相比,本发明的识别精确度和抗干扰均有大幅提升。

Description

一种基于增强图像对比的变电场所悬挂物识别方法
技术领域
本发明涉及变电场所异物识别技术领域,特别涉及一种基于增强图像对比的变电场所悬挂物识别方法。
背景技术
变电场所一般在四周较空旷地带,或者在农村,或者在城市郊区,且主要设备都在室外,容易受到外来异物入侵。异物入侵可能会对变电站设备造成安全运行隐患,甚至会造成跳闸、起火等严重故障。悬浮物是变电场所一种常见的异物,悬浮物常有塑料袋,线缆,条状布片等,对这些悬挂物进行识别,对减少隐患有十分重要的意义。
以前的设备巡检大多采用人工巡检方式,但变电场所是个高危场所,尤其在恶劣条件下,对工作人员存在安全隐患,而且人工巡检难以做到持续实时巡检。
目前,常采用的异物识别方式有基于传统图像识别与基于深度学习的方式。基于传统图像识别,采用的帧间差分法,这种算法的主要思想是:首先对相对不变的背景环境采集一幅或多幅作为背景模板,当需要检测在此环境中是否有异物时,再实时采集一幅图像与背景模板进行逐一像素或区域的差异计算;当差异的结果充满一定的图像面积时,则认为采集图像与模板不一致,疑似异物出现在采集图像中;背景图片与待测图片的对齐常采用图像配准的方式。
基于深度学习的方法,其使用当前流行的一阶段目标检测模型yolov3或者二阶段目标检测模型faster-rcnn、mask-rcnn等模型。基于大量异物样本数据训练,在携带显卡的高性能环境上运行,识别出异物。其识别准确度高,针对各种复杂纹理的异物均能识别。
但是传统图像差分方法易受配准偏差影响,受背景、光照影响。抗干扰性不强,容易误识别。传统的作差方式,在图像配准阶段仅对近处的物体进行配准,远处的物体如墙壁、建筑物,即使配准,这些远处的物体像素偏移也会较大,直接作差会带来很多的干扰。传统图像差分方案在配准时会有几个像素的偏移,逐像素差分,会受像素偏移的影响。传统图像差分方案基于一种模式差分,不能很好的凸显异物边缘,容易识别出多种“伪异物”。
基于深度学习的方法,虽然识别效果优异,对几乎所有类型的异物均有良好识别效果,但其成本较高。一:需要大量样本学习,训练需要最少几百乃至几千的数据量。由于缺陷场景的稀缺性,收集这么多异物样本并不容易。二:需要事先知道异物的类型,比如识别塑料袋,则需要找大量塑料袋图像,识别线缆,则需要寻找大量线缆图像。如遇到一个新的未训练类别,如布条,则并不会识别。三:需要运行在高性能环境,由于深度学习模型巨大,运行时参数量非常多,一般需要运行在高性能显卡上。在我们的识别场景中,由于悬浮物异物具有较单一的纹理,如塑料袋,布条,线缆,整体纹理比较一致。基于传统模式识别的方式也能取得较好的效果。
发明内容
本发明的目的在于克服现有技术存在的不足,提高异物识别的精度。
为实现以上目的,本发明采用一种基于增强图像对比的变电场所悬挂物识别方法,包括如下步骤:
对待测图像进行显著性检测,提取待测图像的第一显著性区域,并转化成掩码图像;
在通道一中,对待测图像与原始背景图像进行差分处理,并将得到的第一作差图与掩码图像相掩,提取待测图像的第二显著性区域;
在第二显著性区域上进行二值化处理,并对二值化图像进行腐蚀膨胀后提取其连通区域;
在通道二中,对待测图像与原始背景图像进行图像增强操作后进行差分处理,得到第二作差图;
根据连通区域和第二作差图进行处理,识别出待测图像中的异物。
进一步地,所述在通道一中,对待测图像与原始背景图像进行差分处理,并将得到的第一作差图与掩码图像相掩,提取待测图像的第二显著性区域,包括:
在所述通道一中,将所述待测图像和所述原始背景图像进行配准,并分别对所述待测图像和所述原始背景图像进行灰度化、中值滤波处理以及像素归一化处理,得到归一化后的待测图像和归一化后的原始背景图像;
对归一化后的待测图像和归一化后的原始背景图像进行差分处理,得到所述第一作差图;
将第一作差图与所述掩码图像进行相掩,提取待测图像的第二显著性区域。
进一步地,所述在第二显著性区域上进行二值化处理,并对二值化图像进行腐蚀膨胀后提取其连通区域,包括:
在所述第二显著性区域上进行自适应二值化处理,得到二值化图像;
在所述二值化图像上进行腐蚀及图像膨胀操作,得到膨胀后的图像;
在膨胀后的图像上提取连通性区域。
进一步地,所述在通道二中,对待测图像与原始背景图像进行图像增强操作后进行差分处理,得到第二作差图,包括:
在所述通道二中,对所述待测图像与所述原始背景图像进行配准,并分别对所述待测图像和所述原始背景图像进行灰度化处理,得到所述待测图像的灰度图和所述原始背景图像的灰度图;
对所述待测图像的灰度图和所述原始背景图像的灰度图分别进行图像增强处理,得到两增强后的图像;
对两增强后的图像进行作差处理,得到所述第二作差图。
进一步地,所述根据连通区域和第二作差图进行处理,识别出待测图像中的异物,包括:
基于所述连通区域边缘与所述第二作差图边缘的重合度,对所述连通区域进行过滤处理,得到保留的连通区域;
在保留的连通区域上,进行异物检测。
进一步地,在所述基于所述连通区域边缘与所述第二作差图边缘的重合度,对所述连通区域进行过滤处理,得到保留的连通区域之前,还包括:
对所述连通区域进行基于连通区域面积过滤处理,得到过滤后的连通区域;
相应地,基于过滤后的连通区域边缘与所述第二作差图边缘的重合度,对所述过滤后的连通区域进行过滤处理,得到保留的连通区域。
进一步地,在所述基于所述连通区域边缘与所述第二作差图边缘的重合度,对所述连通区域进行过滤处理,得到保留的连通区域之前,还包括:
将所述第二作差图进行像素归一化处理,得到归一化后的差分图像;
将所述归一化后的差分图像与所述掩码图像进行相掩,提取待测图像的第三显著性区域。
进一步地,所述在保留的连通区域上,进行异物检测,包括:
在所述保留的连通区域上,对相邻区域结合所述原始背景图像使用区域生成算法进行连接,得到完整异物的形态。
进一步地,所述通道一和所述通道二为两个并行的检测通道。
进一步地,所述差分处理具体为带像素偏移纠正的差分处理。
与现有技术相比,本发明存在以下技术效果:本发明在传统的图像配准差分方法上进行了一系列处理:显著性检测、仅对显著性区域进行作差,滤掉复杂背景造成的干扰;基于增强图像的作差比较、图像增强,突出物体边缘,淡化物体内部细节,再作差,突出了异物的边缘,将物体表面的光照影响降到最小;基于像素的位移纠偏功能,排除配准偏差的影响;双通道信息融合,原始图像作差后的图像作差有较多的背景信息干扰,增强后的图像作差部分内部细节并不明显,综合考虑更能全面的体现异物的边缘及内部特征,有效的消除了原有方法的弊端,提高了原有方法的识别精确度,扩大了原有方法的应用范围。
附图说明
下面结合附图,对本发明的具体实施方式进行详细描述:
图1是一种基于增强图像对比的变电场所悬挂物识别方法的步骤示意图;
图2是一种基于增强图像对比的变电场所悬挂物识别方法的主体流程图。
具体实施方式
为了更进一步说明本发明的特征,请参阅以下有关本发明的详细说明与附图。所附图仅供参考与说明之用,并非用来对本发明的保护范围加以限制。
如图1-图2所示,本实施例公开了一种基于增强图像对比的变电场所悬挂物识别方法,包括如下步骤S1至S5:
S1、对待测图像进行显著性检测,提取待测图像的第一显著性区域,并转化成掩码图像;
需要说明的是,本实施例中采用的显著性检测算法包括但不限于fastMBD等算法,为提高处理速度,对图像缩放处理。
需要说明的是,fastMBD算法的代价函数采取Minimum Barrier Distance计算:
Figure BDA0002307036390000051
其中,π表示路径,β表示距离,I表示像素值,v表示当前路径的像素点个数。
S2、在通道一中,对待测图像与原始背景图像进行差分处理,并将得到的第一作差图与掩码图像相掩,提取待测图像的第二显著性区域;
S3、在第二显著性区域上进行二值化处理,并对二值化图像进行腐蚀膨胀后提取其连通区域;
S4、在通道二中,对待测图像与原始背景图像进行图像增强操作后进行差分处理,得到第二作差图;
S5、根据连通区域和第二作差图进行处理,识别出待测图像中的异物。
需要说明的是,所述通道一和所述通道二为两个并行的检测通道。所述差分处理具体为带像素偏移纠正的差分处理。
具体来说,上述步骤S2:在通道一中,对待测图像与原始背景图像进行差分处理,并将得到的第一作差图与掩码图像相掩,提取待测图像的第二显著性区域,包括如下步骤S21至S23:
S21、在所述通道一中,将所述待测图像和所述原始背景图像进行配准,并分别对所述待测图像和所述原始背景图像进行灰度化、中值滤波处理以及像素归一化处理,得到归一化后的待测图像和归一化后的原始背景图像;
需要说明的是,将原始待测图像基于背景图像进行配准的方法包括但不限于SHIFT算法,以提高配准的准确性,使用基于双向最佳sift特征点匹配。并具体将待测图像与原始背景图像分别进行灰度化、中值滤波,使用3x3的滤波核、归一化处理,归一到0-255之间。
S22、对归一化后的待测图像和归一化后的原始背景图像进行差分处理,得到所述第一作差图;
需要说明的是,差分处理的方式,为待测图像的像素值与背景图像对应的像素值的n×n区域作差,比如待测图像的像素值与原始背景图像对应的像素值的3×3或者5×5区域作差,并取差值的最小值为对象位置的像素点。并取差值的最小值为对象位置的像素点。考虑到悬浮物像素点数值较为一致,基于区域作差不会消除异物区域。基于区域的作差有效的过滤了图像噪点,作差图像更加稳定,抗干扰性更好。同时,配准后,两张图像并不会每个像素点均完全重合,可能有数个像素的偏移,基于区域的作差有效的纠正了像素偏移造成的干扰。
S23、将第一作差图与所述掩码图像进行相掩,提取待测图像的第二显著性区域。
具体来说,上述步骤S3:在第二显著性区域上进行二值化处理,并对二值化图像进行腐蚀膨胀后提取其连通区域,具体包括如下细分步骤S31至S33:
S31、在所述第二显著性区域上进行自适应二值化处理,得到二值化图像;
需要说明的是,这里的二值化方法包括但不限于OSTU算法。
S32、在所述二值化图像上进行腐蚀及图像膨胀操作,得到膨胀后的图像;
需要说明的是,在二值化图像上使用3×3滤波核图像进行腐蚀及3×3的滤波核进行图像膨胀操作。
S33、在膨胀后的图像上提取连通性区域。
具体来说,上述步骤S4:在通道二中,对待测图像与原始背景图像进行图像增强操作后进行差分处理,得到第二作差图,具体包括如下细分步骤S41至S43:
S41、在所述通道二中,对所述待测图像与所述原始背景图像进行配准,并分别对所述待测图像和所述原始背景图像进行灰度化处理,得到所述待测图像的灰度图和所述原始背景图像的灰度图;
S42、对所述待测图像的灰度图和所述原始背景图像的灰度图分别进行图像增强处理,得到两增强后的图像;
需要说明的是,本实施例中可采用MSR算法也即多尺度Retinex算法对图像进行图像增强操作。
其中,MSR计算公式如下:
Figure BDA0002307036390000081
Figure BDA0002307036390000082
其中,S(x,y)为原始图像,r(x,y)为输出图像,(x,y)为像素坐标值,w各尺度权重,c高斯函数方差,K表示尺度总数,k表示尺度,*表示卷积,Fk(x,y)表不同尺度下的F(x,y),F(x,y)表示中心环绕函数。
上述公式中,取三个尺度,w1=w2=w3=1/3,对应的高斯函数方差c为15,80,125。
S43、对两增强后的图像进行作差处理,得到所述第二作差图。
其中,第二作差图中主要包含物体的边缘细节。
具体来说,上述步骤S5:所述根据连通区域和第二作差图进行处理,识别出待测图像中的异物,具体包括如下细分步骤S51至S52:
S51、基于所述连通区域边缘与所述第二作差图边缘的重合度,对所述连通区域进行过滤处理,得到保留的连通区域;
其中,差分为基于图像局部区域差分,的其计算公式为:
sub_img(i,j)=min{src1_img(i+m,j+n)-src2_img(i+m,j+n)},
Figure BDA0002307036390000083
其中,m,n为设定的区域,如3*3,5*5等;i、j表示像素点横纵坐标位置,src1_img表示作差的两张图像的第一张,src2_img表示作差的两张图像的第二张,
Figure BDA0002307036390000084
表示的是m取值范围-3到3,
Figure BDA0002307036390000085
表示n的取值范围-3到3。
具体为:在连通域中,包含较多边缘细节的区域进行保留,较少边缘细节或者无边缘细节的区域予以过滤,如连通区域边缘与差分图像的边缘的重合度小于0.5予以过滤。
S52、在保留的连通区域上,进行异物检测。
其中,其中,重合度计算公式为:
Figure BDA0002307036390000091
公式中,N为相近领域,取值3或5。
像素点值为1为真实边缘,否则为伪边缘,真实像素点比例超过一定阈值即为真实异物。
具体为:在保留的连通性上分析,邻近的区域结合原图像使用区域生成算法进行连接,形成完整的异物形态。如2个连通区域的的距离小于连通区域长宽的0.2倍,在连通域边缘基于8领域像素差生长的策略,判定相邻连通区域是否连接。
进一步地,在上述步骤S51:基于所述连通区域边缘与所述第二作差图边缘的重合度,对所述连通区域进行过滤处理,得到保留的连通区域之前,还包括:
对所述连通区域进行基于连通区域面积过滤处理,得到过滤后的连通区域;
相应地,基于过滤后的连通区域边缘与所述第二作差图边缘的重合度,对所述过滤后的连通区域进行过滤处理,得到保留的连通区域。
需要说明的是,本实施例对提取后的联通区域进行基于连通区域面积过滤处理,对面积小于300的区域或者最小外接矩形长小于100或者宽度小于6的区域进行过滤。
进一步地,在上述步骤S51:基于所述连通区域边缘与所述第二作差图边缘的重合度,对所述连通区域进行过滤处理,得到保留的连通区域之前,还包括:
将所述第二作差图进行像素归一化处理,得到归一化后的差分图像;
将所述归一化后的差分图像与所述掩码图像进行相掩,提取待测图像的第三显著性区域。
需要说明的是,通道二的作用是过滤伪异物,在通道一产生的作差图像中因光照变化等存在一些伪异物,在通道二中,产生物体的边缘特征。提取通道二的边缘与通道一对应区域的像素值,取和,超过某一阈值,认为该像素点为真实的边缘像素点,对已确认是边缘的像素点进行统计,如果真实的边缘像素点占总的边缘像素点超过一定阈值,认为该异物区域是真实的,不是伪异物。
特别地,本实施例中,滤波核的选择及高斯核变量、过滤参数的设置均考虑到图像尺寸1920×1080、异物的特点(异物纹理较一致,异物整体呈条状或块状),在悬浮物的检测上,有优异的效果。
本发明通过双通道差分模式来进行过滤干扰项,进行异物识别,首先,在待测图像上进行显著性检测,提取显著性区域以过滤掉无关背景;其次,基于灰度图的差分,二值化后腐蚀膨胀提取联通区域;然后,使用增强图像提取图像边缘轮廓,基于此进行差分,得到差分图;最后,在二个通道上差分处理后的差分图进行综合分析,过滤掉大量“伪异物”,并进行区域生成合并联通区域,增强图差分与原始背景图像差分的信息融合复原悬挂物的形态,得到最终的异物图。该方法充分考虑到变电站悬浮物等异物的特征,并对传统差分算法进行了4个有效的扩展,提高了悬浮物的识别率。
本发明方法与深度学习模型相比,本方法无需大量样本训练,无需预知道悬浮物具体类型。与基于背景建模减除的方法比,原方法需要100张以上背景图片,本方法仅需要一张原始背景图片。与基于传统配准差分对比的方法比,本方法在识别精确度,抗干扰均有大幅提升。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种基于增强图像对比的变电场所悬挂物识别方法,其特征在于,包括:
对待测图像进行显著性检测,提取待测图像的第一显著性区域,并转化成掩码图像;
在通道一中,对待测图像与原始背景图像进行差分处理,并将得到的第一作差图与掩码图像相掩,提取待测图像的第二显著性区域;
在第二显著性区域上进行二值化处理,并对二值化图像进行腐蚀膨胀后提取其连通区域;
在通道二中,对待测图像与原始背景图像进行图像增强操作后进行差分处理,得到第二作差图;
根据连通区域和第二作差图进行处理,识别出待测图像中的异物。
2.如权利要求1所述的基于增强图像对比的变电场所悬挂物识别方法,其特征在于,所述在通道一中,对待测图像与原始背景图像进行差分处理,并将得到的第一作差图与掩码图像相掩,提取待测图像的第二显著性区域,包括:
在所述通道一中,将所述待测图像和所述原始背景图像进行配准,并分别对所述待测图像和所述原始背景图像进行灰度化、中值滤波处理以及像素归一化处理,得到归一化后的待测图像和归一化后的原始背景图像;
对归一化后的待测图像和归一化后的原始背景图像进行差分处理,得到所述第一作差图;
将第一作差图与所述掩码图像进行相掩,提取待测图像的第二显著性区域。
3.如权利要求1所述的基于增强图像对比的变电场所悬挂物识别方法,其特征在于,所述在第二显著性区域上进行二值化处理,并对二值化图像进行腐蚀膨胀后提取其连通区域,包括:
在所述第二显著性区域上进行自适应二值化处理,得到二值化图像;
在所述二值化图像上进行腐蚀及图像膨胀操作,得到膨胀后的图像;
在膨胀后的图像上提取连通性区域。
4.如权利要求1所述的基于增强图像对比的变电场所悬挂物识别方法,其特征在于,所述在通道二中,对待测图像与原始背景图像进行图像增强操作后进行差分处理,得到第二作差图,包括:
在所述通道二中,对所述待测图像与所述原始背景图像进行配准,并分别对所述待测图像和所述原始背景图像进行灰度化处理,得到所述待测图像的灰度图和所述原始背景图像的灰度图;
对所述待测图像的灰度图和所述原始背景图像的灰度图分别进行图像增强处理,得到两增强后的图像;
对两增强后的图像进行作差处理,得到所述第二作差图。
5.如权利要求1所述的基于增强图像对比的变电场所悬挂物识别方法,其特征在于,所述根据连通区域和第二作差图进行处理,识别出待测图像中的异物,包括:
基于所述连通区域边缘与所述第二作差图边缘的重合度,对所述连通区域进行过滤处理,得到保留的连通区域;
在保留的连通区域上,进行异物检测。
6.如权利要求5所述的基于增强图像对比的变电场所悬挂物识别方法,其特征在于,在所述基于所述连通区域边缘与所述第二作差图边缘的重合度,对所述连通区域进行过滤处理,得到保留的连通区域之前,还包括:
对所述连通区域进行基于连通区域面积过滤处理,得到过滤后的连通区域;
相应地,基于过滤后的连通区域边缘与所述第二作差图边缘的重合度,对所述过滤后的连通区域进行过滤处理,得到保留的连通区域。
7.如权利要求5所述的基于增强图像对比的变电场所悬挂物识别方法,其特征在于,在所述基于所述连通区域边缘与所述第二作差图边缘的重合度,对所述连通区域进行过滤处理,得到保留的连通区域之前,还包括:
将所述第二作差图进行像素归一化处理,得到归一化后的差分图像;
将所述归一化后的差分图像与所述掩码图像进行相掩,提取待测图像的第三显著性区域。
8.如权利要求5所述的基于增强图像对比的变电场所悬挂物识别方法,其特征在于,所述在保留的连通区域上,进行异物检测,包括:
在所述保留的连通区域上,对相邻区域结合所述原始背景图像使用区域生成算法进行连接,得到完整异物的形态。
9.如权利要求1-8任一项所述的基于增强图像对比的变电场所悬挂物识别方法,其特征在于,所述通道一和所述通道二为两个并行的检测通道。
10.如权利要求1-8任一项所述的基于增强图像对比的变电场所悬挂物识别方法,其特征在于,所述差分处理具体为带像素偏移纠正的差分处理。
CN201911244070.0A 2019-12-06 2019-12-06 一种基于增强图像对比的变电场所悬挂物识别方法 Active CN111080562B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911244070.0A CN111080562B (zh) 2019-12-06 2019-12-06 一种基于增强图像对比的变电场所悬挂物识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911244070.0A CN111080562B (zh) 2019-12-06 2019-12-06 一种基于增强图像对比的变电场所悬挂物识别方法

Publications (2)

Publication Number Publication Date
CN111080562A true CN111080562A (zh) 2020-04-28
CN111080562B CN111080562B (zh) 2022-12-20

Family

ID=70313306

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911244070.0A Active CN111080562B (zh) 2019-12-06 2019-12-06 一种基于增强图像对比的变电场所悬挂物识别方法

Country Status (1)

Country Link
CN (1) CN111080562B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115131357A (zh) * 2022-09-01 2022-09-30 合肥中科类脑智能技术有限公司 一种输电通道挂空悬浮物检测方法
CN115409889A (zh) * 2022-09-07 2022-11-29 山东浪潮超高清智能科技有限公司 一种基于图像作差的户外大屏位置检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2709063A1 (en) * 2012-09-13 2014-03-19 Omron Corporation Image processing device, computer-readable recording medium, and image processing method
AU2013263838A1 (en) * 2013-11-29 2015-06-18 Canon Kabushiki Kaisha Method, apparatus and system for classifying visual elements
CN108805897A (zh) * 2018-05-22 2018-11-13 安徽大学 一种改进的运动目标检测vibe算法
CN110147840A (zh) * 2019-05-22 2019-08-20 桂林电子科技大学 基于显著性无监督部件划分的弱结构物体细粒度分类方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2709063A1 (en) * 2012-09-13 2014-03-19 Omron Corporation Image processing device, computer-readable recording medium, and image processing method
AU2013263838A1 (en) * 2013-11-29 2015-06-18 Canon Kabushiki Kaisha Method, apparatus and system for classifying visual elements
CN108805897A (zh) * 2018-05-22 2018-11-13 安徽大学 一种改进的运动目标检测vibe算法
CN110147840A (zh) * 2019-05-22 2019-08-20 桂林电子科技大学 基于显著性无监督部件划分的弱结构物体细粒度分类方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN GE-HENG: "Research of Adaptive Frame Difference Moving Target Segmentation Based on MRF", 《2013 SEVENTH INTERNATIONAL CONFERENCE ON IMAGE AND GRAPHICS》 *
于水蓉: "智能船舶视频监控系统中的阴影消除算法研究", 《中国优秀硕士学位论文全文数据库》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115131357A (zh) * 2022-09-01 2022-09-30 合肥中科类脑智能技术有限公司 一种输电通道挂空悬浮物检测方法
CN115131357B (zh) * 2022-09-01 2022-11-08 合肥中科类脑智能技术有限公司 一种输电通道挂空悬浮物检测方法
CN115409889A (zh) * 2022-09-07 2022-11-29 山东浪潮超高清智能科技有限公司 一种基于图像作差的户外大屏位置检测方法

Also Published As

Publication number Publication date
CN111080562B (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
US11580647B1 (en) Global and local binary pattern image crack segmentation method based on robot vision
Sirmacek et al. Building detection from aerial images using invariant color features and shadow information
CN109615611B (zh) 一种基于巡检影像的绝缘子自爆缺陷检测方法
CN107895376A (zh) 基于改进Canny算子和轮廓面积阈值的太阳能电池板识别方法
CN106157323B (zh) 一种动态分块阈值和块搜索结合的绝缘子分割提取方法
CN102426649A (zh) 一种简单的高准确率的钢印数字自动识别方法
CN114972356B (zh) 塑料制品表面缺陷检测识别方法及系统
CN102567994B (zh) 基于角点高斯特性分析的红外小目标检测方法
CN104408482A (zh) 一种高分辨率sar图像目标检测方法
CN106557740B (zh) 一种遥感图像中油库目标的识别方法
CN106709518A (zh) 基于Android平台的盲道识别系统
Er-Sen et al. An adaptive edge-detection method based on the canny operator
CN103295013A (zh) 一种基于成对区域的单幅图像阴影检测方法
CN111080562B (zh) 一种基于增强图像对比的变电场所悬挂物识别方法
CN105023027A (zh) 基于多次反馈机制的现场鞋底痕迹花纹图像检索方法
CN113221881B (zh) 一种多层级的智能手机屏幕缺陷检测方法
CN109389165A (zh) 基于巡检机器人的变压器油位计识别方法
CN103679196A (zh) 视频监控中的人车自动分类方法
CN108335294A (zh) 复杂条件下的配电房异常状态图像识别方法
CN118015472B (zh) 基于遥感影像的多类型海岸线提取方法及系统
CN113435452A (zh) 一种基于改进ctpn算法的电气设备铭牌文本检测方法
CN117079097A (zh) 一种基于视觉显著性的海面目标识别方法
Manandhar et al. Segmentation based building detection in high resolution satellite images
Cretu et al. Building detection in aerial images based on watershed and visual attention feature descriptors
CN109359646A (zh) 基于巡检机器人的液位型仪表识别方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20201021

Address after: 230088 No. 5111 Wangjiang West Road, hi tech Zone, Anhui, Hefei

Applicant after: Hefei Technological University Intelligent Robot Technology Co.,Ltd.

Address before: 230088 No. 5111 Wangjiang West Road, hi tech Zone, Anhui, Hefei

Applicant before: Hefei Technological University Intelligent Robot Technology Co.,Ltd.

Applicant before: CSG SMART SCIENCE & TECHNOLOGY Co.,Ltd.

Applicant before: CSG SMART ELECTRIC TECHNOLOGY Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant