CN111080029B - 基于多路段时空相关的城市交通路段速度预测方法及系统 - Google Patents

基于多路段时空相关的城市交通路段速度预测方法及系统 Download PDF

Info

Publication number
CN111080029B
CN111080029B CN201911370548.4A CN201911370548A CN111080029B CN 111080029 B CN111080029 B CN 111080029B CN 201911370548 A CN201911370548 A CN 201911370548A CN 111080029 B CN111080029 B CN 111080029B
Authority
CN
China
Prior art keywords
road
predicted
road sections
speed
sections
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911370548.4A
Other languages
English (en)
Other versions
CN111080029A (zh
Inventor
刘力源
朱琳
郭铭涛
邹难
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN201911370548.4A priority Critical patent/CN111080029B/zh
Publication of CN111080029A publication Critical patent/CN111080029A/zh
Application granted granted Critical
Publication of CN111080029B publication Critical patent/CN111080029B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Data Mining & Analysis (AREA)
  • Development Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Biophysics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Game Theory and Decision Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Traffic Control Systems (AREA)

Abstract

本公开公开了基于多路段时空相关的城市交通路段速度预测方法及系统,包括:获取待预测路段所对应的最佳特征子集中所有路段的最近p个历史时间点的速度;p为正整数;将获取的所述最近p个历史时间点的速度,输入到预训练的GRU神经网络中,输出待预测路段的第p+1个时间点的预测速度。该预测模型从交通参数、路段连通性、道路等级等方面定量且动态地考虑了路网内所有路段之间的时空相关性,并且可以从路网中选择有助于待预测路段速度预测的路段子集。该预测模型可以实现城市交通路段的速度精准预测。

Description

基于多路段时空相关的城市交通路段速度预测方法及系统
技术领域
本公开涉及城市交通路段速度预测技术领域,特别是涉及基于多路段时空相关的城市交通路段速度预测方法及系统。
背景技术
本部分的陈述仅仅是提到了与本公开相关的背景技术,并不必然构成现有技术。
交通拥堵是现代城市常见问题,预先准确的交通信息对提高出行者出行效率、缓解交通拥堵具有积极作用。速度是反映道路状态的核心指标,城市交通数据呈指数型增长为挖掘交通现象内在机制,实现交通参数预测提供了有力的数据支持。
在交通流参数及状态预测领域,主流预测方法有两种,一是统计分析方法为基础的预测方法,另外则为人工神经网络算法。其中人工神经网络因其良好的非线性预测能力而被广泛用于交通预测,随着深度学习的发展,具有浅层结构的人工神经网络预测精度较低且计算能力较差,一些研究采用深度学习算法进行交通预测获得了优异效果。
交通数据蕴含丰富的时空关系,现有的考虑路段空间相关的预测方法根据空间范围可以分为不考虑空间相关、考虑上下游路段相关、一定范围路网空间相关3种情形。许多预测研究不考虑或仅考虑上下游路段与待预测路段的相关性,不能充分获取路段间的相互影响,预测精度受限;而考虑路网范围内多路段的空间相关性是目前流行的预测方向,大多研究在考虑相关性时仅考虑交通参数的数值相关性,但路段间的时空相关性与路段距离、路段方向等因素均存在联系。现有一些研究利用各种方法实现对路网内多路段状态的空间相关度量,现有技术中有直接采用路段间距离函数度量路段间的空间相关性,对包含88个固定检测器的路网进行分析,但仅考虑路段距离只能静态确定路段间的空间相关性;现有技术中有指出超过100个检测器数据与待预测检测器数据相关,将交通状态划分为拥堵与畅通2种状态,提出p检测分数用路段状态进行特征选择以衡量每个检测器的状态分类能力,根据预测精度确定最优特征数量,利用高斯模型预测某一检测器处拥堵概率,但忽略了路网拓扑关系;现有技术中有以路网中35个检测器数据为研究对象,采用K最近邻算法,以LSTM模型预测结果最优为原则,由待预测参数的关系确定了最优输入特征数量,但仅考虑了相关路段数量的降低,忽略了不同路段组合的预测效果;现有技术中有选择33个检测点位的路网为研究对象,利用一维卷积神经网络来获取交通流的空间特征,利用两个长短时记忆神经网络来挖掘交通流的短期变化性和周期性,但仅考虑了交通流量的数量关系,没有考虑实际路网中其它因素的影响。
在实现本公开的过程中,发明人发现现有技术中存在以下技术问题:
许多交通参数预测方法在空间相关性的范围或确定方法上,仅依据上下游路段或者忽略实际路网情况仅依据待预测路段与其它路段待预测参数的关系。
发明内容
为了解决现有技术的不足,本公开提供了基于多路段时空相关的城市交通路段速度预测方法及系统;
第一方面,本公开提供了基于多路段时空相关的城市交通路段速度预测方法;
基于多路段时空相关的城市交通路段速度预测方法,包括:
获取待预测路段所对应的最佳特征子集中所有路段的最近p个历史时间点的速度;p为正整数;
将获取的所述最近p个历史时间点的速度,输入到预训练的GRU神经网络中,输出待预测路段的第p+1个时间点的预测速度。
第二方面,本公开还提供了基于多路段时空相关的城市交通路段速度预测系统;
基于多路段时空相关的城市交通路段速度预测系统,包括:
获取模块,其被配置为:获取待预测路段所对应的最佳特征子集中所有路段的最近p个历史时间点的速度;p为正整数;
预测模块,其被配置为:将获取的所述最近p个历史时间点的速度,输入到预训练的GRU神经网络中,输出待预测路段的第p+1个时间点的预测速度。
第三方面,本公开还提供了一种电子设备,包括存储器和处理器以及存储在存储器上并在处理器上运行的计算机指令,所述计算机指令被处理器运行时,完成第一方面所述方法的步骤。
第四方面,本公开还提供了一种计算机可读存储介质,用于存储计算机指令,所述计算机指令被处理器执行时,完成第一方面所述方法的步骤。
与现有技术相比,本公开的有益效果是:
提出一种考虑多路段时空相关的门限循环单元神经网络的速度预测模型(Spatio-Temporal Gated Recurrent Unit,ST-GRU)。该预测模型从交通参数、路段连通性、道路等级等方面定量且动态地考虑了路网内所有路段之间的时空相关性,并且可以从路网中选择有助于待预测路段速度预测的路段子集。数据实验结果表明,ST-GRU模型与考虑上下游路段相关模型的预测结果平均绝对误差降低8.463%,均方根误差降低3.577%,并且考虑路网内全部路段时预测误差最大,此外与其它预测模型对比,ST-GRU模型均能取得较好的预测结果。
提出考虑多路段时空相关的门限循环单元神经网络的速度预测模型。该模型以城市路网为研究对象,在度量路段相关性时不仅考虑速度数值的相关性并结合路网情况计算相关性,即利用最大信息系数(Maximal Information Coefficient,MIC)计算路段交通参数数值上的相关性,再考虑到城市路网连通性、道路等级、路段距离等路网物理属性,定量且动态地挖掘路段交通状态的潜在关系,由灰色关联分析确定待预测路段与其它路段的相关影响。在速度预测时,根据特征选择的封装法,采用完全搜索策略及循环神经网络GRU对待预测路段速度进行预测,预测误差最小的路段子集为最优路段集合,其对应预测结果为ST-GRU模型的预测结果。该模型充分考虑了城市路网中交通路段相互影响的因素,并基于特征选择同时考虑了特征维度的降低及特征集合的预测效果,为验证模型效果,建立不同时空相关性模型及不同预测模型从空间相关性角度和模型角度对提出的ST-GRU模型进行评价。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1为第一个实施例的方法流程图;
图2为第一个实施例的路段连通性示意图;
图3为第一个实施例的GRU模型t时刻内部结构;
图4为第一个实施例的前20条最相关路段在路网中的分布情况;
图5为第一个实施例的ST-GRU模型预测结果与真实结果误差值比较。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本申请提供进一步的说明。除非另有指明,本发明使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
实施例一,本实施例提供了基于多路段时空相关的城市交通路段速度预测方法;
如图1所示,基于多路段时空相关的城市交通路段速度预测方法,包括:
S1:获取待预测路段所对应的最佳特征子集中所有路段的最近p个历史时间点的速度;p为正整数;
S2:将获取的所述最近p个历史时间点的速度,输入到预训练的GRU神经网络中,输出待预测路段的第p+1个时间点的预测速度。
作为一个或多个实施例,S1中,最佳特征子集的获取步骤,包括:
S11:获取待预测路段所对应的最相关的k个路段的所有特征子集;k为正整数;
S12:从所述所有特征子集中,筛选出最佳特征子集:
将某个特征子集对应的历史速度输入到GRU神经网络中,迭代设定次数后,得到当前特征子集对应的预测速度与实测速度的误差值;
采用同样的方式,获取所有特征子集对应的预测速度与实测速度的误差值;
最后选择误差最小的特征子集作为最佳特征子集。
作为一个或多个实施例,所述S11中,获取待预测路段所对应的最相关路段的所有特征子集;具体步骤包括:
S111:获取与待预测路段对应的最相关的k个路段;
S112:利用完全搜索策略,对待预测路段和最相关的k个路段进行排列组合,得到待预测路段所对应的最相关路段的所有特征子集;
每个特征子集,包括待预测路段与至少一个非待预测路段对应的历史时间段的速度矩阵。
作为一个或多个实施例,所述S111中,获取与待预测路段对应的最相关的k个路段;具体步骤包括:
S1111:获取城市路网,所述城市路网包括若干个路段,所述路段为单行道,所述路段的端点为交叉口;对每一个路段设定唯一编码;
S1112:计算每一个路段的特征;所述路段的特征,包括:连通度、路段的长度、路段的限速差、路段车道数差和设定时间段内两两路段之间的速度最大信息系数;
S1113:根据各个路段的特征的特征值,构建特征矩阵;所述特征矩阵的行名为特征名称,列名为路段编码;
S1114:计算待预测路段特征的特征值与其余所有路段特征的特征值的灰色关联度,将灰色关联度由大到小进行排序,将排序靠前的k个路段,作为与待预测路段对应的最相关的k个路段。
进一步地,所述连通度,是指不论起讫路段,车辆通过待预测路段与非待预测路段所经过的最小交叉口的数量。
应理解的,由路段间的连通性及路段距离表示路网结构。路段距离是决定路段速度变化相关性强弱的重要因素,距离最近的路段不一定影响最大但宏观上路段间的相互影响与距离呈反相关。利用在线地图测量双向路段中线中点与另一双向路段中线中点的距离作为双向路段间的距离。仅采用路段距离反映路网的空间结构具有局限性,可以采用路段连通性区分双向路段对待预测路段的影响。
路段间的连通性依据路径定义,从路网中任意选出2个路段,假设某一路段上存在一车辆C,若车辆C出发后最少经过1个交叉口可到达另一路段,两路段相距最近,连接度为1;车辆掉头行为属于经过1个交叉口,经过1个交叉口定义为一次完整的由进口道进入该交叉口及由该交叉口出口道离开交叉口的过程;依此类推,不论起讫路段,车辆通过两个路段所经过的最小交叉口数即可表示路段的连通关系。路段间连通度可定义为:
d2=min{i1,i2,…,ir},(ir≥0,r≥0) (1)
式中,ir表示车辆在两路段间经第r条路径出行经过的交叉口数,ir=0表示路段自身的连接关系。假设路网有M条路段[L1,L2,…,Lm,…,Lu,…,LM],以选取Lm与Lu为例,图2中列出车辆在两个路段间的4条可能行驶路径,由Lu行驶至Lm的实线路径是所有路径中经过交叉口数目最少的路径,Lm与Lu之间的最小交叉口数量为1,d2取1。
进一步地,所述路段的限速差,是指整个路网内路段限速最大值与当前路段限速的差值的绝对值。
进一步地,所述路段车道数差,是指整个路网内路段车道数最大值与当前路段车道数的差值的绝对值。
应理解的,城市道路一般分为快速路、主干路、次干路、支路,不同等级道路存在功能差异,高等级道路往往限速高、路面宽,对驾驶员具有更大的吸引力,路段流量更大。在衡量路段间的空间相关时,低等级路段对驾驶员的吸引力远低于较高等级路段,仅考虑路段在路网结构上的相近不符合实际。本发明用路段车道数表示路段宽度,结合路段限速细致划分路段等级,为不同等级路段赋予驾驶员选择权重。考虑不同的城市路网范围内,路段限速、车道数情况差异,等级划分不一,因此不给出具体等级,本发明以研究路网内路段限速最大值与路段车道数最大值为基准,以路段限速差、路段车道数量差反映路段等级。
Figure BDA0002339551380000081
Figure BDA0002339551380000082
其中,
Figure BDA0002339551380000083
表示任一路段m的路段限速,
Figure BDA0002339551380000084
表示研究路网范围内路段限速最大值,d3表示路段m的限速差;Nm表示任一路段m的车道数,Nmax表示研究路网范围内路段车道数最大值,d4表示路段m的车道数差。d3、d4值越大表明该路段限速越低车道数越少,对驾驶员的吸引力越小,能够修正基于路网结构的两路段相互影响的程度。
进一步地,所述设定时间段内两两路段之间的速度最大信息系数,是指:
根据设定时间段内,待预测路段的速度时间序列与非预测路段的速度时间序列之间的最大信息系数MIC。
应理解的,路段速度的时间序列既有规律性起伏也存在随机波动,常用的皮尔逊相关系数只能用于衡量时间序列的线性相关,衡量交通数据序列时具有效果局限性;而基于互信息理论的最大信息系数可以实现数据间的线性和非线性关系度量,在互信息、信息增益等度量方法对非函数依赖关系判别失效时也能实现数据关系的度量,利用最大信息系数MIC能够有效地反映各路段速度的相互影响。
路网中有M条路段[L1,L2,…,Lm,…,Lu,…,LM],每一路段速度均有s个样本,则路网速度矩阵W表示为
Figure BDA0002339551380000091
其中,Vm表示第m个路段的速度时间序列;vm(s)表示第m个路段第s个样本,即第s个路段速度。两两计算路段速度的最大信息系数MIC值,MIC的计算公式可以表示为:
Figure BDA0002339551380000092
其中,X,Y为两个离散随机变量,即两个路段的速度时间序列Vm和Vu;离散变量可表示为有界集合D{(xk,yk),k=1,2,...,n},设有划分方式G,将随机变量X划分为i个区间,随机变量Y划分为j个区间,即划分方式G含有i×j个网格。给定i和j后,划分结果有多个,取不同划分结果中的最大互信息值作为划分方式G的互信息值I*(D,X,Y),D|G表示数据D按划分方式G划分。B(n)一般选用数据量n的0.6次方。最大信息系数MIC取值范围为[0,1],MIC越大,两变量越相关,MIC取0时两变量相互独立。
应理解的,所述S1114中,灰色关联度的计算采用灰色关联分析算法,灰色关联分析算法简单,对数据要求低,实际效果较好,在评估某路段与其余路段的相关性时,可将目标路段作为参考序列,避免灰色关联评价中最优序列确定时的主观影响。
作为一个或多个实施例,所述S1113步骤之后,所述S1114步骤之前还包括:
S11130:采用倒扣逆变换法,对特征矩阵进行逆向指标正向化处理;
S11131:将处理后的特征矩阵,采用均值化算法进行标准化处理。
应理解的,S11130中,除了路段速度的最大信息系数,其余指标均为逆向指标,由于倒扣逆变换法不会改变指标值的分布规律,用之将逆向指标正向化;
Figure BDA0002339551380000101
其中,Opq表示矩阵,p表示指标个数,q表示路网路段数量。
应理解的,S11131中,由于各指标均为客观数值,采用均值化方法对原始数据进行标准化处理;
Figure BDA0002339551380000102
作为一个或多个实施例,S2中,预训练的GRU神经网络的训练过程,包括:
构建GRU神经网络;
构建训练集;将训练集输入到GRU神经网络中进行训练,输出训练好的GRU神经网络。
进一步地,所述构建训练集;将训练集输入到GRU神经网络中进行训练,输出训练好的GRU神经网络的步骤包括:
S201:获取城市路网,所述城市路网包括若干个路段,所述路段为单行道,所述路段的端点为交叉口;对每一个路段设定唯一编码;
S202:计算每一个路段的特征;所述路段的特征,包括:连通度、路段的长度、路段的限速差、路段车道数差和设定时间段内两两路段之间的速度最大信息系数;
S203:根据各个路段的特征的特征值,构建特征矩阵;所述特征矩阵的行名为特征名称,列名为路段编码;
S204:计算待预测路段特征的特征值与其余所有路段特征的特征值的灰色关联度,将灰色关联度由大到小进行排序,将排序靠前的k个路段,作为与待预测路段对应的最相关的k个路段;
S205:获取待预测路段所对应的最相关的k个路段的所有特征子集;k为正整数;
S206:从所述所有特征子集中,筛选出最佳特征子集:
将某个特征子集对应的历史速度输入到GRU神经网络中进行训练,迭代设定次数后,得到当前特征子集对应的预测速度与实测速度的误差值;
采用同样的方式,获取所有特征子集对应的预测速度与实测速度的误差值;
最后选择误差最小的特征子集作为最佳特征子集;
S207:将最佳特征子集训练过的GRU神经网络作为训练好的GRU神经网络。
城市路网中道路互相连接,车辆的不均衡分配使得看来毫无关联的路段交通状态具有时空相关性。城市路网中路段速度受与其它路段的路段距离、路段连通性、路段等级等多种因素的影响,仅使用速度数值来判断路段相关性难以准确反映路段关系。本发明充分考虑各种因素,将影响待预测路段速度的因素划分为3类:路网结构、路段等级和路段速度。本发明定义路段为两个交叉口之间的单向道路。
如图3所示,门循环单元模型是循环神经网络LSTM的变种,具有更简洁的内部结构,且能有效解决循环神经网络梯度消失的问题,在处理复杂问题时比浅层网络具有更好的效果。GRU神经网络由于其内部的循环结构而具有记忆性,在时间序列预测中能够描述时间相关性。
路段交通状态受路网内若干路段影响,当考虑更多路段进行拥堵预测时,模型预测精度有所提高,但算法复杂度和计算消耗陡增,同时计算精度并不总随特征数量的增加而提升。特征选择能减少特征维度,降低模型的复杂度,在高维数据处理中有着重要作用。为同时考虑路段时空相关和预测准确度,利用特征选择封装法对空间相关性计算结果进行相关路段集合选择。
基于特征选择的ST-GRU速度预测过程如下:
步骤1:空间相关分析。对包括M个路段[L1,L2,…,Lm,…,LM]的路网,每1路段即为1个特征,每个特征具有s个样本,即时间序列长度为s。当需要预测路段Lm的速度时,利用灰色关联分析计算路段Lm与路网其余路段的空间相关性;
步骤2:输入子集确定。选择与Lm最相关的前k个路段,利用完全搜索策略构成若干路段集合,路段集合根据数量可陈列如表1;
步骤3:考虑时空相关的速度预测。路段速度变化具有时间上的连续性,某一时刻的速度与之前时刻速度相关,并影响后续时刻的速度;速度变化也具有时间周期性,工作日速度具有相似的变化规律,速度变化在每周之间也具有相似性,在速度预测时,xt表示GRU神经网络在t时刻的输入。
为了获取更多的时间信息,在模型训练时,将待预测时间过去10个时间(例如:9:05、9:10、9:15、9:20、9:25、9:30、9:35、9:40、9:45、9:50)路段集合的速度作为输入,即滞后10个时段,预测9:55的待预测路段的速度。
预测时,将过去3个时间(9:40、9:45、9:50)路段集合的速度作为输入,即滞后3个时段;预测9:55的待预测路段的速度。
利用GRU神经网络进行预测,将误差最小的路段组合作为最优特征子集,其对应的预测值为MIC-GRU模型的预测值。
表1特征子集
Figure BDA0002339551380000131
为验证模型效果,实验采用济南市区内8000余辆出租车GPS数据,该数据采集间隔为15s,定位误差小于20m。以交叉口为分界划分路段,选取经十路区域包含62条路段的路网为研究对象,数据时间范围为2013年8月8日至8月21日。
根据经纬度坐标选取经十路区域,删除路网范围内的原始GPS数据中的重复与缺值记录;对所选路网的路段编号,建立研究路网的路段信息表,利用MySQL实现地图匹配,并计算得到每一路段上每辆车的路段行程车速;以每5min为间隔,将各路段上车辆的速度融合,得到路段速度,即62条路段每5min的平均运行速度,每天有288组数据。
以编号为20003(经十路(山师东路)-经十路(羊头峪西沟街))的路段为预测对象,计算20003与路网其余61条路段的MIC值,考虑静态因素确定空间相关性。计算结果表明,与路段20003相关路段主要分布于上下游,但路段20004和20002并非最相关的两条路段,在预测时仅考虑上下游路段不能很好的表达空间相关;且路网中与路段20003状态相关的路段数量较多,一些并非直接连接的较远路段也具有相关性,图4给出前20条最相关路段在路网中的分布情况。
建立基于TensorFlow框架的GRU循环神经网络单元,内部具有1层隐含层,层内节点128个,利用8月8日至20日数据作训练集,以8月21日数据为测试集。利用平均绝对误差(Mean Absolute Error,MAE)和均方根误差(Root Mean Squared Error,MRSE)来评价模型预测效果。
考虑预测模型时间上的连续性和总体上的相关程度,选择训练集数据进行最大相关系数计算,根据训练集数据计算灰色关联度。选用前4个最相关特征构建特征子集,即k=4,则可得到包括路段20003在内的15个路段集合。经过计算,灰色关联度取值最大的2个特征(路段20004、路段20032)与路段20003构成的特征子集取得了最小预测误差,ST-GRU模型预测结果的MAE值为0.941,RMSE值为1.294。ST-GRU模型预测结果如图5所示,图中黑色实线为8月21日实测值,十字点集为预测结果,预测值与实测值吻合较好。
为验证合理考虑空间相关性对预测结果的影响,用仅考虑上下游路段、路网中全部路段作为输入与ST-GRU预测结果对比,各模型均利用所有特征的待预测时段过去3个时段作为输入。由表2结果可知,空间相关分析时仅考虑上下游路段,并不能达到最优预测效果,充分考虑路段的时空相关性,有助于得出更准确的预测结果,并且随着特征数量增多预测误差先降低后升高,全部特征作为输入时误差相对最大。
表2不同空间相关的预测结果对比
Figure BDA0002339551380000151
为验证模型效果,分别采用Linear SVR、BP和GRU模型对同天该路段速度进行预测,与ST-GRU模型预测误差进行比较。由表3可见,相对于传统的线性支持向量机与BP神经网络,GRU和ST-GRU均有更好的预测结果,可见深度神经网络具有更优秀的学习与预测能力。其中,ST-GRU模型的预测效果最佳,相对于不考虑时空相关的GRU模型,其MAE值降低7.564%,RMSE值降低4.290%。
表3不同预测算法的预测结果对比
Figure BDA0002339551380000152
由于城市路网的复杂性,路段相互影响不仅体现在路段速度,与路网拓扑、路段距离、路段等级也有关,利用灰色关联分析比较全面综合地评估路段间相互影响,结果表明在整个城市路网范围内,路段交通状态与其上下游路段的交通状态不一定最相关,由于车辆的随机分布,路网内许多并未直接连接的路段也具有时空相关。
基于特征选择从路段相关性和模型预测能力两方面对路段进行综合选择,能够获取更准确的预测结果,改善了以往交通预测方法对时空相关性考虑的欠缺,由于神经网络的输入路段数并非越大越好,完全搜索所有路段集合具有实际应用的合理性。
提出利用门限循环单元神经网络进行预测,因其内部的更新门与重置门,门限循环神经网络能够考虑时间相关,由数据实验结果可知,门限循环单元神经网络的精度也优于传统BP神经网络,而经过特征选择门限循环单元的预测结果会更符合实测值。
由于数据资料的缺乏在研究中没有考虑特殊事件和天气状况在时空相关性分析中的影响,在实际应用时应当充分考虑动态因素才能获得更准确的规律和预测结果。
实施例二,本实施例还提供了基于多路段时空相关的城市交通路段速度预测系统;
基于多路段时空相关的城市交通路段速度预测系统,包括:
获取模块,其被配置为:获取待预测路段所对应的最佳特征子集中所有路段的最近p个历史时间点的速度;p为正整数;
预测模块,其被配置为:将获取的所述最近p个历史时间点的速度,输入到预训练的GRU神经网络中,输出待预测路段的第p+1个时间点的预测速度。
实施例三,本实施例还提供了一种电子设备,包括存储器和处理器以及存储在存储器上并在处理器上运行的计算机指令,所述计算机指令被处理器运行时,完成实施例一所述方法的步骤。
实施例四,本实施例还提供了一种计算机可读存储介质,用于存储计算机指令,所述计算机指令被处理器执行时,完成实施例一所述方法的步骤。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (7)

1.基于多路段时空相关的城市交通路段速度预测方法,其特征是,包括:
获取待预测路段所对应的最佳特征子集中所有路段的最近p个历史时间点的速度;p为正整数;
将获取的所述最近p个历史时间点的速度,输入到预训练的GRU神经网络中,输出待预测路段的第p+1个时间点的预测速度;
最佳特征子集的获取步骤,包括:
S11:获取待预测路段所对应的最相关的k个路段的所有特征子集;k为正整数;
S12:从所述所有特征子集中,筛选出最佳特征子集:
将某个特征子集对应的历史速度输入到GRU神经网络中,迭代设定次数后,得到当前特征子集对应的预测速度与实测速度的误差值;
采用同样的方式,获取所有特征子集对应的预测速度与实测速度的误差值;
最后选择误差最小的特征子集作为最佳特征子集;
所述S11中,获取待预测路段所对应的最相关的k个路段的所有特征子集;具体步骤包括:
S111:获取与待预测路段对应的最相关的k个路段;
S112:利用完全搜索策略,对待预测路段和最相关的k个路段进行排列组合,得到待预测路段所对应的最相关路段的所有特征子集;
每个特征子集,包括待预测路段与至少一个非待预测路段对应的历史时间段的速度矩阵;
所述S111中,获取与待预测路段对应的最相关的k个路段;具体步骤包括:
S1111:获取城市路网,所述城市路网包括若干个路段,所述路段为单行道,所述路段的端点为交叉口;对每一个路段设定唯一编码;
S1112:计算每一个路段的特征;所述路段的特征,包括:连通度、路段的长度、路段的限速差、路段车道数差和设定时间段内两两路段之间的速度最大信息系数;
S1113:根据各个路段的特征的特征值,构建特征矩阵;所述特征矩阵的行名为特征名称,列名为路段编码;
S1114:计算待预测路段特征的特征值与其余所有路段特征的特征值的灰色关联度,将灰色关联度由大到小进行排序,将排序靠前的k个路段,作为与待预测路段对应的最相关的k个路段。
2.如权利要求1所述的方法,其特征是,
所述连通度,是指不论起讫路段,车辆通过待预测路段与非待预测路段所经过的最小交叉口的数量;
所述路段的限速差,是指整个路网内路段限速最大值与当前路段限速的差值的绝对值;
所述路段车道数差,是指整个路网内路段车道数最大值与当前路段车道数的差值的绝对值;
所述设定时间段内两两路段之间的速度最大信息系数,是指:
根据设定时间段内,待预测路段的速度时间序列与非预测路段的速度时间序列之间的最大信息系数MIC。
3.如权利要求1所述的方法,其特征是,
所述S1113步骤之后,所述S1114步骤之前还包括:
S11130:采用倒扣逆变换法,对特征矩阵进行逆向指标正向化处理;
S11131:将处理后的特征矩阵,采用均值化算法进行标准化处理。
4.如权利要求1所述的方法,其特征是,预训练的GRU神经网络的训练过程,包括:构建GRU神经网络;
构建训练集;将训练集输入到GRU神经网络中进行训练,输出训练好的GRU神经网络。
5.基于多路段时空相关的城市交通路段速度预测系统,其特征是,包括:
获取模块,其被配置为:获取待预测路段所对应的最佳特征子集中所有路段的最近p个历史时间点的速度;p为正整数;
预测模块,其被配置为:将获取的所述最近p个历史时间点的速度,输入到预训练的GRU神经网络中,输出待预测路段的第p+1个时间点的预测速度;
最佳特征子集的获取步骤,包括:
S11:获取待预测路段所对应的最相关的k个路段的所有特征子集;k为正整数;
S12:从所述所有特征子集中,筛选出最佳特征子集:
将某个特征子集对应的历史速度输入到GRU神经网络中,迭代设定次数后,得到当前特征子集对应的预测速度与实测速度的误差值;
采用同样的方式,获取所有特征子集对应的预测速度与实测速度的误差值;
最后选择误差最小的特征子集作为最佳特征子集;
所述S11中,获取待预测路段所对应的最相关的k个路段的所有特征子集;具体步骤包括:
S111:获取与待预测路段对应的最相关的k个路段;
S112:利用完全搜索策略,对待预测路段和最相关的k个路段进行排列组合,得到待预测路段所对应的最相关路段的所有特征子集;
每个特征子集,包括待预测路段与至少一个非待预测路段对应的历史时间段的速度矩阵;
所述S111中,获取与待预测路段对应的最相关的k个路段;具体步骤包括:
S1111:获取城市路网,所述城市路网包括若干个路段,所述路段为单行道,所述路段的端点为交叉口;对每一个路段设定唯一编码;
S1112:计算每一个路段的特征;所述路段的特征,包括:连通度、路段的长度、路段的限速差、路段车道数差和设定时间段内两两路段之间的速度最大信息系数;
S1113:根据各个路段的特征的特征值,构建特征矩阵;所述特征矩阵的行名为特征名称,列名为路段编码;
S1114:计算待预测路段特征的特征值与其余所有路段特征的特征值的灰色关联度,将灰色关联度由大到小进行排序,将排序靠前的k个路段,作为与待预测路段对应的最相关的k个路段。
6.一种电子设备,其特征是,包括存储器和处理器以及存储在存储器上并在处理器上运行的计算机指令,所述计算机指令被处理器运行时,完成权利要求1-4任一项方法所述的步骤。
7.一种计算机可读存储介质其特征是,用于存储计算机指令,所述计算机指令被处理器执行时,完成权利要求1-4任一项方法所述的步骤。
CN201911370548.4A 2019-12-26 2019-12-26 基于多路段时空相关的城市交通路段速度预测方法及系统 Active CN111080029B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911370548.4A CN111080029B (zh) 2019-12-26 2019-12-26 基于多路段时空相关的城市交通路段速度预测方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911370548.4A CN111080029B (zh) 2019-12-26 2019-12-26 基于多路段时空相关的城市交通路段速度预测方法及系统

Publications (2)

Publication Number Publication Date
CN111080029A CN111080029A (zh) 2020-04-28
CN111080029B true CN111080029B (zh) 2022-09-06

Family

ID=70318753

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911370548.4A Active CN111080029B (zh) 2019-12-26 2019-12-26 基于多路段时空相关的城市交通路段速度预测方法及系统

Country Status (1)

Country Link
CN (1) CN111080029B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111862595B (zh) * 2020-06-08 2021-12-31 同济大学 基于路网拓扑关系的速度预测方法、系统、介质及设备
CN111710162B (zh) * 2020-07-07 2022-04-01 深圳市数字城市工程研究中心 一种城市路网交通运行状况监测方法及系统
CN111833605B (zh) * 2020-07-10 2022-04-26 北京嘀嘀无限科技发展有限公司 路况预测方法、路况预测模型训练方法、装置及存储介质
CN112102610A (zh) * 2020-07-27 2020-12-18 清华大学深圳国际研究生院 一种交通流量预测方法
CN112598904A (zh) * 2020-12-10 2021-04-02 南通大学 一种基于线性灰色卷积模型的城市路网交通流预测方法
CN112991721A (zh) * 2021-02-04 2021-06-18 南通大学 基于图卷积网络节点关联度的城市路网交通速度预测方法
CN113051811B (zh) * 2021-03-16 2022-08-05 重庆邮电大学 一种基于gru网络的多模式短期交通拥堵预测方法
CN113409576B (zh) * 2021-06-24 2022-01-11 北京航空航天大学 一种基于贝叶斯网络的交通路网动态预测方法及系统
CN114186710A (zh) * 2021-10-26 2022-03-15 北京市交通运行监测调度中心 一种短时大型活动期间路段平均车速预测方法及系统
CN114973653B (zh) * 2022-04-27 2023-12-19 中国计量大学 一种基于时空图卷积网络的交通流预测方法
CN116202533B (zh) * 2023-05-05 2023-07-21 山东科技大学 一种基于地形重构的车辆轨迹导航规划方法及设备
CN116597656A (zh) * 2023-07-17 2023-08-15 四川省商投信息技术有限责任公司 基于大数据分析下道路交通流预测的方法、设备和介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5734874A (en) * 1994-04-29 1998-03-31 Sun Microsystems, Inc. Central processing unit with integrated graphics functions
CN109118014A (zh) * 2018-08-30 2019-01-01 浙江工业大学 一种基于时间递归神经网络的交通流速度预测方法
CN109754605A (zh) * 2019-02-27 2019-05-14 中南大学 一种基于注意力时态图卷积网络的交通预测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5734874A (en) * 1994-04-29 1998-03-31 Sun Microsystems, Inc. Central processing unit with integrated graphics functions
CN109118014A (zh) * 2018-08-30 2019-01-01 浙江工业大学 一种基于时间递归神经网络的交通流速度预测方法
CN109754605A (zh) * 2019-02-27 2019-05-14 中南大学 一种基于注意力时态图卷积网络的交通预测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Truck Traffic Speed Prediction Under Non-Recurrent Congestion: Based on Optimized Deep Learning Algorithms and GPS Data;Jiandong Zhao,Yuan Gao,Zhenzhen Yang et al.;《IEEE Access 》;20190101;第07卷;第9116-9126段 *

Also Published As

Publication number Publication date
CN111080029A (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
CN111080029B (zh) 基于多路段时空相关的城市交通路段速度预测方法及系统
CN111160753B (zh) 一种基于知识图谱的路网节点重要性评估的方法
Yuan et al. Driving with knowledge from the physical world
CN106971547B (zh) 一种考虑时空相关性的短时交通流预测方法
CN102708698B (zh) 基于车联网的车辆最优路径导航方法
CN110570651A (zh) 一种基于深度学习的路网交通态势预测方法及系统
CN109064748B (zh) 基于时间聚类分析和可变卷积神经网络的交通平均速度预测方法
CN115578852B (zh) 一种基于dstgcn的交通预测方法
CN112365708B (zh) 基于多图卷积网络的景区交通量预测模型建立和预测方法
WO2014194480A1 (en) Air quality inference using multiple data sources
Tang et al. Markov Chains based route travel time estimation considering link spatio-temporal correlation
CN112785077B (zh) 基于时空数据的出行需求预测方法及系统
CN106488405A (zh) 一种融合个体与近邻移动规律的位置预测方法
Necula Dynamic traffic flow prediction based on GPS data
Xu et al. Trip-oriented travel time prediction (TOTTP) with historical vehicle trajectories
Chen et al. A multiscale-grid-based stacked bidirectional GRU neural network model for predicting traffic speeds of urban expressways
WO2022142418A1 (zh) 一种基于gis地图信息的交通拥堵指数预测方法及装置
CN112884014A (zh) 一种基于路段拓扑结构分类的交通速度短时预测方法
CN112907970A (zh) 一种基于车辆排队长度变化率的可变车道转向控制方法
CN111710160A (zh) 一种基于浮动车数据的行程时间预测方法
Jalel et al. Continuous time markov chain traffic model for urban environments
CN116597666A (zh) 基于迁移学习的城市路网无检测器路段流量实时估计方法
Ye et al. A study of destination selection model based on link flows
Lingqiu et al. A LSTM based bus arrival time prediction method
CN114139984B (zh) 基于流量与事故协同感知的城市交通事故风险预测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant