CN111077648A - Image pickup optical lens - Google Patents

Image pickup optical lens Download PDF

Info

Publication number
CN111077648A
CN111077648A CN201911336326.0A CN201911336326A CN111077648A CN 111077648 A CN111077648 A CN 111077648A CN 201911336326 A CN201911336326 A CN 201911336326A CN 111077648 A CN111077648 A CN 111077648A
Authority
CN
China
Prior art keywords
lens
image
curvature
ttl
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911336326.0A
Other languages
Chinese (zh)
Other versions
CN111077648B (en
Inventor
丁书健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ruisheng Communication Technology Changzhou Co Ltd
Original Assignee
Ruisheng Communication Technology Changzhou Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ruisheng Communication Technology Changzhou Co Ltd filed Critical Ruisheng Communication Technology Changzhou Co Ltd
Priority to CN201911336326.0A priority Critical patent/CN111077648B/en
Publication of CN111077648A publication Critical patent/CN111077648A/en
Application granted granted Critical
Publication of CN111077648B publication Critical patent/CN111077648B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

The invention relates to the field of optical lenses, and discloses an image pickup optical lens, which sequentially comprises the following components from an object side to an image side: the lens comprises a first lens, a second lens, a third lens, a fourth lens, a fifth lens and a sixth lens; the focal length of the image pickup optical lens is f, the focal length of the fourth lens is f4, the on-axis distance from the image side surface of the first lens to the object side surface of the second lens is d2, the on-axis thickness of the second lens is d3, the curvature radius of the object side surface of the fifth lens is R9, the curvature radius of the image side surface of the fifth lens is R10, and the following relational expressions are satisfied: f4/f is more than or equal to minus 5.00 and less than or equal to minus 2.00; d2/d3 is more than or equal to 1.20 and less than or equal to 2.00; 1.40-4.00 of (R9+ R10)/(R9-R10). The camera optical lens provided by the invention has good optical performance, and meets the design requirements of large aperture, wide angle and ultra-thinness.

Description

Image pickup optical lens
Technical Field
The present invention relates to the field of optical lenses, and more particularly, to an imaging optical lens suitable for portable terminal devices such as smart phones and digital cameras, and imaging apparatuses such as monitors and PC lenses.
Background
In recent years, with the rise of smart phones, the demand of miniaturized camera lenses is increasing, and the photosensitive devices of general camera lenses are not limited to two types, namely, a Charge Coupled Device (CCD) or a Complementary Metal-oxide semiconductor (CMOS) Sensor, and due to the advanced semiconductor manufacturing process technology, the pixel size of the photosensitive devices is reduced, and in addition, the current electronic products are developed with a good function, a light weight, a small size and a light weight, so that the miniaturized camera lenses with good imaging quality are the mainstream in the current market.
In order to obtain better imaging quality, the lens mounted on the mobile phone camera conventionally adopts a three-piece or four-piece lens structure. Moreover, with the development of technology and the increase of diversified demands of users, under the conditions that the pixel area of a photosensitive device is continuously reduced and the requirements of a system on imaging quality are continuously improved, five-piece and six-piece lens structures are gradually appeared in the design of a lens, and although a common six-piece lens has good optical performance, the focal power, the lens distance and the lens shape setting of the common six-piece lens still have certain irrationality, so that the design requirements of large aperture, ultra-thinning and wide-angle cannot be met while the lens structure has good optical performance.
Disclosure of Invention
In view of the above problems, an object of the present invention is to provide an imaging optical lens that has good optical performance and satisfies design requirements for a large aperture, ultra-thin thickness, and wide angle.
To solve the above-mentioned problems, an embodiment of the present invention provides an imaging optical lens, in order from an object side to an image side, comprising: the lens comprises a first lens, a second lens, a third lens, a fourth lens, a fifth lens and a sixth lens;
the focal length of the image pickup optical lens is f, the focal length of the fourth lens is f4, the on-axis distance from the image side surface of the first lens to the object side surface of the second lens is d2, the on-axis thickness of the second lens is d3, the curvature radius of the object side surface of the fifth lens is R9, the curvature radius of the image side surface of the fifth lens is R10, and the following relations are satisfied: f4/f is more than or equal to minus 5.00 and less than or equal to minus 2.00; d2/d3 is more than or equal to 1.20 and less than or equal to 2.00; 1.40-4.00 of (R9+ R10)/(R9-R10).
Preferably, the focal length of the first lens is f1, and the following relation is satisfied: f1/f is more than or equal to-5.00 and less than or equal to-1.70.
Preferably, the radius of curvature of the object-side surface of the second lens is R3, the radius of curvature of the image-side surface of the second lens is R4, and the following relation is satisfied: the ratio of (R3+ R4)/(R3-R4) is not less than-9.00 and not more than-2.00.
Preferably, the curvature radius of the object-side surface of the first lens element is R1, the curvature radius of the image-side surface of the first lens element is R2, the on-axis thickness of the first lens element is d1, and the total optical length of the imaging optical lens system is TTL and satisfies the following relationship: -10.41 ≤ (R1+ R2)/(R1-R2) ≤ 0.46; d1/TTL is more than or equal to 0.03 and less than or equal to 0.09.
Preferably, the focal length of the second lens element is f2, the total optical length of the image pickup optical lens is TTL, and the following relationship is satisfied: f2/f is more than or equal to 6.13 and less than or equal to 85.54; d3/TTL is more than or equal to 0.02 and less than or equal to 0.08.
Preferably, the focal length of the third lens element is f3, the radius of curvature of the object-side surface of the third lens element is R5, the radius of curvature of the image-side surface of the third lens element is R6, the on-axis thickness of the third lens element is d5, the total optical length of the image pickup optical lens is TTL, and the following relationships are satisfied: f3/f is more than or equal to 0.47 and less than or equal to 1.49; (R5+ R6)/(R5-R6) is not more than 0.18 and not more than 1.07; d5/TTL is more than or equal to 0.05 and less than or equal to 0.19.
Preferably, a curvature radius of an object-side surface of the fourth lens element is R7, a curvature radius of an image-side surface of the fourth lens element is R8, an on-axis thickness of the fourth lens element is d7, and an optical total length of the imaging optical lens system is TTL and satisfies the following relationship: 1.14-7.71 of (R7+ R8)/(R7-R8); d7/TTL is more than or equal to 0.03 and less than or equal to 0.08.
Preferably, the focal length of the fifth lens is f5, the on-axis thickness of the fifth lens is d9, the total optical length of the imaging optical lens is TTL, and the following relation is satisfied: f5/f is more than or equal to 0.36 and less than or equal to 1.93; d9/TTL is more than or equal to 0.07 and less than or equal to 0.28.
Preferably, the focal length of the sixth lens element is f6, the radius of curvature of the object-side surface of the sixth lens element is R11, the radius of curvature of the image-side surface of the sixth lens element is R12, the on-axis thickness of the sixth lens element is d11, the total optical length of the imaging optical lens system is TTL, and the following relationships are satisfied: f6/f is not less than 3.01 and not more than-0.64; 1.06 is not more than (R11+ R12)/(R11-R12) is not more than 4.58; d11/TTL is more than or equal to 0.04 and less than or equal to 0.18.
Preferably, the image height of the image pickup optical lens is IH, the total optical length of the image pickup optical lens is TTL, and the following relation is satisfied: TTL/IH is less than or equal to 1.95.
The invention has the beneficial effects that: the imaging optical lens according to the present invention has excellent optical characteristics, and has characteristics of a large aperture, a wide angle of view, and an ultra-thin profile, and is particularly suitable for a mobile phone camera lens module and a WEB camera lens which are constituted by high-pixel imaging elements such as CCDs and CMOSs.
Drawings
In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings needed to be used in the description of the embodiments are briefly introduced below, it is obvious that the drawings in the following description are only some embodiments of the present invention, and other drawings can be obtained by those skilled in the art without inventive efforts, wherein:
fig. 1 is a schematic configuration diagram of an imaging optical lens according to a first embodiment of the present invention;
FIG. 2 is a schematic axial aberration diagram of the imaging optical lens of FIG. 1;
fig. 3 is a schematic diagram of chromatic aberration of magnification of the imaging optical lens shown in fig. 1;
FIG. 4 is a schematic view of curvature of field and distortion of the imaging optical lens of FIG. 1;
fig. 5 is a schematic configuration diagram of an imaging optical lens according to a second embodiment of the present invention;
FIG. 6 is a schematic axial aberration diagram of the imaging optical lens of FIG. 5;
fig. 7 is a schematic diagram of chromatic aberration of magnification of the imaging optical lens shown in fig. 5;
FIG. 8 is a schematic view of curvature of field and distortion of the imaging optical lens of FIG. 5;
fig. 9 is a schematic configuration diagram of an imaging optical lens according to a third embodiment of the present invention;
fig. 10 is a schematic view of axial aberrations of the image pickup optical lens shown in fig. 9;
fig. 11 is a schematic diagram of chromatic aberration of magnification of the imaging optical lens shown in fig. 9;
fig. 12 is a schematic view of curvature of field and distortion of the imaging optical lens shown in fig. 9.
Detailed Description
In order to make the objects, technical solutions and advantages of the present invention more apparent, embodiments of the present invention will be described in detail below with reference to the accompanying drawings. However, it will be appreciated by those of ordinary skill in the art that numerous technical details are set forth in order to provide a better understanding of the present invention in its various embodiments. However, the technical solution claimed in the present invention can be implemented without these technical details and various changes and modifications based on the following embodiments.
(first embodiment)
Referring to the drawings, the present invention provides an image pickup optical lens 10. Fig. 1 shows an imaging optical lens 10 according to a first embodiment of the present invention, and the imaging optical lens 10 includes six lenses. Specifically, the imaging optical lens 10, in order from an object side to an image side, includes: the lens comprises a first lens L1, a second lens L2, a diaphragm S1, a third lens L3, a fourth lens L4, a fifth lens L5 and a sixth lens L6. An optical element such as an optical filter (filter) GF may be disposed between the sixth lens L6 and the image plane Si.
The first lens element L1 with negative refractive power, the second lens element L2 with positive refractive power, the third lens element L3 with positive refractive power, the fourth lens element L4 with negative refractive power, the fifth lens element L5 with positive refractive power and the sixth lens element L6 with negative refractive power.
In the present embodiment, the focal length of the imaging optical lens 10 is defined as f, and the focal length of the fourth lens L4 is defined as f4, and the following relational expression is satisfied: f4/f is not less than 5.00 and not more than-2.00, when f4/f meets the condition, the focal power of the fourth lens can be effectively distributed, the aberration of the optical system is corrected, and the imaging quality is further improved.
Defining an on-axis distance d2 from an image-side surface of the first lens L1 to an object-side surface of the second lens L2, an on-axis thickness d3 of the second lens L2, the following relationship is satisfied: d2/d3 is more than or equal to 1.20 and less than or equal to 2.00, and when d2/d3 meets the conditions, the processing of the lens and the assembly of the lens are facilitated.
The curvature radius of the object side surface of the fifth lens L5 is defined as R9, the curvature radius of the image side surface of the fifth lens L5 is defined as R10, and the following relational expressions are satisfied: 1.40 ≦ (R9+ R10)/(R9-R10) ≦ 4.00, defines the shape of the fifth lens, and within the range defined by the conditional expression, can alleviate the deflection degree of the light passing through the lens, effectively reducing the aberration.
Defining the focal length of the first lens L1 as f1, and the focal length of the image pickup optical lens 10 as f, the following relations are satisfied: -5.00 ≦ f1/f ≦ -1.70, specifying the ratio of the focal length of the first lens to the focal length of the system, which contributes to the performance of the optical system within the conditional ranges.
The curvature radius of the object side surface of the second lens L2 is defined as R3, the curvature radius of the image side surface of the second lens L2 is defined as R4, and the following relational expressions are satisfied: 9.00 ≦ (R3+ R4)/(R3-R4) ≦ -2.00, and defines the shape of the second lens, and within the range defined by the conditional expression, the degree of deflection of the light rays passing through the lens can be alleviated, and the aberration can be effectively reduced. Preferably, it satisfies-8.98 ≦ (R3+ R4)/(R3-R4) ≦ -2.00.
The curvature radius of the object side surface of the first lens L1 is defined as R1, the curvature radius of the image side surface of the first lens L1 is defined as R2, and the following relational expressions are satisfied: 10.41 ≦ (R1+ R2)/(R1-R2) ≦ -0.46, and the shape of the first lens L1 is controlled appropriately so that the first lens L1 can correct the system spherical aberration effectively. Preferably, it satisfies-6.50 ≦ (R1+ R2)/(R1-R2). ltoreq.0.58.
The on-axis thickness of the first lens L1 is d1, the total optical length of the imaging optical lens system 10 is TTL, and the following relations are satisfied: d1/TTL is more than or equal to 0.03 and less than or equal to 0.09, and ultra-thinning is favorably realized within the range of conditional expressions. Preferably, 0.04. ltoreq. d 1/TTL. ltoreq.0.07 is satisfied.
Defining the focal length f of the entire image pickup optical lens 10 and the focal length f2 of the second lens L2, the following relations are satisfied: f2/f is more than or equal to 6.13 and less than or equal to 85.54, and the negative focal power of the second lens L2 is controlled in a reasonable range, so that the aberration of the optical system can be corrected. Preferably, 9.81 ≦ f2/f ≦ 68.44 is satisfied.
The on-axis thickness of the second lens L2 is d3, the total optical length of the imaging optical lens system 10 is TTL, and the following relationship is satisfied: d3/TTL is more than or equal to 0.02 and less than or equal to 0.08, and ultra-thinning is favorably realized within the range of conditional expressions. Preferably, 0.04. ltoreq. d 3/TTL. ltoreq.0.07 is satisfied.
Defining the focal length f of the entire image pickup optical lens 10 and the focal length f3 of the third lens L3, the following relations are satisfied: 0.47 ≦ f3/f ≦ 1.49, which makes the system have better imaging quality and lower sensitivity through reasonable distribution of the optical power. Preferably, 0.74. ltoreq. f 3/f. ltoreq.1.20 is satisfied.
The curvature radius of the object side surface of the third lens L3 is R5, the curvature radius of the image side surface of the third lens L3 is R6, and the following relational expression is satisfied: the shape of the third lens is more than or equal to 0.18 and less than or equal to (R5+ R6)/(R5-R6) and less than or equal to 1.07, and the deflection degree of the light rays passing through the lens can be alleviated within the range specified by the conditional expression, so that the aberration can be effectively reduced. Preferably, 0.28. ltoreq. R5+ R6)/(R5-R6. ltoreq.0.86 is satisfied.
The on-axis thickness of the third lens L3 is d5, the total optical length of the imaging optical lens system 10 is TTL, and the following relationship is satisfied: d5/TTL is more than or equal to 0.05 and less than or equal to 0.19, and ultra-thinning is facilitated in the condition formula range. Preferably, 0.07. ltoreq. d 5/TTL. ltoreq.0.15 is satisfied.
The curvature radius of the object side surface of the fourth lens L4 is defined as R7, and the curvature radius of the image side surface of the fourth lens L4 is defined as R8, and the following relations are satisfied: 1.14 is less than or equal to (R7+ R8)/(R7-R8) is less than or equal to 7.71. The shape of the fourth lens L4 is defined, and when the fourth lens is within the range, it is advantageous to correct the problems such as aberration of the off-axis view angle as the thickness and the angle of view are increased. Preferably, 1.82 ≦ (R7+ R8)/(R7-R8) ≦ 6.17 is satisfied.
The on-axis thickness of the fourth lens L4 is d7, the total optical length of the imaging optical lens system 10 is TTL, and the following relationships are satisfied: d7/TTL is more than or equal to 0.03 and less than or equal to 0.08, and ultra-thinning is favorably realized within the range of conditional expressions. Preferably, 0.04. ltoreq. d 7/TTL. ltoreq.0.06 is satisfied.
Defining the focal length f of the entire image pickup optical lens 10 and the focal length f5 of the fifth lens L5, the following relations are satisfied: f5/f is more than or equal to 0.36 and less than or equal to 1.93. The definition of the fifth lens L5 can effectively make the light ray angle of the camera lens smooth, and reduce tolerance sensitivity. Preferably, 0.58. ltoreq. f 5/f. ltoreq.1.55 is satisfied.
The on-axis thickness of the fifth lens L5 is d9, the total optical length of the imaging optical lens system 10 is TTL, and the following relationship is satisfied: d9/TTL is more than or equal to 0.07 and less than or equal to 0.28, and ultra-thinning is facilitated in the conditional expression range. Preferably, 0.11. ltoreq. d 9/TTL. ltoreq.0.23 is satisfied.
Defining the focal length f of the entire image pickup optical lens 10 and the focal length f6 of the sixth lens L6, the following relations are satisfied: 3.01 ≦ f6/f ≦ -0.64, allowing better imaging quality and lower sensitivity of the system through reasonable distribution of optical power. Preferably, it satisfies-1.88. ltoreq. f 6/f. ltoreq-0.80.
The curvature radius of the object side surface of the sixth lens L6 is R11, the curvature radius of the image side surface of the sixth lens L6 is R12, and the following relations are satisfied: 1.06 is not more than (R11+ R12)/(R11-R12) is not more than 4.58, and the shape of the sixth lens L6 is defined, and when the shape is within the condition range, the problem of aberration of off-axis picture angle is favorably corrected along with the development of ultra-thin wide-angle. Preferably, 1.70 ≦ (R11+ R12)/(R11-R12) ≦ 3.67.
The on-axis thickness of the sixth lens element L6 is d11, the total optical length of the imaging optical lens system 10 is TTL, and the following relationships are satisfied: d11/TTL is more than or equal to 0.04 and less than or equal to 0.18, and ultra-thinning is facilitated in the condition formula range. Preferably, 0.06. ltoreq. d 11/TTL. ltoreq.0.15 is satisfied.
In the present embodiment, the image height of the image pickup optical lens 10 is IH, the total optical length of the image pickup optical lens 10 is TTL, and the following relational expression is satisfied: TTL/IH is less than or equal to 1.95, thereby realizing ultra-thinning.
In the present embodiment, the number of apertures FNO of the imaging optical lens 10 is 2.41 or less, and the large aperture is good in imaging performance.
In the present embodiment, the field angle FOV of the imaging optical lens 10 is not less than 119 °, thereby achieving a wide angle.
When the above relationship is satisfied, the imaging optical lens 10 has good optical performance, and can satisfy design requirements of large aperture, wide angle and ultra-thinness; in accordance with the characteristics of the optical lens 10, the optical lens 10 is particularly suitable for a mobile phone camera lens module and a WEB camera lens which are configured by image pickup devices such as a high-pixel CCD and a CMOS.
The image pickup optical lens 10 of the present invention will be explained below by way of example. The symbols described in the respective examples are as follows. The unit of focal length, on-axis distance, curvature radius, on-axis thickness, position of reverse curvature and position of stagnation point is mm.
TTL: the total optical length (on-axis distance from the object side surface of the first lens L1 to the image plane) in units of mm;
preferably, the object side surface and/or the image side surface of the lens may be further provided with an inflection point and/or a stagnation point to meet the requirement of high-quality imaging.
Tables 1 and 2 show design data of the imaging optical lens 10 according to the first embodiment of the present invention.
[ TABLE 1 ]
Figure BDA0002331041300000091
Wherein each symbol has the following meaning.
S1: an aperture;
r: the radius of curvature of the optical surface and the radius of curvature of the lens as the center;
r1: the radius of curvature of the object-side surface of the first lens L1;
r2: the radius of curvature of the image-side surface of the first lens L1;
r3: the radius of curvature of the object-side surface of the second lens L2;
r4: the radius of curvature of the image-side surface of the second lens L2;
r5: the radius of curvature of the object-side surface of the third lens L3;
r6: the radius of curvature of the image-side surface of the third lens L3;
r7: the radius of curvature of the object-side surface of the fourth lens L4;
r8: the radius of curvature of the image-side surface of the fourth lens L4;
r9: a radius of curvature of the object side surface of the fifth lens L5;
r10: a radius of curvature of the image-side surface of the fifth lens L5;
r11: a radius of curvature of the object side surface of the sixth lens L6;
r12: a radius of curvature of the image-side surface of the sixth lens L6;
r13: radius of curvature of the object side of the optical filter GF;
r14: the radius of curvature of the image-side surface of the optical filter GF;
d: an on-axis thickness of the lenses and an on-axis distance between the lenses;
d 0: the on-axis distance of the stop S1 to the object-side surface of the first lens L1;
d 1: the on-axis thickness of the first lens L1;
d 2: the on-axis distance from the image-side surface of the first lens L1 to the object-side surface of the second lens L2;
d 3: the on-axis thickness of the second lens L2;
d 4: the on-axis distance from the image-side surface of the second lens L2 to the object-side surface of the third lens L3;
d 5: the on-axis thickness of the third lens L3;
d 6: the on-axis distance from the image-side surface of the third lens L3 to the object-side surface of the fourth lens L4;
d 7: the on-axis thickness of the fourth lens L4;
d 8: an on-axis distance from an image-side surface of the fourth lens L4 to an object-side surface of the fifth lens L5;
d 9: the on-axis thickness of the fifth lens L5;
d 10: an on-axis distance from an image-side surface of the fifth lens L5 to an object-side surface of the sixth lens L6;
d 11: the on-axis thickness of the sixth lens L6;
d 12: the on-axis distance from the image-side surface of the sixth lens L6 to the object-side surface of the optical filter GF;
d 13: on-axis thickness of the optical filter GF;
d 14: the on-axis distance from the image side surface of the optical filter GF to the image surface;
nd: the refractive index of the d-line;
nd 1: the refractive index of the d-line of the first lens L1;
nd 2: the refractive index of the d-line of the second lens L2;
nd 3: the refractive index of the d-line of the third lens L3;
nd 4: the refractive index of the d-line of the fourth lens L4;
nd 5: the refractive index of the d-line of the fifth lens L5;
nd 6: the refractive index of the d-line of the sixth lens L6;
ndg: the refractive index of the d-line of the optical filter GF;
vd: an Abbe number;
v 1: abbe number of the first lens L1;
v 2: abbe number of the second lens L2;
v 3: abbe number of the third lens L3;
v 4: abbe number of the fourth lens L4;
v 5: abbe number of the fifth lens L5;
v 6: abbe number of the sixth lens L6;
vg: abbe number of the optical filter GF.
Table 2 shows aspherical surface data of each lens in the imaging optical lens 10 according to the first embodiment of the present invention.
[ TABLE 2 ]
Figure BDA0002331041300000121
Wherein k is a conic coefficient, and A4, A6, A8, A10, A12, A14 and A16 are aspheric coefficients.
IH: image height
y=(x2/R)/[1+{1-(k+1)(x2/R2)}1/2]+A4x4+A6x6+A8x8+A10x10+A12x12+A14x14+A16x16(1)
For convenience, the aspherical surface of each lens surface uses the aspherical surface shown in the above formula (1). However, the present invention is not limited to the aspherical polynomial form expressed by this formula (1).
Tables 3 and 4 show the inflection point and stagnation point design data of each lens in the imaging optical lens 10 according to the first embodiment of the present invention. P1R1 and P1R2 represent the object-side surface and the image-side surface of the first lens L1, P2R1 and P2R2 represent the object-side surface and the image-side surface of the second lens L2, P3R1 and P3R2 represent the object-side surface and the image-side surface of the third lens L3, P4R1 and P4R2 represent the object-side surface and the image-side surface of the fourth lens L4, P5R1 and P5R2 represent the object-side surface and the image-side surface of the fifth lens L5, and P6R1 and P6R2 represent the object-side surface and the image-side surface of the sixth lens L6, respectively. The "inflection point position" field correspondence data is a vertical distance from an inflection point set on each lens surface to the optical axis of the image pickup optical lens 10. The "stagnation point position" field corresponding data is the vertical distance from the stagnation point set on each lens surface to the optical axis of the imaging optical lens 10.
[ TABLE 3 ]
Number of points of inflection Position of reverse curvature 1 Position of reverse curvature 2
P1R1 1 0.255
P1R2 1 0.695
P2R1 2 0.255 0.725
P2R2 2 0.365 0.455
P3R1 0
P3R2 0
P4R1 1 0.235
P4R2 2 0.445 0.635
P5R1 1 0.665
P5R2 1 0.855
P6R1 1 0.255
P6R2 1 0.475
[ TABLE 4 ]
Number of stagnation points Location of stagnation 1
P1R1 1 0.515
P1R2 0
P2R1 1 0.375
P2R2 0
P3R1 0
P3R2 0
P4R1 1 0.415
P4R2 0
P5R1 0
P5R2 0
P6R1 1 0.475
P6R2 1 1.215
Fig. 2 and 3 are schematic diagrams showing axial aberrations and chromatic aberration of magnification of light having wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm, respectively, after passing through the imaging optical lens 10 according to the first embodiment. Fig. 4 is a schematic view showing curvature of field and distortion of light having a wavelength of 555nm after passing through the imaging optical lens 10 according to the first embodiment, where S is curvature of field in the sagittal direction and T is curvature of field in the tangential direction in fig. 4.
Table 13 shown later shows values of various numerical values in examples 1, 2, and 3 corresponding to the parameters specified in the conditional expressions.
As shown in table 13, the first embodiment satisfies each conditional expression.
In the present embodiment, the imaging optical lens has an entrance pupil diameter of 0.738mm, a full field image height of 2.285mm, a diagonal field angle of 119.8 °, a wide angle, and a high profile, and has excellent optical characteristics with on-axis and off-axis chromatic aberration sufficiently corrected.
(second embodiment)
The second embodiment is basically the same as the first embodiment, the same reference numerals as in the first embodiment, and only different points will be described below.
Tables 5 and 6 show design data of the imaging optical lens 20 according to the second embodiment of the present invention.
[ TABLE 5 ]
Figure BDA0002331041300000141
Table 6 shows aspherical surface data of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
[ TABLE 6 ]
Figure BDA0002331041300000151
Tables 7 and 8 show the inflection point and stagnation point design data of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
[ TABLE 7 ]
Number of points of inflection Position of reverse curvature 1 Position of reverse curvature 2 Position of reverse curvature 3
P1R1 1 0.375
P1R2 3 0.265 0.985 1.155
P2R1 1 0.345
P2R2 0
P3R1 1 0.385
P3R2 0
P4R1 1 0.185
P4R2 1 0.375
P5R1 1 0.785
P5R2 1 0.905
P6R1 1 0.325
P6R2 1 0.445
[ TABLE 8 ]
Figure BDA0002331041300000152
Figure BDA0002331041300000161
Fig. 6 and 7 are schematic diagrams showing axial aberrations and chromatic aberration of magnification of light having wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm passing through the imaging optical lens 20 according to the second embodiment. Fig. 8 is a schematic view showing curvature of field and distortion of light having a wavelength of 555nm after passing through the imaging optical lens 20 according to the second embodiment.
As shown in table 13, the second embodiment satisfies each conditional expression.
In the present embodiment, the imaging optical lens has an entrance pupil diameter of 0.737mm, a full field image height of 2.285mm, a diagonal field angle of 119.60 °, a wide angle, and a high profile, and has excellent optical characteristics with on-axis and off-axis chromatic aberration sufficiently corrected.
(third embodiment)
The third embodiment is basically the same as the first embodiment, the same reference numerals as in the first embodiment, and only different points will be described below.
Tables 9 and 10 show design data of the imaging optical lens 30 according to the third embodiment of the present invention.
[ TABLE 9 ]
Figure BDA0002331041300000162
Figure BDA0002331041300000171
Table 10 shows aspherical surface data of each lens in the imaging optical lens 30 according to the third embodiment of the present invention.
[ TABLE 10 ]
Figure BDA0002331041300000172
Tables 11 and 12 show the inflection points and the stagnation point design data of each lens in the imaging optical lens 30 according to the third embodiment of the present invention.
[ TABLE 11 ]
Figure BDA0002331041300000173
Figure BDA0002331041300000181
[ TABLE 12 ]
Number of stagnation points Location of stagnation 1
P1R1 1 0.445
P1R2 1 0.145
P2R1 1 0.365
P2R2 1 0.295
P3R1 0
P3R2 0
P4R1 1 0.385
P4R2 0
P5R1 1 1.075
P5R2 0
P6R1 1 0.835
P6R2 1 1.345
Fig. 10 and 11 are schematic diagrams showing axial aberrations and chromatic aberration of magnification of light having wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm passing through the imaging optical lens 30 according to the third embodiment. Fig. 12 is a schematic view showing curvature of field and distortion of light having a wavelength of 555nm after passing through the imaging optical lens 30 according to the third embodiment.
Table 13 below shows the numerical values corresponding to the respective conditional expressions in the present embodiment, in accordance with the conditional expressions described above. Obviously, the imaging optical system of the present embodiment satisfies the above conditional expressions.
In the present embodiment, the imaging optical lens has an entrance pupil diameter of 0.737mm, a full field image height of 2.285mm, a diagonal field angle of 119.80 °, a wide angle, and a high profile, and has excellent optical characteristics with on-axis and off-axis chromatic aberration sufficiently corrected.
[ TABLE 13 ]
Figure BDA0002331041300000182
Figure BDA0002331041300000191
Where Fno is the F-number of the stop of the image pickup optical lens, and F12 is the combined focal length of the first lens and the second lens.
It will be understood by those of ordinary skill in the art that the foregoing embodiments are specific embodiments for practicing the invention, and that various changes in form and details may be made therein without departing from the spirit and scope of the invention in practice.

Claims (10)

1. An imaging optical lens, in order from an object side to an image side, comprising: the lens comprises a first lens, a second lens, a third lens, a fourth lens, a fifth lens and a sixth lens;
the focal length of the image pickup optical lens is f, the focal length of the fourth lens is f4, the on-axis distance from the image side surface of the first lens to the object side surface of the second lens is d2, the on-axis thickness of the second lens is d3, the curvature radius of the object side surface of the fifth lens is R9, the curvature radius of the image side surface of the fifth lens is R10, and the following relations are satisfied:
-5.00≤f4/f≤-2.00;
1.20≤d2/d3≤2.00;
1.40≤(R9+R10)/(R9-R10)≤4.00。
2. the imaging optical lens according to claim 1, wherein the first lens has a focal length f1 and satisfies the following relationship:
-5.00≤f1/f≤-1.70。
3. the imaging optical lens of claim 1, wherein the radius of curvature of the object-side surface of the second lens is R3, the radius of curvature of the image-side surface of the second lens is R4, and the following relationship is satisfied:
-9.00≤(R3+R4)/(R3-R4)≤-2.00。
4. the image-capturing optical lens unit according to claim 1, wherein the radius of curvature of the object-side surface of the first lens element is R1, the radius of curvature of the image-side surface of the first lens element is R2, the on-axis thickness of the first lens element is d1, the total optical length of the image-capturing optical lens unit is TTL, and the following relationships are satisfied:
-10.41≤(R1+R2)/(R1-R2)≤-0.46;
0.03≤d1/TTL≤0.09。
5. a camera optical lens according to claim 1, wherein the focal length of the second lens element is f2, the total optical length of the camera optical lens is TTL, and the following relationship is satisfied:
6.13≤f2/f≤85.54;
0.02≤d3/TTL≤0.08。
6. the imaging optical lens of claim 1, wherein the third lens has a focal length of f3, a radius of curvature of an object-side surface of the third lens is R5, a radius of curvature of an image-side surface of the third lens is R6, an on-axis thickness of the third lens is d5, and the imaging optical lens has a total optical length of TTL and satisfies the following relationship:
0.47≤f3/f≤1.49;
0.18≤(R5+R6)/(R5-R6)≤1.07;
0.05≤d5/TTL≤0.19。
7. the image-capturing optical lens unit according to claim 1, wherein the radius of curvature of the object-side surface of the fourth lens element is R7, the radius of curvature of the image-side surface of the fourth lens element is R8, the on-axis thickness of the fourth lens element is d7, the total optical length of the image-capturing optical lens unit is TTL, and the following relationships are satisfied:
1.14≤(R7+R8)/(R7-R8)≤7.71;
0.03≤d7/TTL≤0.08。
8. the image-capturing optical lens of claim 1, wherein the focal length of the fifth lens element is f5, the on-axis thickness of the fifth lens element is d9, the total optical length of the image-capturing optical lens is TTL, and the following relationship is satisfied:
0.36≤f5/f≤1.93;
0.07≤d9/TTL≤0.28。
9. the image-capturing optical lens unit according to claim 1, wherein the sixth lens element has a focal length f6, a radius of curvature of an object-side surface of the sixth lens element is R11, a radius of curvature of an image-side surface of the sixth lens element is R12, an on-axis thickness of the sixth lens element is d11, an optical total length of the image-capturing optical lens unit is TTL, and the following relationship is satisfied:
-3.01≤f6/f≤-0.64;
1.06≤(R11+R12)/(R11-R12)≤4.58;
0.04≤d11/TTL≤0.18。
10. a camera optical lens according to claim 1, wherein the image height of the camera optical lens is IH, the total optical length of the camera optical lens is TTL, and the following relationship is satisfied:
TTL/IH≤1.95。
CN201911336326.0A 2019-12-23 2019-12-23 Image pickup optical lens Active CN111077648B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911336326.0A CN111077648B (en) 2019-12-23 2019-12-23 Image pickup optical lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911336326.0A CN111077648B (en) 2019-12-23 2019-12-23 Image pickup optical lens

Publications (2)

Publication Number Publication Date
CN111077648A true CN111077648A (en) 2020-04-28
CN111077648B CN111077648B (en) 2021-12-14

Family

ID=70316801

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911336326.0A Active CN111077648B (en) 2019-12-23 2019-12-23 Image pickup optical lens

Country Status (1)

Country Link
CN (1) CN111077648B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112230382A (en) * 2020-10-31 2021-01-15 诚瑞光学(苏州)有限公司 Image pickup optical lens

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108459401A (en) * 2018-03-30 2018-08-28 玉晶光电(厦门)有限公司 Optical imaging lens
CN108508578A (en) * 2018-03-30 2018-09-07 玉晶光电(厦门)有限公司 Optical imaging lens
CN109844602A (en) * 2016-10-25 2019-06-04 爱肯特株式会社 Lens optical system
TWI663442B (en) * 2018-08-15 2019-06-21 大立光電股份有限公司 Photographing optical lens assembly, imaging apparatus and electronic device
CN110542989A (en) * 2019-08-07 2019-12-06 瑞声声学科技(深圳)有限公司 Camera lens

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109844602A (en) * 2016-10-25 2019-06-04 爱肯特株式会社 Lens optical system
CN108459401A (en) * 2018-03-30 2018-08-28 玉晶光电(厦门)有限公司 Optical imaging lens
CN108508578A (en) * 2018-03-30 2018-09-07 玉晶光电(厦门)有限公司 Optical imaging lens
TWI663442B (en) * 2018-08-15 2019-06-21 大立光電股份有限公司 Photographing optical lens assembly, imaging apparatus and electronic device
CN110542989A (en) * 2019-08-07 2019-12-06 瑞声声学科技(深圳)有限公司 Camera lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112230382A (en) * 2020-10-31 2021-01-15 诚瑞光学(苏州)有限公司 Image pickup optical lens
WO2022088346A1 (en) * 2020-10-31 2022-05-05 诚瑞光学(深圳)有限公司 Photographing optical lens

Also Published As

Publication number Publication date
CN111077648B (en) 2021-12-14

Similar Documents

Publication Publication Date Title
CN110297312B (en) Image pickup optical lens
CN110361842B (en) Image pickup optical lens
CN110412736B (en) Image pickup optical lens
CN110596859B (en) Image pickup optical lens
CN110412737B (en) Image pickup optical lens
CN110398822B (en) Image pickup optical lens
CN110927930B (en) Image pickup optical lens
CN110361839B (en) Image pickup optical lens
CN111399196B (en) Image pickup optical lens
CN110221409B (en) Image pickup optical lens
CN110398821B (en) Image pickup optical lens
CN110221411B (en) Image pickup optical lens
CN110488464B (en) Image pickup optical lens
CN111142218B (en) Image pickup optical lens
CN111007647B (en) Image pickup optical lens
CN110955022B (en) Image pickup optical lens
CN110398818B (en) Image pickup optical lens
CN110262008B (en) Image pickup optical lens
CN111158113B (en) Image pickup optical lens
CN111025541B (en) Image pickup optical lens
CN111025548B (en) Image pickup optical lens
CN111025557B (en) Image pickup optical lens
CN111025551B (en) Image pickup optical lens
CN111061035B (en) Image pickup optical lens
CN111025547A (en) Image pickup optical lens

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 213000 Xinwei 1st Road, Changzhou Comprehensive Bonded Zone, Jiangsu Province

Applicant after: Chengrui optics (Changzhou) Co., Ltd

Address before: 213000 Xinwei Road, Changzhou Export Processing Zone, Jiangsu Province

Applicant before: Ruisheng Communication Technology (Changzhou) Co.,Ltd.

GR01 Patent grant
GR01 Patent grant