CN111065643B - 有机-无机杂化钙钛矿 - Google Patents

有机-无机杂化钙钛矿 Download PDF

Info

Publication number
CN111065643B
CN111065643B CN201880046693.4A CN201880046693A CN111065643B CN 111065643 B CN111065643 B CN 111065643B CN 201880046693 A CN201880046693 A CN 201880046693A CN 111065643 B CN111065643 B CN 111065643B
Authority
CN
China
Prior art keywords
perovskite
ligand
formula
signal
integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880046693.4A
Other languages
English (en)
Other versions
CN111065643A (zh
Inventor
尼古拉斯·默西埃
安东尼·勒布朗
蒂埃里·波皮奥特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Paris Science And Technology Chemical Co
University Angers
Centre National de la Recherche Scientifique CNRS
Original Assignee
Paris Science And Technology Chemical Co
University Angers
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paris Science And Technology Chemical Co, University Angers, Centre National de la Recherche Scientifique CNRS filed Critical Paris Science And Technology Chemical Co
Publication of CN111065643A publication Critical patent/CN111065643A/zh
Application granted granted Critical
Publication of CN111065643B publication Critical patent/CN111065643B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/24Lead compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L2031/0344Organic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/102Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising tin oxides, e.g. fluorine-doped SnO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)

Abstract

本申请涉及式(I)的有机‑无机杂化钙钛矿及包含该有机‑无机杂化钙钛矿的钙钛矿光伏电池:[(A)1‑2.48p‑b(B)3.48p+b](1+2p‑y)/(1+p)(Pb)1‑p‑m(M)m(X1)3‑y‑q(X2)q (I)。

Description

有机-无机杂化钙钛矿
技术领域
本发明涉及有机-无机杂化钙钛矿,并且涉及其用于制备太阳能电池的用途。
背景技术
钙钛矿这个名字最初是指矿物CaTiO3(钛酸钙)。式ABO3的许多氧化物采用钙钛矿型结构。开发了用于光伏应用的有机-无机杂化钙钛矿ABX3。式(CH3NH3)PbI3的MAPI是一种三维(3D)有机-无机杂化钙钛矿,由于钙钛矿太阳能电池(PSC)的高转化率(>20%)和这些电池的低成本制造,其彻底改变了光伏行业。然而,这种材料有两个主要缺点:存在铅(它是一种有毒元素)并且这种杂化钙钛矿对水分不稳定。
为了限制铅的存在,制备了替代性钙钛矿:
-用锡(Sn2+)代替铅(Pb2+),得到钙钛矿(CH3NH3)(Pb)1-x(Sn)xI3,但是光伏转化率较低;
-用Ag+和Bi3+ 代替铅(Pb2+),但是转化率也较低。
为了提高对水分的稳定性,最有效的策略涉及电池的设计。具体地,反向型电池的制造比直接型配置更能保护MAPI层免受水分影响。另一种策略在于使用二维(2D)杂化钙钛矿(例如(C6H5-EtNH3)2(MeNH3)2[Pb3I10]、(BA)2(MeNH3)2[Pb3I10]或(BA)2(MeNH3)3[Pb4I13],其中BA代表丁基铵),当薄膜的取向合适时,其具有合适的光伏产量(12%)和改善的稳定性。
文献中已经报道了MAPI上的其它各种替代方法:
-使用另一种阳离子A’+代替阳离子CH3NH3 +(A+),产生固溶体(A)1-x(A’)xPbI3
-替代阴离子,产生式(CH3NH3)Pb(I)3-x(X’)X的钙钛矿,其中X’代表Cl或Br,
-同时替换阳离子或阴离子。
因此,需要开发替代性钙钛矿,其包含较少的铅和/或比MAPI对水分更稳定,同时保留了较高的转化率。
发明内容
为此,根据第一个主题,本发明涉及一种下式(I)的有机-无机杂化钙钛矿:
[(A)1-2.48p-b(B)3.48p+b](1+2p-y)/(1+p)(Pb)1-p-m(M)m(X1)3-y-q(X2)q (I)
其中:
-A表示从Cs、Rb和包含铵或甲酰胺鎓基(carboxamidamidium group)的一价有机阳离子中选择的阳离子,
-B表示下式(II)的一价有机阳离子:
R1-(CH2)z-R2 (II)
其中:
-R2表示铵或甲酰胺鎓基,
-z表示1、2或3,且
-R1表示-H、-OH、-SH、-CN或卤素,
前提条件是B不是A,
-X1和X2表示卤化物,前提条件是X1和X2彼此不同,
-p是大于0且小于或等于0.30的数,
-b是大于或等于-0.30且小于或等于0.30的数,前提条件是b大于-3.48p且小于(1-2.48p),
-y表示大于0且小于或等于p的数,
-q表示大于或等于0且小于或等于(3-y)的数,
-M表示二价金属阳离子,且
-m表示大于或等于0且小于或等于(1-p)的数。
在本专利申请中,术语“大于数X”或“小于数X”意味着数X被排除在外。
本发明在于使用有机阳离子B+代替MAPI钙钛矿的Pb2+、I-和MA+离子。由于p不是0,所以根据本发明的钙钛矿必然缺乏铅。由于b大于-3.48p,所以根据本发明的钙钛矿必然包含物种B。因此,相对于MAPI,在根据本发明的钙钛矿中每单位体积的铅量更少,并且同时保持了MAPI的三维结构。另外,相对于MAPI观察到的对水分的稳定性,其对水分的稳定性似乎至少相当,或甚至得到了提高。
通常,钙钛矿晶格是通过顶点连接的MX6八面体晶格。在“2D”杂化钙钛矿中,通过顶点的这种连接在空间的两个方向(二维)上延伸。有利地是,在根据本发明的钙钛矿中,如在化合物(CH3NH3)PbI3中,八面体通过顶点在空间的三个方向(三维)上相连。
作为说明,附图是根据本发明下式(X)的有机-无机杂化钙钛矿的无机晶格(示出了Pb和I原子)和氮原子的示意图(其对应于式(I),其中p=y=0.2;m=q=b=0;A=MA=MeNH3 +;B表示HO-(CH2)2-NH3 +):
(MA)0.504(HO-(CH2)2-NH3 +)0.696Pb0.8I2.8 (X)
相对于钙钛矿(MA)15Pb5I15(其对应于MAPI)的晶格,这种钙钛矿的晶格缺乏(PbI)+种类。这种缺乏在图的中心和四个角处的位置明显可见,其中可以看到空腔(代替Pb和I而含有N)。对于0<p<0.2,钙钛矿比式(X)更加富含Pb和I,并且Pb和I位于所述空腔中。对于0.2<p<0.30,钙钛矿的铅含量低于式(X)的铅含量,并且晶格中的空腔比图中所示的要多。
在式(I)中,系数使得能够确保根据本发明的钙钛矿的电中性。具体地,无机部分Pb(+II)/M(+II)/X1(-I)/X2(-I)携带的负电荷为:(3-y-q)+q-2(1-p-m)–2m=1+2p-y(当y=p时:负电荷为1+p)。因此需要由阳离子A和B提供的1+2p-y个正电荷。在括号中,存在(1+p)个阳离子A和B。因此,系数/>平衡电荷。当y=p时,存在(1+p)个负电荷和(1+p)个阳离子A+B。当y小于p时,负电荷增加,因此需要更多阳离子来补偿,即1+2p–y。
发明人已经观察到,在根据本发明的钙钛矿中,一方面,p与阳离子A的数量之间存在相关性,另一方面,p与阳离子B之间存在相关性。更确切地:
-阳离子B的量接近p的线性函数,即3.48p,并且在范围(3.48p+b)内,和
-阳离子A的量也接近于p的线性函数,即(1-2.48p),并且在范围(1-2.48p–b)内。
量度(index)b在这些线性函数的两侧定义了一个域。
X1优选表示碘化物。那么,所述钙钛矿具有下式(IIa):
[(A)1-2.48p-b(B)3.48p+b](1+2p-y)/(1+p)(Pb)1-p-m(M)m(I)3-y-q(X2)q (IIa)
其中A、B、p、M、m、b、y和q如上定义并且X2表示选自Br、Cl和F的卤化物,优选Br和Cl。
所述钙钛矿可以不含碘化物以外的卤化物:那么,X1表示碘化物并且q表示0。那么,所述钙钛矿具有下式(III):
[(A)1-2.48p-b(B)3.48p+b](1+2p-y)/(1+p)(Pb)1-p-m(M)m(I)3-y (III)
其中A、B、p、M、b、y和m如上定义。
所述钙钛矿可以不含铅以外的金属M:那么,m表示0。那么,所述钙钛矿具有下式(IV):
[(A)1-2.48p-b(B)3.48p+b](1+2p-y)/(1+p)(Pb)1-p(X1)3-y-q(X2)q (IV)
其中A、B、p、X1、X2、b、y和q如上定义。
在式(IV)中,X1优选表示碘化物并且那么,所述钙钛矿具有下式(V):
[(A)1-2.48p-b(B)3.48p+b](1+2p-y)/(1+p)(Pb)1-p(I)3-y-q(X2)q (V)
其中A、B、p、b、y和q如上定义并且X2表示选自Br、Cl和F的卤化物,优选Br和Cl。这一钙钛矿可以不含碘化物以外的卤化物并且可以具有下式(VI):
[(A)1-2.48p-b(B)3.48p+b](1+2p-y)/(1+p)(Pb)1-p(I)3-y (VI)
其中A、B、b、y和p如上定义。
下列实施方式(单独考虑或者彼此结合考虑)适用于上式:
优选地,y等于p。
优选地,p为大于0且小于或等于0.25的数,尤其是0.01至0.25,特别是0.05至0.23。
优选地,b为大于或等于-0.20且小于或等于0.20的数,尤其是大于或等于-0.10且小于或等于0.10的数,特别是大于或等于-0.07且小于或等于0.07的数。
优选地,m表示0和/或q表示0。
在二价金属阳离子M中,可以提及Pb、Sn、Cu、Cd和Mn。
在卤化物X1和X2中,可以提及碘化物、氯化物、溴化物或氟化物,优选碘化物、氯化物或溴化物。
在R1基团的卤素中,可以提及碘、氯、溴或氟,优选氯、溴或氟,特别优选氟。
基团-NH3 +是优选的铵基。
阳离子A可以选自Cs和Rb。
阳离子A可以是包含铵或甲酰胺鎓基的一价有机阳离子。通常,阳离子A包含(或甚至组成为):
-铵或甲酰胺鎓基,和
-氢-H或含1-4个碳原子的烃,尤其是包含一或两个碳原子,优选烷基,如甲基或乙基。
在可能用于阳离子A的包含铵基的一价有机阳离子中,可以提及式CH3NH3 +的甲基铵(MA)。-C(NH2)2 +基团是优选的甲酰胺鎓。式HC(NH2)2 +(FA)的甲脒鎓是最常见的包含甲酰胺鎓基的一价有机阳离子。优选地,A表示甲基铵(MA)或甲脒鎓(FA)。
阳离子A与阳离子B不同。
优选地,在式(II)中:
-R2表示–NH3 +基团,和/或
-z表示1或2,优选2,和/或
-R1表示-H、-OH、-SH、-CN或卤素,尤其是-OH、-SH、-CN或卤素,特别是-OH或-SH,优选-OH。
当R1表示-H时,式(II)的一价有机阳离子B可以是CH3CH2NH3 +或CH3C(NH2)2+
当R1表示-OH时,优选的式(II)的一价有机阳离子B为HO-(CH2)2-NH3 +
当R1表示-SH时,优选的式(II)的一价有机阳离子B为HS-(CH2)2-NH3 +
特别优选地,所述钙钛矿具有下式(VII):
[(A)1-2.48p-b(HO-(CH2)2-NH3 +)3.48p+b](1+2p-y)/(1+p)(Pb)1-p(I)3-y (VII)
其中A、p、b和y如上定义;优选地,A表示MA和/或y=p。
下式(90)、(92)、(89)、(93)和(88)的钙钛矿是特别优选的:
(CH3NH3)0.8138(HO-(CH2)2-NH3)0.2848[Pb0.9014I2.9014] (90)
(式(I)中,A=CH3NH3;B=HO-(CH2)2-NH3;m=q=0;y=p=0.0986;b=-0.058328)
(CH3NH3)0.6744(HO-(CH2)2-NH3)0.4586[Pb0.8670I2.8670] (92)
(式(I)中,A=CH3NH3;B=HO-(CH2)2-NH3;m=q=0;y=p=0.133;b=-0.00424)
(CH3NH3)0.5821(HO-(CH2)2-NH3)0.5763[Pb0.8416I2.8416] (89)
(式(I)中,A=CH3NH3;B=HO-(CH2)2-NH3;m=q=0;y=p=0.1584;b=0.025068)
(CH3NH3)0.5383(HO-(CH2)2-NH3)0.6405[Pb0.8212I2.8212] (93)
(式(I)中,A=CH3NH3;B=HO-(CH2)2-NH3;m=q=0;y=p=0.1788;b=0.018276)
(CH3NH3)0.4730(HO-(CH2)2-NH3)0.7331[Pb0.7940I2.7940] (88)
(式(I)中,A=CH3NH3;B=HO-(CH2)2-NH3;m=q=0;y=p=0.206;b=0.01622)。
特别优选地,所述钙钛矿具有下式(VIII):
[(A)1-2.48p-b(HS-(CH2)2-NH3 +)3.48p+b](1+2p-y)/(1+p)(Pb)1-p(I)3-y (VIII)
其中A、p、b和y如上定义;优选地,A表示FA和/或y=p。
下式(T1)的钙钛矿是特别优选的:
(HC-(NH2)2)0.9177(HS-(CH2)2-NH3)0.1193[Pb0.9630I2.9630] (T1)
(式(I)中,A=HC-(NH2)2;B=HS-(CH2)2-NH3;m=q=0;y=p=0.037;b=-0.00946)。
在本专利申请中并且如经常在钙钛矿结构中,并不总是表示出阳离子或阴离子的正电荷。可以理解的是,Pb对应于Pb2+,Sn对应于Sn2+,Cu对应于Cu2+,Cd对应于Cd2+,Mn对应于Mn2+,Cs对应于Cs+且Rb对应于Rb+,CH3NH3对应于CH3NH3 +,HO-(CH2)2-NH3对应于HO-(CH2)2-NH3 +,HC-(NH2)2对应于HC-(NH2)2 +,HS-(CH2)2-NH3对应于HS-(CH2)2-NH3 +
根据本发明的钙钛矿可以为各种形式,尤其是为结晶粉末的形式或晶体形式。它们具有三维结构,例如MAPI。通常,根据本发明的钙钛矿具有四方对称的晶体体系,如MAPI。
所述钙钛矿也可以是至少部分覆盖基底表面的薄层形式。该表面例如是电子传输材料的表面。例如,所述基底是覆盖有一层氟掺杂氧化锡(FTO)或一层氧化铟锡(ITO)的玻璃,在所述氟掺杂氧化锡(FTO)层或氧化铟锡(ITO)层上已沉积至少一个电子传输层(ETL),诸如TiO2、SnO2或ZnO。
根据第二个主题,本发明涉及一种用于制备如上定义的钙钛矿的方法。
它们可以通过类似地通过应用MAPI制备方法来制备,不同之处在于引入阳离子为如上定义的B的盐。
典型地,为了获得晶体/结晶粉末形式的钙钛矿,可以使用下列方法:
-蒸发包含以下成分的过饱和溶液:
-阳离子为如上定义的A的盐,
-阳离子为如上定义的B的盐,
-卤化铅,和
-任选地二价金属阳离子M的卤化物,
-向这种过饱和溶液中添加非溶剂,或
-溶剂热法。
适当调整[阳离子为如上定义的A的盐/阳离子为如上定义的B的盐/卤化铅/任选地二价金属阳离子M的卤化物]的摩尔比,可以获得具有不同p、q和m值的钙钛矿。
为了获得在基底表面上的薄层形式的钙钛矿,可以使用各种方法:
-在基材表面上旋涂,
-通过溶剂在基材表面上的扩散进行沉积,然后进行退火,或
-通过固态加压沉积。
有利地是,根据本发明的有机-无机杂化钙钛矿具有可与MAPI相媲美的光伏产量。因此,它们特别适合用于太阳能电池。
根据第三个主题,本发明涉及一种钙钛矿太阳能电池(PSC),其层中的至少一个含有如上定义的钙钛矿。
所述太阳能电池的结构可以是n-i-p或p-i-n型平面,介孔或双层(通常为包含根据本发明的钙钛矿的层和硅层)。
以下实施例和附图说明了本发明。
附图说明
图1示出了下式(X)的有机-无机杂化钙钛矿的无机晶格(示出了Pb、I和N原子)的示意图:
(MA)0.452(B)0.748Pb0.8I2.8 (X)
具体实施方式
实施例中制备了具有下式的钙钛矿:
(CH3NH3)0.8138(HO-(CH2)2-NH3)0.2848[Pb0.9014I2.9014] (90)
(CH3NH3)0.6744(HO-(CH2)2-NH3)0.4586[Pb0.8670I2.8670] (92)
(CH3NH3)0.5821(HO-(CH2)2-NH3)0.5763[Pb0.8416I2.8416] (89)
(CH3NH3)0.5383(HO-(CH2)2-NH3)0.6405[Pb0.8212I2.8212] (93)
(CH3NH3)0.4730(HO-(CH2)2-NH3)0.7331[Pb0.7940I2.7940] (88)
(HC-(NH2)2)0.9177(HS-CH2CH2-NH3)0.1193[Pb0.9630I2.9630] (T1)。
实施例1:制备晶体/结晶粉末形式的钙钛矿
在第一阶段,通过将乙醇胺、甲基碘化铵和PbI2溶解于57%氢碘酸溶液(Aldrich化合物)中,制备接近饱和的前体溶液。对于钙钛矿90、92、89、93和88,乙醇胺/甲基碘化铵/PbI2摩尔比例分别为1/2/3、1.5/2/3、2/2/3、2.5/2/3和3/2/3。
在第二阶段,将该前体溶液添加到乙酸乙酯中,导致钙钛矿立即沉淀。过滤出获得的粉末,用乙酸乙酯洗涤,然后在烘箱中在80℃下干燥15至20分钟。
通过核磁共振(NMR)和X射线(XR)分析获得的结晶粉末。
*钙钛矿88-NMR(DMSO-d6)。描述:
-1个信号在2.39ppm处,积分为3H,与甲基铵配体的甲基有关
-1个信号在2.87ppm处,积分为3.09H,与乙醇铵配体的一个-CH2-有关
-1个信号在3.58ppm处,积分为3.15H,与乙醇铵配体的第二-CH2-有关
-在5.13ppm处有1个宽弱信号,积分为1.55H,与乙醇铵配体的HO-有关
-在7.67ppm处有1个非常宽的信号,积分为7.71H,与两个配体的铵官能有关
*钙钛矿93-NMR(DMSO-d6)。描述:
-1个信号在2.39ppm处,积分为3H,与甲基铵配体的甲基有关
-1个信号在2.87ppm,积分为2.35H,与乙醇铵配体的一个-CH2-有关
-1个信号在3.58ppm处,积分为2.41H,与乙醇铵配体的第二-CH2-有关
-在5.13ppm处有1个宽弱信号,积分为1.19H,与乙醇铵配体的HO-有关
-在7.61ppm处有1个非常宽的信号,积分为6.49H,与两个配体的铵官能有关
*钙钛矿89-NMR(DMSO-d6)。描述:
-1个信号在2.39ppm处,积分为3H,与甲基铵配体的甲基有关
-1个信号在2.87ppm处,积分为1.98H,与乙醇铵配体的一个-CH2-有关
-1个信号在3.58ppm处,积分为1.99H,与乙醇铵配体的第二-CH2-有关
-在5.14ppm处有1个宽弱信号,积分为0.99H,与乙醇铵配体的HO-有关
-在7.60ppm处有1个非常宽的信号,积分为5.90H,与两个配体的铵官能有关
*钙钛矿92-NMR(DMSO-d6)。描述:
-1个信号在2.38ppm处,积分为3H,与甲基铵配体的甲基有关
-1个信号在2.87ppm处,积分为1.38H,与乙醇铵配体的一个-CH2-有关
-1个信号在3.57ppm处,积分为1.34H,与乙醇铵配体的第二-CH2-有关
-在5.11ppm处有1个宽弱信号,积分为0.68H,与乙醇铵配体的HO-相关
-在7.60ppm处有1个非常宽的信号,积分为5.27H,与两个配体的铵官能有关
*钙钛矿90-NMR(DMSO-d6)。描述:
-1个信号在2.39ppm,积分为3H,与甲基铵配体的甲基有关
-1个信号在2.88ppm处,积分为0.69H,与乙醇铵配体的一个-CH2-有关
-1个信号在3.58ppm处,积分为0.71H,与乙醇铵配体的第二-CH2-有关
-在5.12ppm处有1个宽弱信号,积分为0.35H,与乙醇铵配体的HO-有关
--在7.50和7.68ppm处有2个宽的重叠信号,总积分为4.12H,与两个配体的铵官能有关
*粉末XR研究(Brüker D8 Avance衍射仪,铜对阴极,Vantec检测器)
化合物在5-32°角度范围内的衍射线的2θ位置(单位:°):
钙钛矿88:6.235;8.772;12.412;13.895;18.745;19.690;22.379;24.125;25.669;27.820;28.768;29.418;31.241
钙钛矿93:6.254;8.810;12.421;13.905;17.674;18.745;19.773;22.494;24.194;24.981;25.746;27.896;28.768;29.380;31.275
钙钛矿89:8.896;12.543;14.012;18.783;19.820;22.571;24.285;25.784;28.011;28.883;29.533;31.412
钙钛矿92:14.092;19.938;24.388;26.014;28.125;31.527
钙钛矿90:13.980;19.820;24.297;25.325;28.125;31.534
所制备的钙钛矿均具有四方对称的晶体体系。
对于钙钛矿88,晶格参数如下:
α=β=γ=90°
实施例2:制备薄层形式的钙钛矿和光伏器件
制得的光伏器件构成如下:覆盖有一层氟掺杂氧化锡(FTO)(TECTM(7))的玻璃,通过喷涂在所述氟掺杂氧化锡(FTO)层上沉积了致密TiO2的第一电子传输层(ETL),随后通过旋涂沉积了多孔TiO2的第二层。通过旋涂将根据本发明的钙钛矿活性层沉积在所述多孔TiO2上(溶剂:二甲基甲酰胺,1摩尔溶液),然后在100℃下退火1小时,然后通过旋涂沉积螺-OMeTAD空穴传输材料(HTM)层。最后,通过蒸发沉积银电极。
在尚未优化的条件下,但对于所有测试的钙钛矿(即MAPI、钙钛矿90、钙钛矿92和钙钛矿89)而言,条件均相同,光伏产量结果(PCE)如下(公布的值是5至6次测量的平均值):
钙钛矿 MAPI(比较) 90 92 89
PCE(系列1) 3.35% 3.74% 2.14% 1.88%
PCE(系列2) 2.97% 4.02% 2.44% 2.07%
实施例3:制备结晶粉末形式的钙钛矿T1(无晶体)
在第一阶段,通过将半胱胺、甲脒鎓碘化物(formamidinium iodide)和PbI2溶解于57%氢碘酸溶液(Aldrich化合物)中,制备接近饱和的前体溶液。半胱胺/甲脒鎓碘化物/PbI2的摩尔比例为2.13/3/3。
在第二阶段,将该前体溶液添加到乙酸乙酯中,导致钙钛矿立即沉淀。过滤获得的粉末,用乙酸乙酯洗涤,然后在烘箱中在60℃下干燥15至20分钟。
通过核磁共振(NMR)和X射线(XR)分析获得的结晶粉末。
*钙钛矿T1-NMR(DMSO-d6)。描述:
-1个信号在2.69ppm处,积分为0.14H,与硫代乙基铵配体的HS-官能的氢有关
-1个信号在2.96ppm处,积分为0.24H,与硫代乙基铵配体的一个-CH2-有关
-1个信号在3.14ppm处,积分为0.24H,与硫代乙基铵配体的第二-CH2-有关
-1个信号在7.86ppm处,积分为1.38H,与甲脒鎓配体的HC-氢有关,其积分贡献为1.00H,+与硫代乙基铵配体的-NH3 +有关,其积分贡献为0.38H
-1个信号在8.66ppm处,积分为2.00H,与甲脒鎓配体的一个-NH2-有关
-1个信号在9.00ppm处,积分为2.00H,与甲脒鎓配体的第二-NH2-有关。
*粉末XR研究(Brüker D8 Avance衍射仪,铜对阴极,点闪烁检测器)
化合物在5-32°角度范围内的衍射线的2θ位置(单位:°):
钙钛矿T1:13.949;19.749;24.249;28.069;31.449;34.479;40.089;42.629;49.749;51.819;58.139
实施例4:制备薄层形式的钙钛矿T1
在环境条件下通过旋涂制备薄层。在第一阶段,通过遵守0.5/3/3的化学计量比例将硫代乙基碘化铵/甲脒鎓碘化物/PbI2溶解于二甲基甲酰胺(DMF)中,制备含有前体的溶液。将PbI2浓度设定为1.2mol/L。在第二阶段,将60μL该溶液沉积在1.5*2cm2玻璃/FTO支撑体(tec7,Pilkington)的FTO侧上。然后将施加的旋涂程序在1000rpm进行10秒(200rpm/秒的加速度),然后在6000rpm下进行20秒(3000rpm/秒的加速度)。在这一程序中(更更准确地说在15秒),将300μL乙酸乙酯或150μL氯苯直接添加到旋转膜上。旋涂结束后,将薄层膜在加热板上于100℃下进行30分钟的热处理。
薄层稳定性
在实验室条件下(空气,光,25℃,约80%的相对湿度),将钙钛矿T1的稳定性与已知钙钛矿α-FAPbI3(FA+=甲脒鎓,HC(NH2)2 +)的稳定性进行了比较。
通过旋涂法制备薄膜后,将其放在工作台上,并定期进行X射线衍射分析。初步的X射线衍射分析表明,制备的薄膜对应于预期的相(化合物在5-32°角度范围内的衍射线的2θ位置(单位:°):钙钛矿T1,13.949,19.749,24.249,28.069,31.449;α-FAPbI3,13.969,19.767,24.218,28.113,31.510)。25小时后,样品α-FAPbI3出现了非钙钛矿相δ-FAPI的表观最初迹象(线在位置2θ11.8°),标志着开始降解。
100小时后,尽管α-FAPbI3的样品完全转化为δ-FAPI,但样品T1没有降解的迹象(X射线衍射图与最初的相同)。

Claims (4)

1.一种下式(90)或(T1)的有机-无机杂化钙钛矿,其具有三维结构,
(CH3NH3)0.8138(HO-(CH2)2-NH3)0.2848[Pb0.9014I2.9014](90),
(HC-(NH2)2)0.9177(HS-(CH2)2-NH3)0.1193[Pb0.9630I2.9630](T1)。
2.根据权利要求1所述的钙钛矿,其为晶体的形式,其晶体体系具有四方对称性。
3.根据权利要求1所述的钙钛矿,其为至少部分覆盖基底表面的薄层形式。
4.一种钙钛矿太阳能电池,其至少一层含有前述权利要求中任一项所述的钙钛矿。
CN201880046693.4A 2017-07-20 2018-07-19 有机-无机杂化钙钛矿 Active CN111065643B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1756883A FR3069247B1 (fr) 2017-07-20 2017-07-20 Perovskites hybrides organique-inorganique
FR1756883 2017-07-20
PCT/FR2018/051840 WO2019016476A1 (fr) 2017-07-20 2018-07-19 Pérovskites hybrides organique-inorganique

Publications (2)

Publication Number Publication Date
CN111065643A CN111065643A (zh) 2020-04-24
CN111065643B true CN111065643B (zh) 2023-11-03

Family

ID=60080982

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880046693.4A Active CN111065643B (zh) 2017-07-20 2018-07-19 有机-无机杂化钙钛矿

Country Status (5)

Country Link
US (1) US20210070776A1 (zh)
EP (1) EP3655412B1 (zh)
CN (1) CN111065643B (zh)
FR (1) FR3069247B1 (zh)
WO (1) WO2019016476A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112877059B (zh) * 2021-01-20 2023-08-22 深圳技术大学 一种长荧光寿命MAPbBr3钙钛矿纳米晶的制备方法和光催化降解有机污染物的方法
CN114709340A (zh) * 2022-05-23 2022-07-05 中国长江三峡集团有限公司 一种宽带隙钙钛矿薄膜、太阳能电池及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2895654A1 (en) * 2012-12-20 2014-06-26 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Perovskite schottky type solar cell
US10193088B2 (en) * 2014-11-06 2019-01-29 Postech Academy-Industry Foundation Perovskite nanocrystalline particles and optoelectronic device using same

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications;Duyen H. Cao 等;《J. Am. Chem. Soc.》;20151231;第137卷;第7843-7850页 *
Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations;Xiaopeng Zheng 等;《Nature Energy》;20170626;第2卷;第1-9页 *
Diammonium and Monoammonium Mixed-Organic-Cation Perovskites for High Performance Solar Cells with Improved Stability;Jianfeng Lu 等;《Adv. Energy Mater.》;20170523;第1-10页 *
Electrical properties of new organo-inorganic layered perovskites;C. I. COVALIU 等;《OPTOELECTRONICS AND ADVANCED MATERIALS》;20111031;第5卷(第10期);第1097-1102页 *
Stable and conductive lead halide perovskites facilitated by X-type ligands;Longfei Ruan 等;《Nanoscale》;20170504;第9卷;第7252-7259页 *
Thiols as interfacial modifiers to enhance the performance and stability of perovskite solar cells;Jing Cao 等;《Nanoscale》;20151231;第7卷;第9443-9447页 *
有机卤化铅钙钛矿太阳能电池;琚成功 等;《化学进展》;20161231;第28卷(第2/3期);第219-231页 *

Also Published As

Publication number Publication date
WO2019016476A1 (fr) 2019-01-24
EP3655412B1 (fr) 2023-08-09
CN111065643A (zh) 2020-04-24
FR3069247A1 (fr) 2019-01-25
US20210070776A1 (en) 2021-03-11
EP3655412A1 (fr) 2020-05-27
FR3069247B1 (fr) 2019-07-26

Similar Documents

Publication Publication Date Title
Fateev et al. Solution processing of methylammonium lead iodide perovskite from γ-butyrolactone: crystallization mediated by solvation equilibrium
Chen et al. A review: crystal growth for high-performance all-inorganic perovskite solar cells
Guo et al. Niobium incorporation into CsPbI2Br for stable and efficient all-inorganic perovskite solar cells
Yuan et al. Semi-transparent perovskite solar cells: unveiling the trade-off between transparency and efficiency
Abdel-Shakour et al. High‐efficiency tin halide perovskite solar cells: the chemistry of tin (II) compounds and their interaction with Lewis base additives during perovskite film formation
Cohen et al. Parameters that control and influence the organo-metal halide perovskite crystallization and morphology
Chen et al. Zinc ion as effective film morphology controller in perovskite solar cells
Cao et al. Elucidating the key role of a lewis base solvent in the formation of perovskite films fabricated from the lewis adduct approach
EP3135633B1 (en) Precursor for preparing perovskite, preparation method therefor, and perovskite solar cell, and manufacturing method therefor
CN107620052B (zh) 一种甲脒铯铅碘钙钛矿薄膜的化学气相沉积制备方法及基于其的光伏器件
CN107302055A (zh) 一种钙钛矿薄膜的制备方法
EP3263575B1 (en) A highly stable two-dimensional perovskite material and the use thereof
CN109273601B (zh) 一种钙钛矿太阳能电池及其制备方法
CN109478598A (zh) 太阳能电池、光吸收层以及光吸收层的形成方法
CN111065643B (zh) 有机-无机杂化钙钛矿
WO2020123940A1 (en) Manufacturing of perovskite films
Ueoka et al. Effects of PbI2 addition and TiO2 electron transport layers for perovskite solar cells
Suzuki et al. Fabrication and characterization of Ni-, Co-, and Rb-incorporated CH 3 NH 3 PbI 3 perovskite solar cells
Xiao et al. Achieving mixed halide perovskite via halogen exchange during vapor-assisted solution process for efficient and stable perovskite solar cells
Dimesso et al. Properties of cesium tin iodide (Cs-Sn-I) systems after annealing under different atmospheres
Arai et al. Factors determining the vertical orientation of two-dimensional perovskites
Bahadur et al. Surface defect passivation of All-Inorganic CsPbI2Br perovskites via fluorinated ionic liquid for efficient Outdoor/Indoor photovoltaics processed in ambient air
Wang et al. Instability of solution-processed perovskite films: origin and mitigation strategies
González-Juárez et al. Study on photovoltaic stability and performance by incorporating tetrabutyl phosphonium iodide into the active layer of a perovskite type photovoltaic cell
Zhang et al. Recent Progress of Low‐Toxicity Poor‐Lead All‐Inorganic Perovskite Solar Cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant