CN111048816B - 一种驱动非产电微生物产电方法 - Google Patents

一种驱动非产电微生物产电方法 Download PDF

Info

Publication number
CN111048816B
CN111048816B CN201911374103.3A CN201911374103A CN111048816B CN 111048816 B CN111048816 B CN 111048816B CN 201911374103 A CN201911374103 A CN 201911374103A CN 111048816 B CN111048816 B CN 111048816B
Authority
CN
China
Prior art keywords
electrogenic
microorganisms
culture
electrogenic microorganisms
produce electricity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911374103.3A
Other languages
English (en)
Other versions
CN111048816A (zh
Inventor
刘星
周顺桂
叶银
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Agriculture and Forestry University
Original Assignee
Fujian Agriculture and Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Agriculture and Forestry University filed Critical Fujian Agriculture and Forestry University
Priority to CN201911374103.3A priority Critical patent/CN111048816B/zh
Publication of CN111048816A publication Critical patent/CN111048816A/zh
Application granted granted Critical
Publication of CN111048816B publication Critical patent/CN111048816B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

本发明提供了一种驱动非产电微生物产电方法,将非产电微生物和辅助产电微生物共培养,然后接种于微生物燃料电池的阳极,加入电子供体,可以实现非产电微生物产电。

Description

一种驱动非产电微生物产电方法
技术领域
本发明涉及一种驱动非产电微生物产电方法,属于生物电化学技术领域。
背景技术
生物电化学系统(Bioelectrochemical systems,BESs)是一种交叉学科的前沿技术,随着全球淡水资源和可利用能源日益剧减,BESs的运用受到了广泛的关注。它是微生物燃料电池(MFCs)、微生物电解电池(MECs)和微生物电合成电池(MESs)等技术的总称。微生物燃料电池利用微生物的催化作用,将燃料中的化学能转化为电能,同时又可以处理废水的新型技术,具有显著的环境效益和经济效益。近年来,相继有多种产电微生物菌株被发现,大大拓展了微生物燃料电池的应用领域,如直接制造生物传感器、处理废水产电等。微生物燃料电池的研究与应用,对缓解当前的能源危机有重大意义,其发展潜力很大。
目前关于MFC的研究多集中在提高产电微生物的产电能力和去污效能方面,研究的绝大多数微生物为地杆菌属(Geobacter)和希瓦氏菌属(Shewanella)等。产电微生物与MFC阳极电极间存在呼吸作用,即:微生物在产能代谢中底物降解释放出的电子,通过呼吸链即电子传递链最终传递给外源电子受体(如阳极电极)。
然而,并未有研究报道非产电微生物也能实现产电。Clostridium intestinale是梭菌属中一种非产电的微生物,通过发酵(不完全氧化)果糖、蔗糖等底物进行生长繁殖,释放的电子不经过电子传递链而直接传递给内源性中间代谢产物,利用底物水平磷酸化(Substrate level phosphorylation)产能。由于发酵过程只是部分氧化底物,因而产能效率相对较低。若能实现微生物的代谢从发酵向呼吸转化,将有望将非产电微生物引入生物电化学系统中,实现对阳极催化的作用,从而推进对生物电化学系统(Bioelectrochemicalsystems,BESs)的研究。但是,现有技术中还没有实现非产电微生物产电的方法。
发明内容
本发明提供了一种驱动非产电微生物产电方法,可以有效解决上述问题。
本发明是这样实现的:
一种驱动非产电微生物产电方法,将非产电微生物和辅助产电微生物共培养,然后接种于微生物燃料电池的阳极,加入电子供体。
作为进一步改进的,所述非产电微生物为Clostridium intestinale,所述辅助产电微生物为Geobacter sulfurreducens。
作为进一步改进的,所述非产电微生物和辅助产电微生物在共培养前还需分别进行厌氧培养。
作为进一步改进的,所述共培养的接种量按照体积分数为5~10%;接种前,所述非产电微生物和辅助产电微生物的OD600为0.4~0.6。
作为进一步改进的,所述共培养还需每3~5天接种传代,传到第5~7代。
作为进一步改进的,所述共培养的培养温度为28~32℃。
作为进一步改进的,所述电子供体为乙醇。
作为进一步改进的,所述电子供体的终浓度为10~20mM。
作为进一步改进的,所述微生物燃料电池为ITO三电极体系微生物燃料电池。
作为进一步改进的,所述共培养的培养基的配方为MgCl2·7H2O0.05~0.15g/L,CaCl2·2H2O 0.02~0.06g/L,NaCO3·H2O 0.4~0.6g/L,NaHCO31.6~2.0g/L,Fumaric Acid4.50~4.84g/L,100X NB Salts Mix 8~12mL/L,1Mm Na2SeO 40.0~42.0mL,NB MineralElixir 8~12mL/L,DL维生素溶液10~20mL/L,其余为水。
本发明的有益效果是:
本发明公开的一种驱动非产电微生物实现产电的方法,以辅助产电微生物Geobacter sulfurreducens作为驱动力,驱动非产电微生物Clostridium intestinale的代谢途径从发酵转向呼吸,从而改善了自身的代谢通路,并使不能代谢乙醇的Clostridiumintestinale与Geobacter sulfurreducens都能够在以乙醇作为电子供体的条件下产电,促进了彼此的生长代谢,电流最大达0.4mA。
本发明突破了对非产电微生物的传统认识,同时扩大了Geobactersulfurreducens与Clostridium intestinale的底物范围与生态位,很大程度上提升了对生物电化学系统的研究,因此可作为一种参考方法进行大规模的推广应用。
附图说明
为了更清楚地说明本发明实施方式的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1是本发明实施例2中的Clostridium intestinale与Geobactersulfurreducens及共培养的产电图。
图2为本发明的实施例3的Clostridium intestinale与Geobactersulfurreducens共培养三电极体系中,对附着在ITO电极上的电活性生物膜进行活死染色后激光共聚焦显微镜下的图。
具体实施方式
为使本发明实施方式的目的、技术方案和优点更加清楚,下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。因此,以下对在附图中提供的本发明的实施方式的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
本发明实施例中所述NBAF培养基、NBEF共培养培养基与CT培养基的配方如表1所示。
表1培养基的组成
Figure BDA0002340446180000041
Figure BDA0002340446180000051
*每升100X NB Salts Mix溶液中含有4g KH2PO4,22g K2HPO4,20g NH4Cl,38g KCl,36g NaCl,余量为水。
**每升NB Mineral Elixir溶液中含有2.14g NTA,0.1g MnCl2*4H2O,0.3g FeSO4*7H2O,0.17g CoCl2*6H2O,0.1g ZnSO4*7H2O,0.03g CuCl2*2H2O,0.005g AlK(SO4)2*12H2O,0.005g H3BO3,0.09g Na2MnO4*2H2O,0.11g NiSO4*6H2O,0.02g Na2WO4*2H2O,余量为水。
***每升DL维生素溶液中含有0.002g维生素H,0.005g维生素B5,0.0001g维生素B12,0.005g对氨基苯甲酸,0.005g a-硫辛酸,0.005g烟酸,0.005g维生素B1,0.005g核黄素,0.01g Pyridoxine HCl,0.002g叶酸,余量为水。
****每升DL微量元素溶液中含有1.5g NTA Trisodium Salt,3g MgSO4,0.5gMnSO4*H2O,1g NaCl,0.1g FeSO4*7H2O,0.1g CaCl2*2H2O,0.1g CoCl2*6H2O,0.13g ZnCl2,0.01g CuSO4*5H2O,0.01g AlK(SO4)2*12H2O,0.01g H3BO3,0.025g Na2MoO4*2H2O,0.024gNiCl2*6H2O,0.025g Na2WO4*2H2O,余量为水。
本发明实施例中所述FWNN电解液的配方如表2所示。
表2电解液的组成
Figure BDA0002340446180000061
*每升DL维生素溶液中含有0.002g维生素H,0.005g维生素B5,0.0001g维生素B12,0.005g对氨基苯甲酸,0.005g a-硫辛酸,0.005g烟酸,0.005g维生素B1,0.005g核黄素,0.01g Pyridoxine HCl,0.002g叶酸,余量为水。
**每升DL微量元素溶液中含有1.5g NTA Trisodium Salt,3g MgSO4,0.5g MnSO4*H2O,1g NaCl,0.1g FeSO4*7H2O,0.1g CaCl2*2H2O,0.1g CoCl2*6H2O,0.13g ZnCl2,0.01gCuSO4*5H2O,0.01g AlK(SO4)2*12H2O,0.01g H3BO3,0.025g Na2MoO4*2H2O,0.024g NiCl2*6H2O,0.025g Na2WO4*2H2O,余量为水。
Clostridium intestinale与Geobacter sulfurreducens均购买于美国典型培养物保藏中心,保藏号分别为ATCC BAA-1027和ATCC 51573。
实施例1:本发明Clostridium intestinale与Geobacter sulfurreducens的共培养
(1)将Clostridium intestinale培养于pH为6.5的10mL CT培养基中,30℃恒温培养;
(2)将Geobacter sulfurreducens培养于pH为7.0的10mL NBAF培养基中,30℃恒温培养;
(3)当(1)与(2)中Clostridium intestinale与Geobacter sulfurreducens的OD600值为0.5时,分别取0.5mL菌液接种于10mL的NBF培养基中,并加入乙醇,乙醇终浓度为20mM,30℃恒温培养;
(4)以5天为一个传代单位,将(3)中的共培养往下传5代,到第六代(T6)。
实施例2:本发明ITO三电极体系微生物燃料电池的构建与产电考察
(1)选取30mL的双室三电极微生物燃料电池,切取50mm*50mm的ITO作为阳极电极,用硅橡胶粘ITO,每组实验做3个重复;
(2)向组装好并灭过菌的ITO三电极微生物燃料电池通入20%:80%的CO2与N2的混合气,然后分别给阳极与阴极换上20mL FWEN与23mL FWNN的电解液,FWEN是通过向FWNN中加入终浓度为20mM的乙醇获得;
(3)分别取3mL实施例1中培养好的Clostridium intestinale、Geobactersulfurreducens以及Clostridium intestinale与Geobacter sulfurreducens共培养菌液,将其加入到(2)的阳极室中,每种菌液做3个重复;
(4)将(3)中的ITO三电极微生物燃料电池接入电化学工作站,并设置阳极电压为0.3V(相对饱和甘汞电极),连续采集电流数据(间隔5s);
结果显示,Clostridium intestinale无法发酵乙醇进行生长,更无法进行呼吸,不产电;Geobacter sulfurreducens无法代谢乙醇进行呼吸,不产电;然而,共培养好的Clostridium intestinale与Geobacter sulfurreducens在该体系中均能很好地存活,并且该生物电化学系统产生约0.4mA的电流(如图1所示)。
实施例3:本发明Clostridium intestinale与Geobacter sulfurreducens共培养ITO三电极体系微生物燃料电池中生物膜的活性考察
(1)当电流达到最大值时,将ITO电极用美工刀切出,并用生理盐水轻轻冲洗两遍;取0.6mL生理盐水,并加各1μL的活死染料,混匀后滴加到ITO电极上,避光染色15分钟,然后用于激光共聚焦显微镜观察;
结果显示,ITO电极上生物膜活性非常好,呈现绿色,并且生物膜厚度较厚(如图2所示)。
以上所述仅为本发明的优选实施方式而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种驱动非产电微生物产电方法,其特征在于:将非产电微生物和辅助产电微生物共培养,然后接种于微生物燃料电池的阳极,加入电子供体;所述非产电微生物为肠梭菌Clostridium intestinale,所述辅助产电微生物为硫还原地杆菌Geobacter  sulfurreducens;所述肠梭菌Clostridium intestinale与硫还原地杆菌Geobacter  sulfurreducens的保藏号分别为ATCC BAA-1027和ATCC 51573;所述共培养还需每3~5天接种传代,传到第5~7代;所述电子供体为乙醇。
2.根据权利要求1所述的驱动非产电微生物产电方法,其特征在于:所述非产电微生物和辅助产电微生物在共培养前还需分别进行厌氧培养。
3.根据权利要求1所述的驱动非产电微生物产电方法,其特征在于:所述共培养的接种量按照体积分数为5~10%;接种前,所述非产电微生物和辅助产电微生物的OD600为0.4~0.6。
4.根据权利要求1所述的驱动非产电微生物产电方法,其特征在于:所述共培养的培养温度为28~32℃。
5.根据权利要求1所述的驱动非产电微生物产电方法,其特征在于:所述电子供体的终浓度为10~20mM。
6.根据权利要求1所述的驱动非产电微生物产电方法,其特征在于:所述微生物燃料电池为ITO三电极体系微生物燃料电池。
7.根据权利要求1所述的驱动非产电微生物产电方法,其特征在于:所述共培养的培养基的配方为MgCl2·7H2O 0.05~0.15g/L,CaCl2·2H2O 0.02~0.06g/L,NaCO3·H2O 0.4~0.6g/L,NaHCO1.6~2.0g/L,富马酸Fumaric Acid 4.50~4.84 g/L,100X NB Salts Mix 8~12mL/L,1mM Na2SeO 40.0~42.0mL,NB Mineral Elixir 8~12mL/L,DL维生素溶液10~20mL/L,其余为水;每升100X NB Salts Mix溶液中含有4 g KH2PO4,22 g K2HPO4,20 g NH4Cl,38 g KCl,36 g NaCl ,余量为水;每升NB Mineral Elixir溶液中含有2.14 g NTA,0.1 gMnCl2·4 H2O,0.3 g FeSO4·7 H2O,0.17 g CoCl2·6 H2O,0.1 g ZnSO4·7 H2O,0.03 gCuCl2·2 H2O,0.005 g AlK(SO4)2·12 H2O,0.005 g H3BO3,0.09 g Na2MnO4·2 H2O,0.11g NiSO4·6 H2O,0.02 g Na2WO4·2 H2O,余量为水;每升DL维生素溶液中含有0.002 g 维生素H,0.005 g维生素B5,0.0001 g维生素B12, 0.005 g 对氨基苯甲酸, 0.005 g a-硫辛酸,0.005 g 烟酸,0.005 g维生素B1,0.005 g 核黄素,0.01 gPyridoxine HCl,0.002 g 叶酸,余量为水。
CN201911374103.3A 2019-12-27 2019-12-27 一种驱动非产电微生物产电方法 Active CN111048816B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911374103.3A CN111048816B (zh) 2019-12-27 2019-12-27 一种驱动非产电微生物产电方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911374103.3A CN111048816B (zh) 2019-12-27 2019-12-27 一种驱动非产电微生物产电方法

Publications (2)

Publication Number Publication Date
CN111048816A CN111048816A (zh) 2020-04-21
CN111048816B true CN111048816B (zh) 2023-04-11

Family

ID=70240475

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911374103.3A Active CN111048816B (zh) 2019-12-27 2019-12-27 一种驱动非产电微生物产电方法

Country Status (1)

Country Link
CN (1) CN111048816B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111613800B (zh) * 2020-04-27 2022-11-08 福建农林大学 一种诱导电活性微生物持续产电的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807722A (en) * 1992-10-30 1998-09-15 Bioengineering Resources, Inc. Biological production of acetic acid from waste gases with Clostridium ljungdahlii
WO2009064201A2 (en) * 2007-11-13 2009-05-22 Lanzatech New Zealand Limited Use of carriers in microbial fermentation
CN107623139A (zh) * 2017-10-25 2018-01-23 深圳大学 微生物连续发酵玉米秸秆水解液产电方法及电池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8790833B2 (en) * 2008-04-30 2014-07-29 Gwangju Institute Of Science And Technology Floating-type microbial fuel cell
US20140004578A1 (en) * 2010-09-13 2014-01-02 Regents Of The University Of Minnesota Microbes, methods, and devices for redox-imbalanced metabolism
JP2012190787A (ja) * 2011-02-24 2012-10-04 Sony Corp 微生物燃料電池、該電池の燃料と微生物、およびバイオリアクタとバイオセンサ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807722A (en) * 1992-10-30 1998-09-15 Bioengineering Resources, Inc. Biological production of acetic acid from waste gases with Clostridium ljungdahlii
WO2009064201A2 (en) * 2007-11-13 2009-05-22 Lanzatech New Zealand Limited Use of carriers in microbial fermentation
CN107623139A (zh) * 2017-10-25 2018-01-23 深圳大学 微生物连续发酵玉米秸秆水解液产电方法及电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Lack of electricity production by Pelobacter carbinolicus indicates that the capacity for Fe(III) oxide reduction does not necessarily confer electron transfer ability to fuel cell anodes;Hanno Richter等;《APPLIED AND ENVIRONMENTAL MICROBIOLOGY》;20070831;第73卷(第16期);第5347-5353页 *

Also Published As

Publication number Publication date
CN111048816A (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
Lu et al. Hydrogen production, methanogen inhibition and microbial community structures in psychrophilic single-chamber microbial electrolysis cells
Cai et al. Quorum sensing alters the microbial community of electrode-respiring bacteria and hydrogen scavengers toward improving hydrogen yield in microbial electrolysis cells
Rosenbaum et al. Aerated Shewanella oneidensis in continuously fed bioelectrochemical systems for power and hydrogen production
Teng et al. Electricity generation from mixed volatile fatty acids using microbial fuel cells
Cercado et al. Garden compost inoculum leads to microbial bioanodes with potential-independent characteristics
Nishio et al. Light/electricity conversion by a self-organized photosynthetic biofilm in a single-chamber reactor
Yan et al. The micro-niche of exoelectrogens influences bioelectricity generation in bioelectrochemical systems
Song et al. Biofilm matrix and artificial mediator for efficient electron transport in CO2 microbial electrosynthesis
Gunaseelan et al. Blending of microbial inocula: An effective strategy for performance enhancement of clayware Biophotovoltaics microbial fuel cells
Wang et al. Hydrogen production using biocathode single-chamber microbial electrolysis cells fed by molasses wastewater at low temperature
Li et al. Synthetic bacterial consortium enhances hydrogen production in microbial electrolysis cells and anaerobic fermentation
He et al. Magnetic assembling GO/Fe3O4/microbes as hybridized biofilms for enhanced methane production in microbial electrosynthesis
Mokhtarian et al. Effect of different substrate on performance of microbial fuel cell
CN111613800B (zh) 一种诱导电活性微生物持续产电的方法
CN111048816B (zh) 一种驱动非产电微生物产电方法
Al-Mayyahi et al. Unraveling the influence of magnetic field on microbial and electrogenic activities in bioelectrochemical systems: A comprehensive review
Fernández-Marchante et al. Thermally-treated algal suspensions as fuel for microbial fuel cells
Xing et al. Hydrogen production from waste stream with microbial electrolysis cells
Hadiyanto et al. Effects of Yeast Concentration and Microalgal Species on Improving the Performance of Microalgal-Microbial Fuel Cells (MMFCs).
CN108285881B (zh) 一种具有同步产电和反硝化活性的分支杆菌及其应用
Rathinam et al. Rewiring extremophilic electrocatalytic processes for production of biofuels and value-added compounds from lignocellulosic biomass
CN110055206A (zh) 一种快速形成mec制氢阳极微生物膜的方法
MingáLi Electrical tension-triggered conversion of anaerobic to aerobic respiration of Shewanella putrefaciens CN32 cells while promoting biofilm growth in microbial fuel cells
Syed et al. Electroactive biofilm and electron transfer in microbial electrochemical systems
Pratiwi et al. Improvement of biohydrogen production by reduction of methanogenesis at optimum electrode spacing in microbial electrolysis cell system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant