CN111048803A - 一种可调节流量的燃料电池发动机氢气子系统 - Google Patents

一种可调节流量的燃料电池发动机氢气子系统 Download PDF

Info

Publication number
CN111048803A
CN111048803A CN201911233096.5A CN201911233096A CN111048803A CN 111048803 A CN111048803 A CN 111048803A CN 201911233096 A CN201911233096 A CN 201911233096A CN 111048803 A CN111048803 A CN 111048803A
Authority
CN
China
Prior art keywords
hydrogen
adjustable
fuel cell
water separator
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911233096.5A
Other languages
English (en)
Other versions
CN111048803B (zh
Inventor
夏全刚
章桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201911233096.5A priority Critical patent/CN111048803B/zh
Publication of CN111048803A publication Critical patent/CN111048803A/zh
Application granted granted Critical
Publication of CN111048803B publication Critical patent/CN111048803B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04104Regulation of differential pressures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04708Temperature of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04828Humidity; Water content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

本发明提供了一种可调节流量的燃料电池发动机氢气子系统,属于燃料电池领域。本发明提供的一种可调节流量的燃料电池发动机氢气子系统,包括比例调压阀,可调节式引射器,电堆,氢水分离器,排氢电磁阀,排水电磁阀,可调节式引射器阀,氢水分离器控制器,氢气子系统控制器。燃料电池发动机在运行过程中,根据功率的不同,比例调节阀开启不同的角度来控制流量,可调节式引射器利用拉法尔管的加速、减速作用,根据需求流量通过阀体的运动改变原来拉法尔管腔体进行控制。为了尽可能的减小引射流量的阻力,氢水分离器与可调解式引射器在接近电堆反应的温度下进入电堆参与反应,保证进入电堆阳极极侧温度值。

Description

一种可调节流量的燃料电池发动机氢气子系统
技术领域
本发明涉及一种可调节流量的燃料电池发动机氢气子系统,属于燃料电池领域。
背景技术
随着我国国民经济的持续增长,人民生活水平的不断提高,汽车已经成为人们出行的必备工具,随着城市雾霾化的增加,新能源汽车已经成为人们开发、使用的方向,而燃料电池汽车更成为人们向往的目标。
燃料电池汽车基本不产生二氧化碳,但是会产生过量的氢气,然而,尾排过量氢气可能危害人的生命健康,还可能对金属零件造成氢脆。
发明内容
本发明是为了解决上述问题而进行的,目的在于提供一种让燃料电池发动机子系统中氢气充分利用并控制反应气温度在合理范围内且让氢气尽可能少地排放到大气中的可调节流量的燃料电池发动机氢气子系统。
本发明提供了一种可调节流量的燃料电池发动机氢气子系统,具有这样的特征,包括:比例调压阀,可调节式引射器,电堆,氢水分离器,排氢电磁阀,排水电磁阀,可调节式引射器阀,氢水分离器控制器,氢气子系统控制器;所述可调节式引射器包括可调节式引射器阀、引射器腔体及复合保温层;所述氢水分离器是由氢水分离器分离本体、复合保温层、离子吸附剂、电加热器、温度感应探头及控制单元;燃料电池发动机在运行过程中,根据功率的不同,比例调节阀根据控制逻辑开启不同的角度来控制流量,可调节式引射器利用拉法尔管的加速、减速作用,根据需求流量通过阀体的运动改变原来拉法尔管腔体进行控制,保证引射流量在合理范围内进行。为了尽可能的减小引射流量的阻力,氢水分离器自身的氢水分离并根据温度传感器的反馈值,使其氢水分离器与可调解式引射器在接近电堆反应的温度下进入电堆参与反应,保证进入电堆阳极侧温度值。本发明优化了氢气子系统的关键零部件,达到了燃料电池发动机子系统氢气充分利用与优化参与反应温度的目的。
在本发明提供的可调节流量的燃料电池发动机氢气子系统中,还可以具有这样的特征:其中,所述可调节式引射器包括可调节式引射器阀、引射器腔体及复合保温层。引射器腔体属于机械部件,在满足一定功率引射的情况下,可实现大流量的引射,而所述可调节式引射器阀通过控制逻辑可以改变所述引射器腔体的尺寸,可满足大或小流量的引射,所述复合保温层是由EV材料和相变材料复合而成。
在本发明提供的可调节流量的燃料电池发动机氢气子系统中,还可以具有这样的特征:其中,所述氢水分离器包括氢水分离器分离本体、复合保温层、离子吸附剂、电加热器、温度感应探头及控制单元,所述氢水分离器分离本体是由流道板和不同目数的金属网格组成,所述复合保温层是由EV材料和相变材料复合而成,所述离子吸附剂是由阴阳离子和催化剂根据酸碱性调节不同的配比而成,控制器是根据采集的温度感应探头的信号,调节不同电加热器的数量与功率而成。
在本发明提供的可调节流量的燃料电池发动机氢气子系统中,还可以具有这样的特征:其中,所述可调节式引射器的前端与所述比例调节阀相连。
在本发明提供的可调节流量的燃料电池发动机氢气子系统中,还可以具有这样的特征:其中,所述可调节式引射器的后端与所述电堆的阳极侧相连。
在本发明提供的可调节流量的燃料电池发动机氢气子系统中,还可以具有这样的特征:其中,所述可调节式引射器的引射端与所述氢水分离器相连。
在本发明提供的可调节流量的燃料电池发动机氢气子系统中,还可以具有这样的特征,其中,所述氢水分离器的排水端与所述排水电磁阀相连。
在本发明提供的可调节流量的燃料电池发动机氢气子系统中,还可以具有这样的特征,其中,所述氢水分离器的排气端与所述排气电磁阀相连。
发明的作用与效果
根据本发明所涉及的一种可调节流量的燃料电池发动机氢气子系统,因为具有引射装置、电堆、氢水分离装置、系统控制器、比例调节阀、电堆控制器、排氢电磁阀以及排水电磁阀。所以,本发明能够回收电堆阳极中的氢气,并调节其温度值合理范围内,再次通入电堆,加湿电堆的膜电极,同时也减少里氢气排入大气的量,使得燃料电池更加地安全高效。
附图说明
图1是本发明的实施例中一种可调节流量的燃料电池发动机氢气子系统的结构示意图;
图2是本发明的实施例中引射装置的结构示意图;
图3是本发明的实施例中氢水分离装置的结构示意图;以及
图4是本发明的实施例中一种可调节流量的燃料电池发动机氢气子系统的计算原理图。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,以下结合实施例及附图对本发明作具体阐述。
<实施例>
图1是本发明的实施例中一种可调节流量的燃料电池发动机氢气子系统的结构示意图。
如图1所示,一种可调节流量的燃料电池发动机氢气子系统包括:引射装置2、电堆3、氢水分离装置4、系统控制器9、比例调节阀1、电堆控制器8、排氢电磁阀6以及排水电磁阀5。
图2是本发明的实施例中引射装置的结构示意图。
如图2所示,引射装置2具有引射器腔体d和可调节式引射器c。
引射器腔体d为拉法尔腔体,前端与氢水分离装置4相连通,尾端与电推3相连。
可调节式引射器c通过控制逻辑可以改变引射器腔体d的尺寸从而调节通过引射装置2进入电堆3的氢气流量。可调节式引射器的前端与比例调节阀1相连,后端与电堆3的阳极侧相连,引射端与氢水分离装置4相连。
引射装置2外部包裹有一层复合保温材料。复合保温材料由保温材料和相变材料组成。其中保温材料为EV材料,可以极大的延缓氢水分离装置总成与外界环境温度的换热;相变材料是由三氧化二铝、二氧化硅、纳米材料等在一定温度与压力下经过挤压成型的复合材料。两者材料的紧密结合,极大的提高了装置的保温性能。
EV材料根据密度的不同可以设计不同降温速率的保温材料,可以极大的延缓氢水分离装置总成与外界环境温度的换热,发动机低温启动时尤为明显,可以极大的提高启动速率。
图3是本发明的实施例中氢水分离装置的结构示意图。
如图3所示,氢水分离装置4包括:氢水分离器分离本体11、离子吸附层10、氢水装置控制器7、电加热器12、温度感应探头(图中未示出)以及流道板13。
氢水分离器分离本体11具有腔体、总成入口管道、氢气出口管道、液态水出口管道以及总成出口管道。
总成入口管道设置在氢水分离器分离本体11上方,与电堆3阳极连通。阳极中的过量的氢气、水蒸气以及热量通过总成入口管道a进入氢水分离器分离本体11的腔体内。
氢气出口管道设置在氢水分离器分离本体11侧方,用于排出经过分离得到的杂质气体。
液态水出口管道设置在氢水分离器分离本体11下方,用于排出经过分离得到的液态水。
总成出口管道设置在氢水分离器分离本体11上方,与引射装置2连通,用于排出混合气体,混合气体为具有一定温度的水蒸气和氢气,该混合气体会被重新回收再次通入到燃料电池电堆中以重新利用从而优化燃料电池的反应进程。
离子吸附层10包裹在氢气出口管道外部,与氢气出口管道内部通过网格板连通。离子吸附层10由离子吸附剂组成。具体地,离子吸附剂是由阴阳离子和催化剂根据酸碱性调节不同的配比而设计得到的。离子吸附剂根据燃料电池的特点在一定催化剂的情况下,使阴离子与阳离子按照(1-1.35):1的配比进行去酸性与去离子化。
电加热器12用于对氢水分离器分离本体11进行加热。在本实施例中,电加热器5数量为三个,分布设置在氢水分离器分离本体11上方、侧方和下方。
温度感应探头设置在氢气出口管道内,用于感应氢气出口管道内的温度。
氢水装置控制器7与电加热器12以及温度感应探头6连接,通过采集温度感应探头的信号,经过一定的信号处理,通过FCU控制指令,来控制电加热器12的开启数量与使用功率。具体地,在本实施例中氢水装置控制器7为FCU控制器。
流道板13包括:第一流道板、第二流道板以及第三流道板。
第一流道板呈弧形,凸面朝向总成入口管道。
第二流道板呈弧形,凸面朝向液态水出口管道。
第三流道板呈弧形,凸面朝向氢气出口管道以及总出口管道。
氢水分离装置4外部也包裹有一层复合保温材料。该复合保温材料的材质与包裹引射装置2的复合保温材料材质相同。
电堆3具有阳极和阴极,其中阳极一侧分别与引射装置2和氢水分离装置4连通。
比例调节阀1用于控制进入引射装置2的氢气的量。
电堆控制器8用于控制电堆运行。
排氢电磁阀6设置在氢气出口管道处,用于控制氢气出口管道的开启或关闭。
排水电磁阀5设置在液态水出口管道处,用于控制液态水出口管道的开启或关闭。
系统控制器9用于控制比例调节阀1、电堆控制器8、排氢电磁阀6、排水电磁阀5、氢水装置控制器7以及可调节式引射器c。
图4是本发明的实施例中一种可调节流量的燃料电池发动机氢气子系统的计算原理图。
本发明提供的一种可调节流量的燃料电池发动机氢气子系统的使用原理如下:
燃料电池发动机在运行过程中,根据实际功率的不同,比例调节阀根据控制控制进入引射装置的流量,可调节式引射器利用拉法尔管的加速、减速作用,根据电堆需求流量通过阀体的运动改变原来拉法尔管腔体进行控制,保证引射流量在合理范围内进行。为了尽可能的减小引射流量的阻力,氢水分离装置回收电堆产生的氢气-水蒸汽的混合气体,根据温度传感器的反馈值,调节混合气体的温度,使其氢水分离器与可调节式引射器在接近电堆反应的温度下进入电堆参与反应,保证进入电堆阳极的侧温度值,从而加湿燃料电池动力系统的膜电极,同时也可减少氢气排入大气的量。
实施例的作用与效果
根据实施例所涉及的一种可调节流量的燃料电池发动机氢气子系统,因为具有引射装置、电堆、氢水分离装置、系统控制器、比例调节阀、电堆控制器、排氢电磁阀以及排水电磁阀。所以,实施例的可调节流量的燃料电池发动机氢气子系统能够回收电堆阳极中的氢气,并调节其温度值合理范围内,再次通入电堆,加湿电堆的膜电极,同时也减少里氢气排入大气的量,使得燃料电池更加地安全高效。
进一步地,根据实施例所涉及的一种可调节流量的燃料电池发动机氢气子系统,因为引射装置的腔体为拉法尔腔,且外部具有复合保温层,所以本实施例在一定流速下增强了汽水分离的均匀性与大小流量的引射功能且在一定程度上增强了系统的保温性。
进一步地,根据实施例所涉及的一种可调节流量的燃料电池发动机氢气子系统,因为氢水分离装置具有离子吸附层,所以本实施例能够在一定的酸性与导电率下对回收的混合气体进行降酸性和去离子化。
上述实施方式为本发明的优选案例,并不用来限制本发明的保护范围。

Claims (8)

1.一种可调节流量的燃料电池发动机氢气子系统,其特征在于,包括:比例调压阀,可调节式引射器,电堆,氢水分离器,排氢电磁阀,排水电磁阀,可调节式引射器阀,氢水分离器控制器,氢气子系统控制器;
所述可调节式引射器包括可调节式引射器阀、引射器腔体及复合保温层;
所述氢水分离器是由氢水分离器分离本体、复合保温层、离子吸附剂、电加热器、温度感应探头及控制单元;
燃料电池发动机在运行过程中,根据功率的不同,比例调节阀根据控制逻辑开启不同的角度来控制流量,可调节式引射器利用拉法尔管的加速、减速作用,根据需求流量通过阀体的运动改变原来拉法尔管腔体进行控制,保证引射流量在合理范围内进行。为了尽可能的减小引射流量的阻力,氢水分离器自身的氢水分离并根据温度传感器的反馈值,使其氢水分离器与可调解式引射器在接近电堆反应的温度下进入电堆参与反应,保证进入电堆阳极侧温度值。本发明优化了氢气子系统的关键零部件,达到了燃料电池发动机子系统氢气充分利用与优化参与反应温度的目的。
2.根据权利要求1所述的一种可调节流量的燃料电池发动机氢气子系统,其特征在于:
其中,所述可调节式引射器包括可调节式引射器阀、引射器腔体及复合保温层。引射器腔体属于机械部件,在满足一定功率引射的情况下,可实现大流量的引射,而所述可调节式引射器阀通过控制逻辑可以改变所述引射器腔体的尺寸,来满足大或小流量的引射,所述复合保温层是由EV材料和相变材料复合而成。
3.根据权利要求1所述的一种可调节流量的燃料电池发动机氢气子系统,其特征在于:
其中,所述氢水分离器包括氢水分离器分离本体、复合保温层、离子吸附剂、电加热器、温度感应探头及控制单元,所述氢水分离器分离本体是由流道板和不同目数的金属网格组成,所述复合保温层是由EV材料和相变材料复合而成,所述离子吸附剂是由阴阳离子和催化剂根据酸碱性调节不同的配比而成,控制器是根据采集的温度感应探头的信号,调节不同电加热器的数量与功率而成。
4.根据权利要求1所述的一种可调节流量的燃料电池发动机氢气子系统,其特征在于:
其中,所述可调节式引射器的前端与所述比例调节阀相连。
5.根据权利要求1所述的一种可调节流量的燃料电池发动机氢气子系统,其特征在于:
其中,所述可调节式引射器的后端与所述电堆的阳极侧相连。
6.根据权利要求1所述的一种可调节流量的燃料电池发动机氢气子系统,其特征在于:
其中,所述可调节式引射器的引射端与所述氢水分离器相连。
7.根据权利要求1所述的一种可调节流量的燃料电池发动机氢气子系统,其特征在于:
其中,所述氢水分离器的排水端与所述排水电磁阀相连。
8.根据权利要求1所述的一种可调节流量的燃料电池发动机氢气子系统,其特征在于:
其中,所述氢水分离器的排气端与所述排气电磁阀相连。
CN201911233096.5A 2019-12-05 2019-12-05 一种可调节流量的燃料电池发动机氢气子系统 Active CN111048803B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911233096.5A CN111048803B (zh) 2019-12-05 2019-12-05 一种可调节流量的燃料电池发动机氢气子系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911233096.5A CN111048803B (zh) 2019-12-05 2019-12-05 一种可调节流量的燃料电池发动机氢气子系统

Publications (2)

Publication Number Publication Date
CN111048803A true CN111048803A (zh) 2020-04-21
CN111048803B CN111048803B (zh) 2023-02-28

Family

ID=70234697

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911233096.5A Active CN111048803B (zh) 2019-12-05 2019-12-05 一种可调节流量的燃料电池发动机氢气子系统

Country Status (1)

Country Link
CN (1) CN111048803B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111710884A (zh) * 2020-05-30 2020-09-25 同济大学 一种燃料电池系统及其控制方法
CN112072145A (zh) * 2020-09-11 2020-12-11 北京亦嘉洁驱系统科技有限公司 氢气减压调控系统、方法、设备、电池系统及设计方法
CN112397746A (zh) * 2020-11-10 2021-02-23 一汽解放汽车有限公司 一种燃料电池发动机的阳极引射回流装置
CN112687922A (zh) * 2020-12-28 2021-04-20 中通客车控股股份有限公司 一种质子交换膜燃料电池发动机
CN116936869A (zh) * 2023-09-15 2023-10-24 北京英博新能源有限公司 一种氢燃料电池引射器及氢气循环系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008097841A (ja) * 2006-10-06 2008-04-24 Toyota Motor Corp 燃料電池システム
US20080311443A1 (en) * 2007-06-18 2008-12-18 Joseph Michael Schwartz Hydrogen purification for fuel cell vehicle
CN105870481A (zh) * 2016-05-20 2016-08-17 安徽康诺新能源汽车技术有限公司 燃料电池汽车动力系统及其氢气汽水分离装置
CN106067555A (zh) * 2016-06-17 2016-11-02 安徽康诺新能源汽车技术有限公司 燃料电池汽车动力系统及其引射器
CN207637957U (zh) * 2017-12-20 2018-07-20 新源动力股份有限公司 一种具有氢循环及换热功能的燃料电池系统结构
CN109004247A (zh) * 2018-07-27 2018-12-14 嘉兴德燃动力系统有限公司 一种燃料电池汽车动力系统的供氢回氢稳压装置
CN110364750A (zh) * 2019-08-22 2019-10-22 武汉雄韬氢雄燃料电池科技有限公司 一种燃料电池发动机氢气循环热管理系统
CN209691860U (zh) * 2019-04-12 2019-11-26 嘉兴德燃动力系统有限公司 一种燃料电池发动机集成氢水分离装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008097841A (ja) * 2006-10-06 2008-04-24 Toyota Motor Corp 燃料電池システム
US20080311443A1 (en) * 2007-06-18 2008-12-18 Joseph Michael Schwartz Hydrogen purification for fuel cell vehicle
CN105870481A (zh) * 2016-05-20 2016-08-17 安徽康诺新能源汽车技术有限公司 燃料电池汽车动力系统及其氢气汽水分离装置
CN106067555A (zh) * 2016-06-17 2016-11-02 安徽康诺新能源汽车技术有限公司 燃料电池汽车动力系统及其引射器
CN207637957U (zh) * 2017-12-20 2018-07-20 新源动力股份有限公司 一种具有氢循环及换热功能的燃料电池系统结构
CN109004247A (zh) * 2018-07-27 2018-12-14 嘉兴德燃动力系统有限公司 一种燃料电池汽车动力系统的供氢回氢稳压装置
CN209691860U (zh) * 2019-04-12 2019-11-26 嘉兴德燃动力系统有限公司 一种燃料电池发动机集成氢水分离装置
CN110364750A (zh) * 2019-08-22 2019-10-22 武汉雄韬氢雄燃料电池科技有限公司 一种燃料电池发动机氢气循环热管理系统

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111710884A (zh) * 2020-05-30 2020-09-25 同济大学 一种燃料电池系统及其控制方法
CN112072145A (zh) * 2020-09-11 2020-12-11 北京亦嘉洁驱系统科技有限公司 氢气减压调控系统、方法、设备、电池系统及设计方法
CN112397746A (zh) * 2020-11-10 2021-02-23 一汽解放汽车有限公司 一种燃料电池发动机的阳极引射回流装置
CN112397746B (zh) * 2020-11-10 2022-04-05 一汽解放汽车有限公司 一种燃料电池发动机的阳极引射回流装置
CN112687922A (zh) * 2020-12-28 2021-04-20 中通客车控股股份有限公司 一种质子交换膜燃料电池发动机
CN116936869A (zh) * 2023-09-15 2023-10-24 北京英博新能源有限公司 一种氢燃料电池引射器及氢气循环系统
CN116936869B (zh) * 2023-09-15 2024-01-16 北京英博新能源有限公司 一种氢燃料电池引射器及氢气循环系统

Also Published As

Publication number Publication date
CN111048803B (zh) 2023-02-28

Similar Documents

Publication Publication Date Title
CN111048803B (zh) 一种可调节流量的燃料电池发动机氢气子系统
CN201237636Y (zh) 一种燃料电池测试系统
CN202178337U (zh) 一种锂电池恒温化成装置
CN108539222A (zh) 一种车载燃料电池多模块并联氢气循环系统及其控制方法
CN105702985A (zh) 一种水冷型质子交换膜燃料电池的状态监控方法及系统
CN105186016A (zh) 一种燃料电池系统的电控喷氢压力调节装置
CN102324536A (zh) 一种车用pemfc压力控制系统
CN105874635A (zh) 燃料电池系统及燃料电池系统的控制方法
CN107895806A (zh) 燃料电池增湿系统、方法及燃料电池系统
CN207800760U (zh) 一种质子交换膜燃料电池测控系统
CN112510228A (zh) 一种快速提升燃料电池阴阳极进气温度的装置及方法
CN111682243B (zh) 一种燃料电池快速冷启动系统及快速冷启动方法
CN110311153A (zh) 一种燃料电池堆用多功能端板及其工作方式
CN206115313U (zh) 一种快速调节燃料电池测试台气体温湿度的系统
CN111048805A (zh) 一种燃料电池发动机氢水分离装置总成
CN112768725B (zh) 一种燃料电池无人机及氢动力装备温控的方法及装置
CN100517833C (zh) 一种燃料电池电动车发动机的防冻装置
CN110649292B (zh) 一种冷启动辅助装置与一种燃料电池发动机
CN102420334B (zh) 质子交换膜燃料电池自反馈加湿器
CN115312805A (zh) 一种多堆燃料电池冷却系统及其水热管理方法
CN215184096U (zh) 一种用于燃料电池发动机的氢气水汽分离装置
CN210576239U (zh) 一种氢燃料电池供氢系统
CN214378520U (zh) 一种结合co2捕集的熔融碳酸盐燃料电池系统
CN111082099B (zh) 一种可调节温度的燃料电池发动机空气子系统
CN114883597A (zh) 一种燃料电池联供系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant