CN111044858A - 一种特高压换流变压器的风险评估系统及方法 - Google Patents

一种特高压换流变压器的风险评估系统及方法 Download PDF

Info

Publication number
CN111044858A
CN111044858A CN201911292891.1A CN201911292891A CN111044858A CN 111044858 A CN111044858 A CN 111044858A CN 201911292891 A CN201911292891 A CN 201911292891A CN 111044858 A CN111044858 A CN 111044858A
Authority
CN
China
Prior art keywords
high voltage
extra
voltage converter
converter transformer
calculating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911292891.1A
Other languages
English (en)
Other versions
CN111044858B (zh
Inventor
陈彦州
王奇
张晗
肖耀辉
苏浩辉
郑文坚
罗征洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maintenance and Test Center of Extra High Voltage Power Transmission Co
Original Assignee
Maintenance and Test Center of Extra High Voltage Power Transmission Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maintenance and Test Center of Extra High Voltage Power Transmission Co filed Critical Maintenance and Test Center of Extra High Voltage Power Transmission Co
Priority to CN201911292891.1A priority Critical patent/CN111044858B/zh
Publication of CN111044858A publication Critical patent/CN111044858A/zh
Application granted granted Critical
Publication of CN111044858B publication Critical patent/CN111044858B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation

Abstract

本发明公开了一种特高压换流变压器的风险评估系统,包括检测装置,用于检测材料热老化分解产物的特征量以及时域和频域的介电谱;采集装置,用于获取特高压换流变压器的油纸绝缘材料的老化参数;统计装置,用于统计特高压换流变压器运行工况产生的运行数据;系统计算装置,用于建立并优化寿命预测模型、求解绝缘性能参数的可靠度函数、以及利用所述寿命预测模型计算出寿命周期,同时根据所述绝缘性能参数和所述可靠度函数的计算结果计算出在寿命周期各个时段的风险值及变化曲线。本发明同时还公开了一种一种特高压换流变压器的风险评估方法。本发明能够准确预测特高压换流变压器油纸绝缘剩余寿命以及评估寿命周期的风险。

Description

一种特高压换流变压器的风险评估系统及方法
技术领域
本发明涉及换流变压器技术领域,尤其是涉及一种特高压换流变压器的风险评估系统及方法。
背景技术
换流变压器是接在换流桥与交流系统之间的电力变压器,能够实现换流桥与交流母线的连接,并为换流桥提供一个中性点不接地的三相换相电压,在超高压直流输电工程中发挥重要作用。然而,由于工作在极端的环境中,特高压换流变压器运行的不确定性影响到整个系统,因此特高压设备多参数风险评估的研究对保障特高压设备安全运行具有十分重要的意义。
发明内容
针对上述技术问题,本发明提供了一种特高压换流变压器的风险评估系统及方法,能够准确预测特高压换流变压器油纸绝缘剩余寿命以及评估寿命周期的风险。所述技术方案如下:
第一方面,本发明实施例提供了一种特高压换流变压器的风险评估系统,包括:
检测装置,用于检测材料热老化分解产物的特征量以及时域和频域的介电谱;
采集装置,用于获取特高压换流变压器的油纸绝缘材料的老化参数;
统计装置,用于统计特高压换流变压器运行工况产生的运行数据;
系统计算装置包括:
建模计算模块,用于对所述特征量、所述介电谱和所述老化参数之间的关系进行数学建模,并利用设备实际运行数据进行机器学习以优化寿命预测模型;
可靠的计算模块,用于解析所述运行数据的老化过程的绝缘性能参数,并求解所述绝缘性能参数的可靠度函数;
输出模块,用于利用所述寿命预测模型计算出寿命周期,同时根据所述绝缘性能参数和所述可靠度函数的计算结果计算出在寿命周期各个时段的风险值及变化曲线。
第二方面,本发明实施例提供了一种特高压换流变压器的风险评估方法,步骤包括:
通过检测装置检测材料热老化分解产物的特征量以及时域和频域的介电谱;
从采集装置中获取特高压换流变压器的油纸绝缘材料的老化参数;
对所述特征量、所述介电谱和所述老化参数之间的关系进行数学建模,并利用设备实际运行数据进行机器学习以优化寿命预测模型;
利用统计装置获取特高压换流变压器运行工况产生的运行数据;
解析所述运行数据的老化过程的绝缘性能参数,并求解所述绝缘性能参数的可靠度函数;
利用所述寿命预测模型计算出寿命周期,同时根据所述绝缘性能参数和所述可靠度函数的计算结果计算出在寿命周期各个时段的风险值及变化曲线。
在本发明第二方面的第一种可能的实现方式中,所述寿命预测模型基于WLF法、平移因子法、DS证据理论对设备寿命进行预测。
在本发明第二方面的第二种可能的实现方式中,所述解析所述运行数据的老化过程的绝缘性能参数,还包括:
监测所述运行数据以判断设备状态、失效的模式及后果影响。
在本发明第二方面的第三种可能的实现方式中,所述的特高压换流变压器的风险评估方法,在计算寿命周期各个时段的风险值时,还包括:
根据特高压GIS设备的局部放电特性,提取GIS绝缘状态的特征参量并计算所述特征参量与绝缘状态的相关度;
根据所述相关度选出特高压GIS设备绝缘状态的有效表征参数及其组合;
基于最优子集回归法和条件概率模型,利用所述有效表征参数及其组合计算故障概率。
在本发明第二方面的第四种可能的实现方式中,所述的特高压换流变压器的风险评估方法,在计算寿命周期各个时段的风险值时,还包括:
利用实际运行数据计算特高压GIS设备的绝缘状态与故障概率的相关度。
在本发明第二方面的第五种可能的实现方式中,所述的特高压换流变压器的风险评估方法,在计算寿命周期各个时段的风险值时,还包括:
利用包括正常运行、VFTO的典型运行工况条件下特高压GIS多物理场耦合分布规律的研究数据,计算各种故障的风险损失。
在本发明第二方面的第六种可能的实现方式中,所述的特高压换流变压器的风险评估方法,在计算寿命周期各个时段的风险值时,还包括:
获取历史概率计算数据,并通过机器学习方式迭代故障概率的计算模型。
相比于现有技术,本发明实施例具有如下有益效果:
本发明提供一种特高压换流变压器的风险评估系统及方法,基于正交试验法的“电-热-机”多因子老化试验,研究材料热老化分解产物特征量、时频域介电谱,以及设备的机械特性,针对特高压变压器类设备,将时频域介电谱、老化分解产物、油中溶解气体分析等检测参数进行有效融合,建立考虑不确定性的油纸绝缘类设备风险评估系统。基于本发明的一种特高压换流变压器的风险评估系统及方法,技术人员能够准确预测特高压换流变压器油纸绝缘剩余寿命以及评估寿命周期的风险,从而依据预测结果和风险评估数据对特高压换流变压器进行有效控制和合理利用。
附图说明
图1是本发明实施例中的一种特高压换流变压器的风险评估方法的步骤流程图;
图2是本发明实施例中的一种特高压换流变压器的风险评估方法包括GIS风险评估的步骤流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供一种示例性实施例,一种特高压换流变压器的风险评估系统,包括:
检测装置,用于检测材料热老化分解产物的特征量以及时域和频域的介电谱;
采集装置,用于获取特高压换流变压器的油纸绝缘材料的老化参数;
统计装置,用于统计特高压换流变压器运行工况产生的运行数据;其中还包括结合研究数据确定典型缺陷的失效机制。
系统计算装置包括:
建模计算模块,用于对所述特征量、所述介电谱和所述老化参数之间的关系进行数学建模,并利用设备实际运行数据进行机器学习以优化寿命预测模型;其中还包括开展油纸绝缘“电-热-机”多因子联合老化试验,完善以热老化为主的变压器主绝缘系统寿命方程。
可以理解的是,研究特高压设备长期安全服役的关键影响因素,梳理设备监造、运行过程中的缺陷共性问题,需结合研究数据对缺陷情况进行理论验证,确定换流变压器典型结构的“电-热-机”应力分布情况。
可靠的计算模块,用于解析所述运行数据的老化过程的绝缘性能参数,并求解所述绝缘性能参数的可靠度函数;
输出模块,用于利用所述寿命预测模型计算出寿命周期,同时根据所述绝缘性能参数和所述可靠度函数的计算结果计算出在寿命周期各个时段的风险值及变化曲线。
具体地,基于特高压设备状态的设备风险评估软件及策略,实现换流变压器寿命周期剖面运行风险的大小及其变化趋势评估。
需要说明的是,在我国,特高压是指±800千伏及以上的直流电和1000千伏及以上交流电的电压等级。
本发明实施例提供一种特高压换流变压器的风险评估系统,基于正交试验法的“电-热-机”多因子老化试验,研究材料热老化分解产物特征量、时频域介电谱,以及设备的机械特性,针对特高压变压器类设备,将时频域介电谱、老化分解产物、油中溶解气体分析等检测参数进行有效融合,建立考虑不确定性的油纸绝缘类设备风险评估系统。基于本发明的一种特高压换流变压器的风险评估系统及方法,技术人员能够准确预测特高压换流变压器油纸绝缘剩余寿命以及评估寿命周期的风险,从而依据预测结果和风险评估数据对特高压换流变压器进行有效控制和合理利用。
所述寿命预测模型基于WLF法、平移因子法、DS证据理论对设备寿命进行预测。
采用WLF法、平移因子法、DS证据理论建立多因子联合寿命预测及状态评价方法。WLF法寿命预测模型适用温度范围广,准确度高;平移因子法可以综合考虑电-热-机对油纸绝缘类设备的作用机制。这些方法的使用可以提高特高压换流变压器油纸绝缘类设备寿命预测的准确性和适用温度范围。
所述解析所述运行数据的老化过程的绝缘性能参数,还包括:
监测所述运行数据以判断设备状态、失效的模式及后果影响。
所述特高压换流变压器的风险评估系统,还包括:
绝缘状态计算模块,用于根据特高压GIS设备的局部放电特性,提取GIS绝缘状态的特征参量并计算所述特征参量与绝缘状态的相关度;其中,使用特高频、超声、SF6分解组分分析等手段研究特高压GIS设备的局部放电特性。
分析模块,用于根据所述相关度选出特高压GIS设备绝缘状态的有效表征参数及其组合;
故障概率计算模块,用于基于最优子集回归法和条件概率模型,利用所述有效表征参数及其组合计算故障概率。
其中,所述GIS为气体绝缘全封闭组合电器的英文简称。GIS由断路器、隔离开关、接地开关、互感器、避雷器、母线、连接件和出线终端等组成。
所述特高压换流变压器的风险评估系统,还包括:
概率相关度计算模块,用于利用实际运行数据计算特高压GIS设备的绝缘状态与故障概率的相关度。
具体地,构建沿面闪络等特高压GIS典型绝缘故障模式,建立基于最优子集回归法和条件概率模型的故障概率计算模型,结合实际运行数据研究特高压GIS绝缘状态与故障概率间的相关性。
所述特高压换流变压器的风险评估系统,还包括:
损失计算模块,用于利用包括正常运行、VFTO的典型运行工况条件下特高压GIS多物理场耦合分布规律的研究数据,计算各种故障的风险损失。其中,VFTO的工况为快速暂态过电压的工况。
所述特高压换流变压器的风险评估系统,还包括:
模型优化模块,用于获取历史概率计算数据,并通过机器学习方式迭代故障概率的计算模型。
本实施例针对特高压GIS设备,通过特高频、超声、SF6分解组分分析技术对特高压GIS设备内局部放电特性进行综合研究,提取有效表征设备故障严重程度和故障类型的特征参量,构建基于多源参数融合、层次分析、深度学习理论的特高压GIS设备风险评估系统。深度学习理论与层次分析法适于对数据进行深度挖掘,提高风险评估系统的准确性。
请参见图1,本发明提供一种示例性实施例,一种特高压换流变压器的风险评估方法,步骤包括:
S101、通过检测装置检测材料热老化分解产物的特征量以及时域和频域的介电谱;
S102、从采集装置中获取特高压换流变压器的油纸绝缘材料的老化参数;
S103、对所述特征量、所述介电谱和所述老化参数之间的关系进行数学建模,并利用设备实际运行数据进行机器学习以优化寿命预测模型;
S104、利用统计装置获取特高压换流变压器运行工况产生的运行数据;
S105、解析所述运行数据的老化过程的绝缘性能参数,并求解所述绝缘性能参数的可靠度函数;
S106、利用所述寿命预测模型计算出寿命周期,同时根据所述绝缘性能参数和所述可靠度函数的计算结果计算出在寿命周期各个时段的风险值及变化曲线。
所述寿命预测模型基于WLF法、平移因子法、DS证据理论对设备寿命进行预测。
所述解析所述运行数据的老化过程的绝缘性能参数,还包括:
监测所述运行数据以判断设备状态、失效的模式及后果影响。
请参见图2,所述的特高压换流变压器的风险评估方法,在计算寿命周期各个时段的风险值时,还包括步骤:
根据特高压GIS设备的局部放电特性,提取GIS绝缘状态的特征参量并计算所述特征参量与绝缘状态的相关度;
根据所述相关度选出特高压GIS设备绝缘状态的有效表征参数及其组合;
基于最优子集回归法和条件概率模型,利用所述有效表征参数及其组合计算故障概率。
利用实际运行数据计算特高压GIS设备的绝缘状态与故障概率的相关度。
利用包括正常运行、VFTO的典型运行工况条件下特高压GIS多物理场耦合分布规律的研究数据,计算各种故障的风险损失。
获取历史概率计算数据,并通过机器学习方式迭代故障概率的计算模型。
本发明实施例提供一种特高压换流变压器的风险评估方法,基于正交试验法的“电-热-机”多因子老化试验,研究材料热老化分解产物特征量、时频域介电谱,以及设备的机械特性,针对特高压变压器类设备,将时频域介电谱、老化分解产物、油中溶解气体分析等检测参数进行有效融合,建立考虑不确定性的油纸绝缘类设备风险评估系统。基于本发明的一种特高压换流变压器的风险评估系统及方法,技术人员能够准确预测特高压换流变压器油纸绝缘剩余寿命以及评估寿命周期的风险,从而依据预测结果和风险评估数据对特高压换流变压器进行有效控制和合理利用。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random AccessMemory,RAM)等。

Claims (8)

1.一种特高压换流变压器的风险评估系统,其特征在于,包括:
检测装置,用于检测材料热老化分解产物的特征量以及时域和频域的介电谱;
采集装置,用于获取特高压换流变压器的油纸绝缘材料的老化参数;
统计装置,用于统计特高压换流变压器运行工况产生的运行数据;
系统计算装置包括:
建模计算模块,用于对所述特征量、所述介电谱和所述老化参数之间的关系进行数学建模,并利用设备实际运行数据进行机器学习以优化寿命预测模型;
可靠的计算模块,用于解析所述运行数据的老化过程的绝缘性能参数,并求解所述绝缘性能参数的可靠度函数;
输出模块,用于利用所述寿命预测模型计算出寿命周期,同时根据所述绝缘性能参数和所述可靠度函数的计算结果计算出在寿命周期各个时段的风险值及变化曲线。
2.一种特高压换流变压器的风险评估方法,其特征在于,步骤包括:
通过检测装置检测材料热老化分解产物的特征量以及时域和频域的介电谱;
从采集装置中获取特高压换流变压器的油纸绝缘材料的老化参数;
对所述特征量、所述介电谱和所述老化参数之间的关系进行数学建模,并利用设备实际运行数据进行机器学习以优化寿命预测模型;
利用统计装置获取特高压换流变压器运行工况产生的运行数据;
解析所述运行数据的老化过程的绝缘性能参数,并求解所述绝缘性能参数的可靠度函数;
利用所述寿命预测模型计算出寿命周期,同时根据所述绝缘性能参数和所述可靠度函数的计算结果计算出在寿命周期各个时段的风险值及变化曲线。
3.如权利要求2所述的特高压换流变压器的风险评估方法,其特征在于,所述寿命预测模型基于WLF法、平移因子法、DS证据理论对设备寿命进行预测。
4.如权利要求2所述的特高压换流变压器的风险评估方法,其特征在于,所述解析所述运行数据的老化过程的绝缘性能参数,还包括:
监测所述运行数据以判断设备状态、失效的模式及后果影响。
5.如权利要求2所述的特高压换流变压器的风险评估方法,其特征在于,在计算寿命周期各个时段的风险值时,还包括:
根据特高压GIS设备的局部放电特性,提取GIS绝缘状态的特征参量并计算所述特征参量与绝缘状态的相关度;
根据所述相关度选出特高压GIS设备绝缘状态的有效表征参数及其组合;
基于最优子集回归法和条件概率模型,利用所述有效表征参数及其组合计算故障概率。
6.如权利要求5所述的特高压换流变压器的风险评估方法,其特征在于,在计算寿命周期各个时段的风险值时,还包括:
利用实际运行数据计算特高压GIS设备的绝缘状态与故障概率的相关度。
7.如权利要求5所述的特高压换流变压器的风险评估方法,其特征在于,在计算寿命周期各个时段的风险值时,还包括:
利用包括正常运行、VFTO的典型运行工况条件下特高压GIS多物理场耦合分布规律的研究数据,计算各种故障的风险损失。
8.如权利要求5所述的特高压换流变压器的风险评估方法,其特征在于,在计算寿命周期各个时段的风险值时,还包括:
获取历史概率计算数据,并通过机器学习方式迭代故障概率的计算模型。
CN201911292891.1A 2019-12-16 2019-12-16 一种特高压换流变压器的风险评估系统及方法 Active CN111044858B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911292891.1A CN111044858B (zh) 2019-12-16 2019-12-16 一种特高压换流变压器的风险评估系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911292891.1A CN111044858B (zh) 2019-12-16 2019-12-16 一种特高压换流变压器的风险评估系统及方法

Publications (2)

Publication Number Publication Date
CN111044858A true CN111044858A (zh) 2020-04-21
CN111044858B CN111044858B (zh) 2020-10-20

Family

ID=70236698

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911292891.1A Active CN111044858B (zh) 2019-12-16 2019-12-16 一种特高压换流变压器的风险评估系统及方法

Country Status (1)

Country Link
CN (1) CN111044858B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111812467A (zh) * 2020-07-16 2020-10-23 重庆大学 评估油浸式变压器油纸绝缘系统老化状态的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102999703A (zh) * 2012-11-29 2013-03-27 浙江省电力公司 一种基于全寿命周期的变压器成本风险的计算方法
CN103091611A (zh) * 2013-01-14 2013-05-08 江苏省电力公司电力科学研究院 油纸绝缘电力设备绝缘老化状态检测方法
CN106841846A (zh) * 2016-12-19 2017-06-13 广东电网有限责任公司电力调度控制中心 一种变压器状态分析与故障诊断方法及系统
CN106950468A (zh) * 2017-03-06 2017-07-14 三峡大学 一种不同温度下变压器油纸绝缘频域介损积分的归算方法
CN107941862A (zh) * 2017-10-17 2018-04-20 广西电网有限责任公司电力科学研究院 一种基于频域介电响应的变压器油纸绝缘老化诊断系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102999703A (zh) * 2012-11-29 2013-03-27 浙江省电力公司 一种基于全寿命周期的变压器成本风险的计算方法
CN103091611A (zh) * 2013-01-14 2013-05-08 江苏省电力公司电力科学研究院 油纸绝缘电力设备绝缘老化状态检测方法
CN106841846A (zh) * 2016-12-19 2017-06-13 广东电网有限责任公司电力调度控制中心 一种变压器状态分析与故障诊断方法及系统
CN106950468A (zh) * 2017-03-06 2017-07-14 三峡大学 一种不同温度下变压器油纸绝缘频域介损积分的归算方法
CN107941862A (zh) * 2017-10-17 2018-04-20 广西电网有限责任公司电力科学研究院 一种基于频域介电响应的变压器油纸绝缘老化诊断系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张镱议: "基于运行状态和寿命评估的电力变压器全寿命周期检修决策研究", 《中国博士学位论文全文数据库 工程科技Ⅱ辑》 *
鹿鸣明: "油浸式变压器故障率模型及故障诊断研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111812467A (zh) * 2020-07-16 2020-10-23 重庆大学 评估油浸式变压器油纸绝缘系统老化状态的方法
CN111812467B (zh) * 2020-07-16 2023-03-28 重庆大学 评估油浸式变压器油纸绝缘系统老化状态的方法

Also Published As

Publication number Publication date
CN111044858B (zh) 2020-10-20

Similar Documents

Publication Publication Date Title
Zhang et al. Component reliability modeling of distribution systems based on the evaluation of failure statistics
US10001518B2 (en) System and method for power transmission and distribution asset condition prediction and diagnosis
Abu-Elanien et al. Asset management techniques for transformers
Idrees et al. Fuzzy logic based calculation and analysis of health index for power transformer installed in grid stations
CN109342883A (zh) 一种用于电缆的局部老化故障检测定位方法
Velásquez et al. Reliability model for switchgear failure analysis applied to ageing
KR101710172B1 (ko) 변압기 권선 고장 진단 장치 및 방법
Abu-Elanien et al. Survey on the transformer condition monitoring
CN111044858B (zh) 一种特高压换流变压器的风险评估系统及方法
KR102260550B1 (ko) 운전 중인 전력설비 내부 전기회로정수 측정에 의한 설비 건전상태 감시 방법
CN102288881B (zh) 变压器油纸绝缘尖刺放电缺陷严重程度诊断方法
Krieg et al. Techniques and experience in on-line transformer condition monitoring and fault diagnosis in ElectraNet SA
Farhan Naeem et al. A novel method for life estimation of power transformers using fuzzy logic systems: An intelligent predictive maintenance approach
Jagers et al. Transformer reliability and condition assessment in a south african utility
CN114924161A (zh) 配电系统绝缘态势分析方法及系统
Afotey et al. Investigation into the impact of cable failure localisation methods on the underground cable life time in a medium voltage distribution network
KR20210053846A (ko) 운전 중인 전력설비 내부 전기회로정수 측정에 의한 설비 건전상태 감시 방법
Feizifar et al. Condition monitoring of circuit breakers using arc models and failure detection algorithm
KR101413788B1 (ko) 변압기 이상 진단 방법 및 장치
Londo et al. Assessment of transformer condition using the improve key gas methods
Aboo et al. Diagnostic Technique with UHF PD Monitoring of HV GIS in Smart Grid
Reddy et al. Advanced monitoring and on-line health diagnosis of single-phase transformers
Velasco et al. An approach to improve power supply continuity throughout the estimation of insulated power cable life expectance indexes
Costa et al. Large-power transformers: Time now for addressing their monitoring and failure investigation techniques. Energies 2022, 15, 4697
Kaur et al. Performance Assessment of IEEE/IEC Method and Duval Triangle technique for Transformer Incipient Fault Diagnosis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant