CN111038671A - 一种海底三维地形勘察和测绘水下无人航行器 - Google Patents

一种海底三维地形勘察和测绘水下无人航行器 Download PDF

Info

Publication number
CN111038671A
CN111038671A CN201911388076.5A CN201911388076A CN111038671A CN 111038671 A CN111038671 A CN 111038671A CN 201911388076 A CN201911388076 A CN 201911388076A CN 111038671 A CN111038671 A CN 111038671A
Authority
CN
China
Prior art keywords
magnetic strip
bin
propeller
ring
rotor magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911388076.5A
Other languages
English (en)
Inventor
袁利毫
昝英飞
祝海涛
贾辉
丁天宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN201911388076.5A priority Critical patent/CN111038671A/zh
Publication of CN111038671A publication Critical patent/CN111038671A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

本发明提供的是一种海底三维地形勘察和测绘水下无人航行器。包括多个耐压仓,相邻耐压仓之间通过密封连接机构连接;耐压仓包括尾仓,所述尾仓后部通过连接机构连接主推进器;主推进器包括主轴、铝基体、内转子磁条、外转子磁条、防护罩、浆毂,内转子磁条和外转子磁条均包括若干个磁条环,内转子磁条的磁条环之间设有内转子隔圈,外转子磁条的磁条环之间设有外转子隔圈;主轴位于铝基体中间,内转子磁条和内转子隔圈固定在铝基体外侧面,外转子磁条和外转子隔圈固定在浆毂内侧面,防护罩位于内转子磁条和外转子磁条之间。本发明的水下航行器主推进器传输效率高、工作效率高,能源利用率高,准确度高。

Description

一种海底三维地形勘察和测绘水下无人航行器
技术领域
本发明涉及的是一种水下AUV,具体地说是一种用于海底三维地形构造勘察和测绘的水下无人航行器。
背景技术
海洋占地球表面积70%,海洋对于人类既陌生又神秘,海底和陆地一样是起伏不平,有高山、深谷、也有广阔的平原和盆地。近年来随着对海洋资源的开发和利用,对海底地形的测量工作显得尤为重要,对海底地形、地貌的测量可以实现为船舰精密导航、海洋资源开发、海洋划界、海面和海底各项工程设计和施工,以及研究海底地壳动态和潮汐变化等提供各种数据。现有的对海洋地形、地貌的测量方法主要是三种。1、船舶测量:由安装在船底下的回声测深仪和侧扫声纳同时测定,根据回声图谱结合船上的导航设备定位进行数据分析,计算出所在海域的地形、地貌,此种测量方法对于地形复杂程度、测量深度都有极大的限制,已经不能满足于现有要求。2、卫星遥感测量:在轨卫星通过海水的颜色差确定,此种测量方法对海水颜色要求较高,不同海域的物理性质测量结果影响较大,结合后期的算法基础上,也只能简单测量大概的地形地貌,测量结果误差极大,不能够准确反映细微的地形、地貌特征。3、水下航行器测量:利用水下航行器多波束回声测深系统、海底摄影测量、机载激光测深方法是目前一种可靠的高精度测量方式。目前拥有航行器,单次下潜时间过长,体积大,能耗高、工作效率低、悬停和回转性能低,对复杂目标的甄别误差较大,已不能满足我国实际的生产需要。
发明内容
本发明的目的在于提供一种能源利用率高,准确度高,主推进器传输效率高的海底三维地形勘察和测绘水下无人航行器。
本发明的目的是这样实现的:包括耐压仓,所述的耐压仓包括依次首尾相连的七段,相邻耐压仓之间通过密封连接机构连接,尾仓12后部连接主推进器11,首仓4内装有多频前视声呐29、声呐换能器,二号仓5内装有第一横推进器18、第一垂直推进器17,三号仓内6内装有集成主板42,四号仓内装有救援模块22、深度计23、高度计24、视频模组27、浅层刨面仪36,四号仓7外设置有上潜指示灯45,五号仓44内有电池组、泄露检测仪43,五号仓44外连接有滑翔翼8,六号仓9内设有第二横推进器14、第二垂直推进器15,尾仓12内设有鳍伺服机构组,尾仓12外部安装有控制鳍组;多频前视声呐29、声呐换能器2、第一横推进器18、第一垂直推进器17、集成主板42、救援模块22、深度计23、高度计24、视频模组27、浅层刨面仪36、上潜指示灯45、电池组、泄露检测仪43、滑翔翼、第二横推进器14、第二垂直推进器15均与中央处理器28连接。
本发明还可以包括:
1.所述的主推进器11包括主轴70、铝基体71、内转子磁条50、外转子磁条52、防护罩60、浆毂59,内转子磁条50和外转子磁条52均包括若干个磁条环,内转子磁条50的磁条环之间设有内转子隔圈51,外转子磁条52的磁条环之间设有外转子隔圈53;主轴70位于铝基体71中间,内转子磁条50和内转子隔圈51固定在铝基体71外侧面,外转子磁条52和外转子隔53圈固定在浆毂59内侧面,防护罩60位于内转子磁条50和外转子磁条52之间。
2.所述的主推进器11还包括第一环形磁盘76和第二环形磁盘77,第二环形磁盘77位于保护罩60远离连接机构20一端的外表面,第一环形磁盘76位于浆毂59上与第一环形磁盘76相对应的内表面,且第一环形磁盘76和第二环形磁盘77磁性相斥。
3.主推进器11还包括止动螺栓54、轴承座56、聚丙烯止动片57,浆毂59通过止动螺栓54、轴承座56、聚丙烯止动片57与所述连接机构20连接。
4.主推进器11还包括滑动垫片61、止动垫片62、弹簧垫片63、滚动轴承65、球形螺母64;所述浆毂59通过滑动垫片61、止动垫片62、弹簧垫片63、滚动轴承65与防护罩60、球形螺母64连接;球形螺母64安装在主推进器11远离连接机构20的一端。
5.所述内转子磁条50、外转子磁条52均包括三个磁条环;内转子隔圈51、外转子隔圈53均有两个;内转子隔圈51、外转子隔圈53为石墨材质。
6.所述内转子隔圈51和内转子磁条50间有间隙;所述外转子隔圈53和外转子磁条52间有间隙;内转子隔圈51和内转子磁条50通过灌胶的方式固定在铝基体71内侧;外转子隔圈53和外转子磁条52通过灌胶的方式固定在浆毂59内侧。
7.所述密封连接机构包括弹力补偿圈46、挡圈47、密封圈48、螺钉49,所述弹力补偿圈46的截面为V形状,弹力补偿圈46通过挡圈47与密封圈48连接,截面为V形状的弹力补偿圈46通过挡圈47顶住密封圈48实现密封圈48的密封,相邻两个耐压仓的壳体通过螺钉49搭接连接。
8.所述弹力补偿圈46包括八片相同规格的鼓片形弹性金属片。
9.所述首仓4为半球耐压结构;二号仓5、三号仓6、四号仓7、五号仓44、六号仓9均为圆筒状。
相比较现有技术,本发明提供的一种用于海底三维地形构造勘察和测绘的水下航行器,具有以下优点:
1、下潜深度:目前我国拥有的自主知识产权的水下无人航行器下潜深度普遍不超过1000m,本发明通过七段仓的结构不仅可实现搭载不同任务载荷的仓的切换,在减小体积的同时更可以提高水下耐压稳定性,实验证明可以提升下潜深度至3000m。
2、仓与仓之间的密封连接方式:水下盐度、温度、环境对密封圈的影响较大,密封圈在长时间水下环境工作时,可能会局部产生腐蚀,腐蚀后会对整个的密封环境产生破坏。密封圈局部腐蚀后通过弹力补偿圈进行弹力补偿,推动挡圈对橡胶圈的挤压变形,形成再次密封效果,有效的增加装置的防水寿命。
3、主推进器的磁耦合及密封结构的设计:将主推进器的内、外转子的结构进行设计,三圈的磁环的设计不仅可以增加传输的效率,更可以增强对输出功率的有效控制。通过内外转子之间的间隙进行力矩传输,石墨隔圈的设置相当于为转子增加了固定装置,不仅降低电机主轴在转动的振动和噪音,更可以隔离磁环间的磁场叠,降低磁场叠加对转动失真控制,使内外转子转动更平稳、高效。防护罩通过与密封圈、挡圈的相互配合实现对电机的密封保护。整个工作过程防护罩60一直都静止状态不发生转动,与传动的动密封装置有很好的区别,这样就可以有效的提升防水安全性。
4、能量利用率高:
a.滑翔翼利用水中的微弱正负浮力通过私服机构控制实现装置的旋转、航行等动作,降低对电池的能量消耗。
b.新型磁耦合装置在降低噪音的同时更可提升传动效率,降低对电池的能量消耗。
c.通过装置中第一环形磁条排斥第二环形磁条的方式,降低轴承座56、轴瓦58与浆毂59之间的断面摩擦的能量消耗,提升浆毂59的能量利用率。
5、姿态控制:现有的水下航行器,下潜方式均为倾角匀速下载,在特定工作载荷下,下潜速度较慢,本发明的航行器可由多推进器时间装置的垂直下潜;可以通过对航行器的各种航行姿态的控制,提高精度,实现对疑难目标的准确回声探测实现甄别能力的提升。
附图说明
图1为本发明的水下航行器的外形图;
图2为水下航行器的各耐压仓连接图;
图3为水下航行器的内部布置图;
图4为水下航行器局部剖的侧视图;
图5a为壳体与壳体之间的密封连接结构,图5b为弹力补偿圈;
图6为内转子磁体;
图7为外转子磁体;
图8为主推进器结构图;
图9为水下航行器控制体系结构图。
具体实施方式
下面举例对本发明做更详细的描述。
本发明申请的用于海底三维地形构造勘察和测绘的水下航行器的第一种实施方式,包括多个耐压仓,相邻耐压仓之间通过密封连接机构连接;所述耐压仓包括依次首尾相连的首仓4、二号仓5、三号仓6、四号仓7、五号仓44、六号仓9及尾仓12;首仓4内装有多频前视声呐29、声呐换能器;二号仓5内装有第一横推进器18、第一垂直推进器17;三号仓内6内装有集成主板42,集成主板上集成有中央处理器28、捷联惯导系统30、多普勒声呐计程仪31、多波束侧扫声呐模组34、数据存储中心35、北斗定位通信模块27、泄露检测仪32、姿态传感器25、航行保障模块33、自动分析模块26;四号仓内装有救援模块22、深度计23、高度计24、视频模组27、浅层刨面仪36,四号仓7外设置有上潜指示灯45;五号仓44内有电池组、泄露检测仪43;五号仓44外连接有左滑翔翼8、右滑翔翼16,在左滑翔翼8、右滑翔翼16下分别设置有左辅助推进器3、右辅助推进器1;六号仓9内设有第二横推进器14、第二垂直推进器15;尾仓12内设有鳍伺服机构组,尾仓12外部安装有控制鳍组;多频前视声呐29、声呐换能器2、第一横推进器18、第一垂直推进器17、捷联惯导系统30、多普勒声呐计程仪31、多波束侧扫声呐模组34、数据存储中心35、北斗定位通信模块27、泄露检测仪32、姿态传感器25、航行保障模块33、自动分析模块26、救援模块22、深度计23、高度计24、视频模组27、浅层刨面仪36、上潜指示灯45、电池组、泄露检测仪43、左滑翔翼8、右滑翔翼16、左辅助推进3器、右辅助推进器1、第二横推进器14、第二垂直推进器15均与中央处理器28连接。
本发明的第二种实施方式是在第一种实施方式的基础上,主推进器11包括主轴70、铝基体71、内转子磁条50、外转子磁条52、防护罩60、浆毂59,内转子磁条50和外转子磁条52均包括若干个磁条环,内转子磁条50的磁条环之间设有内转子隔圈51,外转子磁条52的磁条环之间设有外转子隔圈53;主轴70位于铝基体71中间,内转子磁条50和内转子隔圈51固定在铝基体71外侧面,外转子磁条52和外转子隔53圈固定在浆毂59内侧面,防护罩60位于内转子磁条50和外转子磁条52之间。
本发明的第三种实施方式是在第二种实施方式的基础上,主推进器11还包括第一环形磁盘76和第二环形磁盘77,第二环形磁盘77位于保护罩60远离连接机构20一端的外表面,第一环形磁盘76位于浆毂59上与第一环形磁盘76相对应的内表面,且第一环形磁盘76和第二环形磁盘77磁性相斥。
本发明的第四种实施方式是在第三种实施方式的基础上,主推进器11还包括止动螺栓54、轴承座56、聚丙烯止动片57;浆毂59通过止动螺栓54、轴承座56、聚丙烯止动片57与所述连接机构20连接。
本发明的第五种实施方式是在第四种实施方式的基础上,主推进器11还包括滑动垫片61、止动垫片62、弹簧垫片63、滚动轴承65、球形螺母64;所述浆毂59通过滑动垫片61、止动垫片62、弹簧垫片63、滚动轴承65与防护罩60、球形螺母64连接;球形螺母64安装在主推进器11远离连接机构20的一端。
本发明的第六种实施方式是在第一种至五种实施方式之一的基础上,所述内转子磁条50、外转子磁条52均包括三个磁条环;内转子隔圈51、外转子隔圈53均有两个;内转子隔圈51、外转子隔圈53为石墨材质。
本发明的第七种实施方式是在第六种实施方式的基础上,所述内转子隔圈51和内转子磁条50间有间隙;所述外转子隔圈53和外转子磁条52间有间隙;内转子隔圈51和内转子磁条50通过灌胶的方式固定在铝基体71内侧;外转子隔圈53和外转子磁条52通过灌胶的方式固定在浆毂59内侧。
本发明的第八种实施方式是在第一至第七种实施方式之一的基础上,所述首仓4为半球耐压结构;二号仓5、三号仓6、四号仓7、五号仓44、六号仓9均为圆筒状。
本发明的第九种实施方式是在第一至第八种实施方式之一的基础上,所述密封连接机构包括弹力补偿圈46、挡圈47、密封圈48、螺钉49,所述弹力补偿圈46的截面为V形状,弹力补偿圈46通过挡圈47与密封圈连接,截面为V形状的弹力补偿圈46通过挡圈47顶住密封圈48实现密封圈的密封,相邻两个耐压仓的壳体通过螺钉49搭接连接。
本发明的第十种实施方式是在第九种实施方式的基础上,所述弹力补偿圈46包括八片相同规格的鼓片形弹性金属片。
如图1、2,本发明的用于海底三维地形构造勘察和测绘的水下航行器,装置主体呈鱼雷形耐压结构,包括七段耐压仓及仓外附属结构,依次包括首尾相连的首仓4、二号仓5、三号仓6、四号仓7、五号仓44、六号仓9及尾仓12。如图3所示,首仓4设置有多频前视声呐29、声呐换能器;二号仓5设置有第一横推进器18、第二垂直推进器17,如图2、4;三号仓6为电子控制仓,设置有集成主板42、集成主板42上集成有中央处理器28、捷联惯导系统30、多普勒声呐计程仪器31、多波束侧扫声呐模组34、数据存储中心35、北斗导航通信系统27、泄露检测仪32、姿态传感器25、航行保障模块33、自动分析控制模块26;四号仓是任务载荷辅助仓,设置有救援模块22、深度计23、高度计24、视频模组37、浅层刨面仪36,仓外设置有上潜指示灯45;五号仓44为能源仓,五号仓44内设置有电池组,包括主动力电池38、辅助动力电池39、设备能源电池21、泄露检测仪43。五号仓44外连接有左滑翔翼8、右滑翔翼16,在双翼下分别设置有左辅助推进器3、右辅助推进器1;六号仓9设置有第二横推进器14、第二垂直推进器15;七号仓是尾仓12,在舱内设置鳍伺服机构组,左控制鳍伺服机构19、右控制鳍伺服机构41、主控制鳍伺服机构40,仓外部设置有控制鳍,包括左控制鳍10、右控制鳍13及主控制鳍2,尾仓后部通过连接机构20连接主推进器11。
各耐压仓相互之间通过密封连接机构相互连接,不仅可提高水下承压能力,更可有效的防止设备意外进水而造成的的装置的故障,可以有效的提高水下航行安全。如图5a至图5b所示,所述密封连接机构包括弹力补偿圈46、挡圈47、密封圈48、螺钉49,所述弹力补偿圈46的截面为V形状,弹力补偿圈46通过挡圈47与密封圈连接,截面为V形状的弹力补偿圈46通过挡圈47顶住密封圈48实现密封圈的密封,相邻两个耐压仓的壳体通过螺钉49搭接连接。
所述首仓4呈半球耐压结构,舱内设置有多频前视声呐29、声呐换能器,半球形的壳体可以有效的降低航行器航行阻力,前视声呐是利用声波对水下无人航行器前进方向的水中目标进行探测、定位的系统集成,提供前进方向上的目标的定位、距离、运动轨迹等信息,用以保证水下无人航行器的航行安全。
所述二号仓5外形呈圆筒状,与首仓4连接,舱内设置有横推进器18、垂直推进器17,将推进器布置在舱内,以导流罩的方行进行工作,在有效的降低水下阻力同时,更可以提升能源的利用效率。
所述三号仓6外形呈圆筒状,与二号仓5连接,三号仓6为电子控制仓,设置有集成主板42、中央处理器28、捷联惯导系统30、多普勒声呐计程仪器31、多波束侧扫声呐模组34、数据存储中心35、北斗导航通信模块27、泄露检测仪32、姿态传感器25、航行保障模块33、自动分析控制模块26,如图9,各器件与中央处理器28相连。电器元件的相对集中,有利于减少电流和信号因为线路的延长而造成的衰减,可以提升的能量的利用率和信号的快速响应。在结构上来讲更可以提高空间的利用率,提升防水等级。捷联惯导系统(SINS)是在平台式惯导系统基础上发展而来的,它是一种无框架系统,由三个速率陀螺、三个线加速度计和微型计算机组成。如果单纯的采用捷联惯导系统进行导航,由于长时间的在水下工作,其误差是非常巨大的,为了提升测量精度,本发明在采用捷联惯导的同时采用多普勒计程仪、北斗定位系统进行导航的惯导组合的工作导航模式,可以有效的提升定位精度。多波束侧扫声呐具有低速和高速两种实用模式,根据任务载荷和数据处理时间的变化自动切换,工作时,侧扫声呐的换能器基下方两侧发射扇形波束的脉冲信号,遇到障碍物产生发射波,接收回波达到的时间先后依次接受。信号经过处理后,在纪录的纸板上形成多种平行密集的线,从而构成二维图像。如果遇到特殊的障碍物,则障碍物正表面反射信号较强,其背部没有回波信号,形成白色影区,从声图上可以判断出目标的位置、形状和清晰度。自动分析控制模块,是航行器在水下航行时,有很多意外情况是无法预判的,通过潜入AI技术在航行器技术条件允许情况下实行智能航行。
所述四号仓7是任务载荷辅助仓,设置有救援模块22、深度计23、高度计24、集成视频模组37、浅层刨面仪36,仓外设置有上潜指示灯45。四号仓7可以搭载不同类型传感器,可以实现不同作业功能。航行器在水下工作时如果发生故障,航信器根据故障等级主动启动救援模块22。舱体外的上潜指示灯45可以在上潜尤其是夜晚中的回收提升搜寻便利条件。本发明中搭载的视频模组、浅层刨面仪更可以对海底的地貌有更加直观的记录和分析,对后期的海图制作有巨大的帮助。
所述五号仓44为能源仓,仓内设置的电池组包括主动力电池38、辅助动力电池39、设备能源电池21、泄露检测仪43。舱外连接有左滑翔翼8、右滑翔翼16,在双翼下分别设置有左辅助推进器3、右辅助推进器1。电池的相互独立,可以提升能源的利用率,更可以在必要时提供后备动力保障,提航行安全。滑翔翼可以利用海水中的微弱的浮力差为航行器提供动力,可以提升在某些任务载荷情况下的航行时间。在航行器底侧远端固定推进器,可以对整个装置在水中滑行时提升装置姿态稳定性,更可以以较小的推力调整航行姿态。
所述六号仓9外形呈圆筒状,与五仓连接,舱内设置有横推进器14、垂直推进器15,将推进器布置在舱内,以导流罩的方行进行工作,在有效的降低水下阻力同时,更可以提升能源的利用效率。
七号仓12是尾仓,在舱内设置鳍伺服机构组,左控制鳍伺服机构19、右控制鳍伺服机构41、主控制鳍伺服机构40,仓外部设置有左控制鳍10、右控制鳍13、主控制鳍2,尾仓后部通过连接机构20连接主推进器11。
所述航行器中主推力由推进器11、滑翔翼8、滑翔翼16提供。
所述器姿态调整由于第二垂直推进器15、第二横推进器14(见图4)、第一垂直推进器17、第一横推进器18(见图4)、尾部控制鳍共同调整。
每段仓之间采用相同规格的密封连接机构,如图5a至图5b所示,密封连接机构包括弹力补偿圈46、挡圈47、密封圈48、螺钉49。所述弹力补偿圈由八片相同规格的鼓片形弹性金属构成的圆环形弹力补偿圈46。
如图8,水下主推进器磁耦合及其密封装置包括止动螺栓54、垫圈55、轴承座56、聚丙烯止动片57、轴瓦58、内转子磁条50、外转子磁条52、内转子石墨隔圈51、浆毂59、防护罩60、滑动垫片61、止动垫片62、弹簧垫片63、球形螺母64、滚动轴承65、止动垫片66、紧固螺钉67、弹簧垫片68、大平垫片69、外转子石墨隔圈53、主轴70、铝基体71、金属键72、挡圈73、密封橡胶圈74、固定螺钉75、第一环形磁盘76、第二环形磁盘77。
内转子隔圈51、内转子磁条50通过灌胶的方式使其固定在铝基体上,磁条与隔圈之间分间隙是为了让胶体顺利流入。所述内转子的磁体由两个环形隔圈和三圈磁条环构成。外转子隔圈53、外转子磁条52通过灌胶的方式使其固定在浆毂上,磁条与隔圈之间分间隙是为了让胶体顺利流入。如图6、图7,所述内转子的磁体由两个环形隔圈和三圈磁条环构成。永磁体用由不规则的长方形磁条是为了保证磁场强度的同时增大粘贴牢靠度。石墨隔圈分别与防护罩60实现滑动摩擦。第一环形磁盘76与第二环形磁盘77呈相斥关系。
下潜速度主要与水下阻力有关,姿态的控制和改变对下潜速度有决定的影响。本发明的水下航行器不仅仅可以实现垂直下潜上升的姿态动作,更可以实现任意平面内的360度回转、悬停区别于任何水下任何水下航行器。本发明的航行器提升对水下疑复杂目标的甄别能力的提升,主要是通过航行器的姿态控制实现对目标物的多空间位置的回声探测。如现在航行器空间位置(0.0.0)m需要对空间位置(1000.1000.-1000)m处的目标进行快速甄别,航行器控制方法如下:
a.推进器1、推进器3调整航行。
b.推进器15、推进器17调整下潜角度。
c.主推进器11推动航行器至(900.900.-900)m,航行器悬停。
d.推进器15、推进器17调整航行器工作角度。
e.以目标物(1000.1000.-1000)m为原点,航行器坐标(900.900.-900)m为是平面半径推动航行器进行圆周水平方向360度旋转扫描。
f.经中央处理器分析后,对不清晰的回声探测区域,重新调整航行器探测角度进行再次回声探测。
利用AUV技术设计的用于海底三维地形构造勘察和测绘的水下航行器及其控制体系结构可实现对任意指定位置和目标进行连续主动测量,可以自主巡航监测、自主障碍物躲避,对海底地形、地貌、沉船、飞机残骸等具有强大的定位识别功能。实验证明,通过多推进器的协同作业更可以实现航行器在任意平面内360度的旋转测量,对复杂目标、疑难目标具有极大的侦测能力。航行器的下潜深度0-3000m,作业深度0-5000m,可以实现对我国海域95%以上面积的的有效测绘。

Claims (10)

1.一种海底三维地形勘察和测绘水下无人航行器,包括耐压仓,其特征是:所述的耐压仓包括依次首尾相连的七段,相邻耐压仓之间通过密封连接机构连接,尾仓(12)后部连接主推进器(11),首仓(4)内装有多频前视声呐(29)、声呐换能器,二号仓(5)内装有第一横推进器(18)、第一垂直推进器(17),三号仓内(6)内装有集成主板(42),四号仓内装有救援模块(22)、深度计(23)、高度计(24)、视频模组(27)、浅层刨面仪(36),四号仓(7)外设置有上潜指示灯(45),五号仓(44)内有电池组、泄露检测仪(43),五号仓(44)外连接有滑翔翼(8),六号仓(9)内设有第二横推进器(14)、第二垂直推进器(15),尾仓(12)内设有鳍伺服机构组,尾仓(12)外部安装有控制鳍组;多频前视声呐(29)、声呐换能器(2)、第一横推进器(18)、第一垂直推进器(17)、集成主板(42)、救援模块(22)、深度计(23)、高度计(24)、视频模组(27)、浅层刨面仪(36)、上潜指示灯(45)、电池组、泄露检测仪(43)、滑翔翼、第二横推进器(14)、第二垂直推进器(15)均与中央处理器(28)连接。
2.根据权利要求1所述的海底三维地形勘察和测绘水下无人航行器,其特征是:所述的主推进器(11)包括主轴(70)、铝基体(71)、内转子磁条(50)、外转子磁条(52)、防护罩(60)、浆毂(59),内转子磁条(50)和外转子磁条(52)均包括若干个磁条环,内转子磁条(50)的磁条环之间设有内转子隔圈(51),外转子磁条(52)的磁条环之间设有外转子隔圈(53);主轴(70)位于铝基体(71)中间,内转子磁条(50)和内转子隔圈(51)固定在铝基体(71)外侧面,外转子磁条(52)和外转子隔(53)圈固定在浆毂(59)内侧面,防护罩(60)位于内转子磁条(50)和外转子磁条(52)之间。
3.根据权利要求2所述的海底三维地形勘察和测绘水下无人航行器,其特征是:所述的主推进器(11)还包括第一环形磁盘(76)和第二环形磁盘(77),第二环形磁盘(77)位于保护罩(60)远离连接机构(20)一端的外表面,第一环形磁盘(76)位于浆毂(59)上与第一环形磁盘(76)相对应的内表面,且第一环形磁盘(76)和第二环形磁盘(77)磁性相斥。
4.根据权利要求3所述的海底三维地形勘察和测绘水下无人航行器,其特征是:主推进器(11)还包括止动螺栓(54)、轴承座(56)、聚丙烯止动片(57),浆毂(59)通过止动螺栓(54)、轴承座(56)、聚丙烯止动片(57)与所述连接机构(20)连接。
5.根据权利要求4所述的海底三维地形勘察和测绘水下无人航行器,其特征是:主推进器(11)还包括滑动垫片(61)、止动垫片(62)、弹簧垫片(63)、滚动轴承(65)、球形螺母(64);所述浆毂(59)通过滑动垫片(61)、止动垫片(62)、弹簧垫片(63)、滚动轴承(65)与防护罩(60)、球形螺母(64)连接;球形螺母(64)安装在主推进器(11)远离连接机构(20)的一端。
6.根据权利要求1-5任何一项所述的海底三维地形勘察和测绘水下无人航行器,其特征是:所述内转子磁条(50)、外转子磁条(52)均包括三个磁条环;内转子隔圈(51)、外转子隔圈(53)均有两个;内转子隔圈(51)、外转子隔圈(53)为石墨材质。
7.根据权利要求6所述的海底三维地形勘察和测绘水下无人航行器,其特征是:所述内转子隔圈(51)和内转子磁条(50)间有间隙;所述外转子隔圈(53)和外转子磁条(52)间有间隙;内转子隔圈(51)和内转子磁条(50)通过灌胶的方式固定在铝基体(71)内侧;外转子隔圈(53)和外转子磁条(52)通过灌胶的方式固定在浆毂(59)内侧。
8.根据权利要求1-5任何一项所述的海底三维地形勘察和测绘水下无人航行器,其特征是:所述密封连接机构包括弹力补偿圈(46)、挡圈(47)、密封圈(48)、螺钉(49),所述弹力补偿圈(46)的截面为V形状,弹力补偿圈(46)通过挡圈(47)与密封圈(48)连接,截面为V形状的弹力补偿圈(46)通过挡圈(47)顶住密封圈(48)实现密封圈(48)的密封,相邻两个耐压仓的壳体通过螺钉(49)搭接连接。
9.根据权利要求8所述的海底三维地形勘察和测绘水下无人航行器,其特征是:所述弹力补偿圈(46)包括八片相同规格的鼓片形弹性金属片。
10.根据权利要求1-5任何一项所述的海底三维地形勘察和测绘水下无人航行器,其特征是:所述首仓(4)为半球耐压结构;二号仓(5)、三号仓(6)、四号仓(7)、五号仓(44)、六号仓(9)均为圆筒状。
CN201911388076.5A 2019-12-30 2019-12-30 一种海底三维地形勘察和测绘水下无人航行器 Pending CN111038671A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911388076.5A CN111038671A (zh) 2019-12-30 2019-12-30 一种海底三维地形勘察和测绘水下无人航行器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911388076.5A CN111038671A (zh) 2019-12-30 2019-12-30 一种海底三维地形勘察和测绘水下无人航行器

Publications (1)

Publication Number Publication Date
CN111038671A true CN111038671A (zh) 2020-04-21

Family

ID=70241177

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911388076.5A Pending CN111038671A (zh) 2019-12-30 2019-12-30 一种海底三维地形勘察和测绘水下无人航行器

Country Status (1)

Country Link
CN (1) CN111038671A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112347070A (zh) * 2020-11-06 2021-02-09 北京石油化工学院 自主潜航器容迟探测系统及方法
CN113932775A (zh) * 2021-10-21 2022-01-14 广西科学院 一种海下三维测绘系统及其测绘方法
CN114543798A (zh) * 2022-02-23 2022-05-27 上海新跃联汇电子科技有限公司 一体化高精度水下惯导与多普勒测速仪组合导航系统
CN115113213A (zh) * 2022-08-29 2022-09-27 青岛海研电子有限公司 水下声呐、水下航行器及水下航行器在宽广水域巡航方法
GB2623853A (en) * 2022-10-20 2024-05-01 Nanfoon Applied Tech Ltd Underwater sonar device and underwater detecting system

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1974318A (zh) * 2006-12-19 2007-06-06 天津大学 混合型水下航行器
CN202612615U (zh) * 2012-05-31 2012-12-19 湖北航天技术研究院特种车辆技术中心 一种补偿式密封结构
CN203717926U (zh) * 2014-02-26 2014-07-16 北京裕泰行新材料科技有限公司 密封组件
CN204290673U (zh) * 2015-01-17 2015-04-22 黄辉 一种大转矩小直径的磁耦合传动装置
CN206149125U (zh) * 2016-11-08 2017-05-03 天津深之蓝海洋设备科技有限公司 一种rov推进器磁耦合装置及rov推进器电机
CN107284631A (zh) * 2017-06-13 2017-10-24 上海交通大学 基于流体升力的具有垂直推进装置的潜水器
CN207830787U (zh) * 2017-12-14 2018-09-07 陕西渭河发电有限公司 高密封伸缩节
US20190011335A1 (en) * 2017-02-09 2019-01-10 Aquabotix Technology Corporation Sampling container for a remotely operated vehicle
CN109292069A (zh) * 2018-11-30 2019-02-01 南京海琦娜游艇制造有限公司 磁悬浮船艇轴系
CN109412383A (zh) * 2018-11-02 2019-03-01 湖南维格磁流体股份有限公司 一种磁耦合装置
RU2681415C1 (ru) * 2018-05-22 2019-03-06 Федеральное государственное бюджетное учреждение науки Институт проблем морских технологий Дальневосточного отделения Российской академии наук (ИПМТ ДВО РАН) Малогабаритный многофункциональный автономный необитаемый подводный аппарат - носитель сменной полезной нагрузки
CN109941410A (zh) * 2019-04-26 2019-06-28 安徽理工大学 一种模块化auv

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1974318A (zh) * 2006-12-19 2007-06-06 天津大学 混合型水下航行器
CN202612615U (zh) * 2012-05-31 2012-12-19 湖北航天技术研究院特种车辆技术中心 一种补偿式密封结构
CN203717926U (zh) * 2014-02-26 2014-07-16 北京裕泰行新材料科技有限公司 密封组件
CN204290673U (zh) * 2015-01-17 2015-04-22 黄辉 一种大转矩小直径的磁耦合传动装置
CN206149125U (zh) * 2016-11-08 2017-05-03 天津深之蓝海洋设备科技有限公司 一种rov推进器磁耦合装置及rov推进器电机
US20190011335A1 (en) * 2017-02-09 2019-01-10 Aquabotix Technology Corporation Sampling container for a remotely operated vehicle
CN107284631A (zh) * 2017-06-13 2017-10-24 上海交通大学 基于流体升力的具有垂直推进装置的潜水器
CN207830787U (zh) * 2017-12-14 2018-09-07 陕西渭河发电有限公司 高密封伸缩节
RU2681415C1 (ru) * 2018-05-22 2019-03-06 Федеральное государственное бюджетное учреждение науки Институт проблем морских технологий Дальневосточного отделения Российской академии наук (ИПМТ ДВО РАН) Малогабаритный многофункциональный автономный необитаемый подводный аппарат - носитель сменной полезной нагрузки
CN109412383A (zh) * 2018-11-02 2019-03-01 湖南维格磁流体股份有限公司 一种磁耦合装置
CN109292069A (zh) * 2018-11-30 2019-02-01 南京海琦娜游艇制造有限公司 磁悬浮船艇轴系
CN109941410A (zh) * 2019-04-26 2019-06-28 安徽理工大学 一种模块化auv

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
倪天等: "基于磁力耦合器的载人潜水器电力推进装置研究", 《海洋工程》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112347070A (zh) * 2020-11-06 2021-02-09 北京石油化工学院 自主潜航器容迟探测系统及方法
CN112347070B (zh) * 2020-11-06 2023-05-23 北京石油化工学院 自主潜航器容迟探测系统及方法
CN113932775A (zh) * 2021-10-21 2022-01-14 广西科学院 一种海下三维测绘系统及其测绘方法
CN114543798A (zh) * 2022-02-23 2022-05-27 上海新跃联汇电子科技有限公司 一体化高精度水下惯导与多普勒测速仪组合导航系统
CN115113213A (zh) * 2022-08-29 2022-09-27 青岛海研电子有限公司 水下声呐、水下航行器及水下航行器在宽广水域巡航方法
CN115113213B (zh) * 2022-08-29 2022-11-22 青岛海研电子有限公司 水下声呐、水下航行器及水下航行器在宽广水域巡航方法
GB2623853A (en) * 2022-10-20 2024-05-01 Nanfoon Applied Tech Ltd Underwater sonar device and underwater detecting system

Similar Documents

Publication Publication Date Title
CN111038671A (zh) 一种海底三维地形勘察和测绘水下无人航行器
US20200148321A1 (en) Ocean bottom seismic autonomous underwater vehicle
USRE46054E1 (en) Underwater vehicle with sonar array
CN108312151B (zh) 漂流探测水下机器人装置及控制方法
CN109084745A (zh) 海底电缆巡检用水下航行器智能监测系统及组合导航方法
Dowdeswell et al. Autonomous underwater vehicles (AUVs) and investigations of the ice–ocean interface in Antarctic and Arctic waters
US9849953B2 (en) Autonomous underwater vehicle for marine seismic surveys
CN111301646B (zh) 一种用于冰下探测的自主式水下机器人
US20140251199A1 (en) Jet-pump-based autonomous underwater vehicle and method for coupling to ocean bottom during marine seismic survey
CN105270583A (zh) 测量型无人艇及测量方法
CN204037874U (zh) 测量型无人艇
CN111452939A (zh) 一种用于引水隧洞检测的自主巡线水下直升机
Wood et al. State of technology in autonomous underwater gliders
CN112835049A (zh) 一种水下淤泥厚度探测机器人及其系统
US20180052247A1 (en) Flush design of an autonomous underwater vehicle with negative buoyancy for marine seismic surveys
KR101827742B1 (ko) 드론을 이용한 이동 및 수평유지 기능이 있는 천해조사 자율 무인 수상정
CN215180879U (zh) 一种水下淤泥厚度探测机器人及其系统
Rogers et al. Underwater acoustic glider
Sun et al. An acoustic sea glider for deep-sea noise profiling using an acoustic vector sensor
Urbahs et al. Analysis of an unmanned aerial vehicle monitoring system for resurveying of shipping routes
Fujimoto et al. Underwater gravimeter on board the R-One robot
Merlin et al. High resolution seabed sub-bottom profiler for AUV
Trimble et al. Reacquisition and imaging of mine-like targets in very shallow water using the CetusII AUV and MIRIS high-resolution sonar
Feng et al. A novel navigation method for autonomous underwater vehicle in the middle water column
Traykovski SERDP Project MR20-1494

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination