CN111035393B - Three-dimensional gait data processing method, system, server and storage medium - Google Patents
Three-dimensional gait data processing method, system, server and storage medium Download PDFInfo
- Publication number
- CN111035393B CN111035393B CN201911283552.7A CN201911283552A CN111035393B CN 111035393 B CN111035393 B CN 111035393B CN 201911283552 A CN201911283552 A CN 201911283552A CN 111035393 B CN111035393 B CN 111035393B
- Authority
- CN
- China
- Prior art keywords
- data
- joint point
- gait data
- point data
- dimensional gait
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005021 gait Effects 0.000 title claims abstract description 252
- 238000003672 processing method Methods 0.000 title claims description 29
- 238000003860 storage Methods 0.000 title claims description 10
- 230000003238 somatosensory effect Effects 0.000 claims abstract description 126
- 238000012545 processing Methods 0.000 claims abstract description 52
- 238000000034 method Methods 0.000 claims abstract description 48
- 210000000988 bone and bone Anatomy 0.000 claims description 86
- 230000002159 abnormal effect Effects 0.000 claims description 25
- 238000004590 computer program Methods 0.000 claims description 24
- 230000008569 process Effects 0.000 claims description 17
- 238000012544 monitoring process Methods 0.000 claims description 11
- 230000009466 transformation Effects 0.000 claims description 7
- 238000007499 fusion processing Methods 0.000 claims description 4
- 238000003491 array Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000013480 data collection Methods 0.000 description 3
- 230000001960 triggered effect Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000003862 health status Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
- A61B5/112—Gait analysis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Physiology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Psychiatry (AREA)
- Signal Processing (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
技术领域technical field
本申请属于计算机技术领域,尤其涉及一种三维步态数据处理方法、系统、服务器及存储介质。The present application belongs to the field of computer technology, and in particular relates to a method, system, server and storage medium for processing three-dimensional gait data.
背景技术Background technique
步态数据是指人类在自然状态下行走时身体各个部位的运动数据,是一种复杂的人体行为特征。由于步态数据为研究人的健康状况以及生活习惯等提供了重要的依据,因此如何高效准确地获取步态数据变得越来越重要。Gait data refers to the motion data of various parts of the body when a human walks in a natural state, which is a complex human behavior feature. Since gait data provides an important basis for studying people's health status and living habits, how to obtain gait data efficiently and accurately becomes more and more important.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本申请实施例提供了三维步态数据处理方法、系统、服务器及存储介质,以高效准确地获取不同数据。In view of this, the embodiments of the present application provide a three-dimensional gait data processing method, system, server, and storage medium, so as to obtain different data efficiently and accurately.
本申请实施例的第一方面提供了一种三维步态数据处理方法,应用于采集服务器,所述三维步态数据采集方法包括:A first aspect of the embodiments of the present application provides a three-dimensional gait data processing method, which is applied to a collection server, and the three-dimensional gait data collection method includes:
监测到步态信息采集指令后,同步获取被监控对象的原始三维步态数据,所述原始三维步态数据包括预设的体感传感器阵列中每个体感传感器在预设时长内采集的所述被监控对象的三维步态数据;After the gait information collection instruction is monitored, the original three-dimensional gait data of the monitored object is obtained synchronously, and the original three-dimensional gait data includes the said object collected by each somatosensory sensor in the preset somatosensory sensor array within a preset period of time. Monitor the 3D gait data of the subject;
将所述原始三维步态数据发送至数据处理服务器,所述数据处理服务器对原始三维步态数据进行处理,得到被监测对象的三维步态数据。The raw three-dimensional gait data is sent to a data processing server, and the data processing server processes the raw three-dimensional gait data to obtain three-dimensional gait data of the monitored object.
本申请实施例的第二方面提供了一种三维步态数据处理方法,应用于数据处理服务器,所述三维步态数据处理方法包括:A second aspect of the embodiments of the present application provides a three-dimensional gait data processing method, which is applied to a data processing server, and the three-dimensional gait data processing method includes:
获取采集服务器发送的原始三维步态数据,所述原始三维步态数据包括预设的体感传感器阵列中每个体感传感器在预设时长内采集的三维步态数据;Acquiring raw three-dimensional gait data sent by the collection server, where the raw three-dimensional gait data includes three-dimensional gait data collected by each somatosensory sensor in a preset somatosensory sensor array within a preset period of time;
基于所述原始三维步态数据的时间戳信息,确定重叠三维步态数据,所述原始三维步态数据包括人体骨骼关节点数据;所述重叠三维步态数据包括所述体感传感器阵列中任意两个相邻的体感传感器采集的多帧重叠的人体骨骼关节点数据;Based on the timestamp information of the original 3D gait data, overlapping 3D gait data is determined, where the original 3D gait data includes human skeleton joint point data; the overlapping 3D gait data includes any two of the somatosensory sensor arrays. Multi-frame overlapping human skeleton joint point data collected by two adjacent somatosensory sensors;
根据任意相邻两帧所述人体骨骼关节点数据之间的空间距离,将多帧重叠的所述人体骨骼关节点数据进行融合处理,得到目标三维步态数据。According to the spatial distance between the human skeleton joint point data of any two adjacent frames, the overlapping human skeleton joint point data of multiple frames are fused to obtain target three-dimensional gait data.
在一种可选的实现方式中,所述在所述基于所述原始三维步态数据的时间戳信息,确定重叠三维步态数据之前,还包括:In an optional implementation manner, before determining the overlapping three-dimensional gait data based on the timestamp information of the original three-dimensional gait data, the method further includes:
根据预设的人体骨骼结构中各骨骼关节点之间的基准距离,确定所述人体骨骼关节点数据中的异常骨骼关节点数据;Determine the abnormal bone joint point data in the human bone joint point data according to the preset reference distance between each bone joint point in the human bone structure;
对所述异常骨骼关节点数据进行数据补偿及去噪处理,得到修正骨骼关节点数据;performing data compensation and denoising processing on the abnormal bone joint point data to obtain corrected bone joint point data;
对应地,所述基于原始三维步态数据的时间戳信息,确定重叠三维步态数据,包括:Correspondingly, determining the overlapping 3D gait data based on the timestamp information of the original 3D gait data includes:
基于所述原始三维步态数据的时间戳信息,确定所述修正骨骼关节点数据中的多帧重叠的所述人体骨骼关节点数据。Based on the timestamp information of the original three-dimensional gait data, the overlapping human skeleton joint point data of multiple frames in the modified skeleton joint point data is determined.
在一种可选的实现方式中,所述根据预设的人体骨骼结构中各骨骼关节点之间的基准距离,确定所述人体骨骼关节点数据中的异常骨骼关节点数据,包括:In an optional implementation manner, determining the abnormal skeleton joint point data in the human skeleton joint point data according to a preset reference distance between each skeleton joint point in the human skeleton structure includes:
根据所述原始三维步态数据的时间戳信息,将所述体感传感器阵列中每个所述体感传感器采集所述人体骨骼关节点数据进行排序,分别得到具有时间序列的多帧人体骨骼关节点数据;According to the timestamp information of the original three-dimensional gait data, sort the human skeleton joint point data collected by each of the somatosensory sensors in the somatosensory sensor array, and obtain multi-frame human skeleton joint point data with time series respectively. ;
分别计算每帧人体骨骼关节点数据中任意相邻两个骨骼关节点数据之间的距离;Calculate the distance between any two adjacent bone joint point data in each frame of human bone joint point data;
根据所述距离与预设的人体骨骼结构中各骨骼关节点之间的基准距离,确定所述人体骨骼关节点数据中的异常骨骼关节点数据。Abnormal bone joint point data in the human bone joint point data is determined according to the distance and a preset reference distance between each bone joint point in the human bone structure.
在一种可选的实现方式中,在所述基于所述原始三维步态数据的时间戳信息,确定所述修正骨骼关节点数据中的所述多帧重叠的所述人体骨骼关节点数据之前,包括:In an optional implementation manner, before the time stamp information based on the original three-dimensional gait data is determined, the multi-frame overlapping human skeleton joint point data in the modified bone joint point data is determined. ,include:
根据所述体感传感器阵列中每个所述体感传感器的倾斜角度,分别将各个所述修正骨骼关节点数据进行坐标转换,得到同一预设坐标系下的标准骨骼关节点数据;According to the inclination angle of each of the somatosensory sensors in the somatosensory sensor array, coordinate transformation is performed on each of the modified bone joint point data, to obtain standard bone joint point data in the same preset coordinate system;
对应地,所述基于所述原始三维步态数据的时间戳信息,确定所述骨骼关节点数据中的所述多帧重叠的所述人体骨骼关节点数据,包括:Correspondingly, the determining, based on the timestamp information of the original three-dimensional gait data, the overlapping human skeleton joint point data of the multiple frames in the skeletal joint point data includes:
基于所述原始三维步态数据的时间戳信息,确定所述标准骨骼关节点数据中的多帧重叠的所述人体骨骼关节点数据。Based on the timestamp information of the original three-dimensional gait data, the overlapping human skeleton joint point data of multiple frames in the standard skeleton joint point data is determined.
在一种可选的实现方式中,在所述根据所述体感传感器阵列中每个所述体感传感器的倾斜角度,分别将各个所述修正骨骼关节点数据进行坐标转换之前,还包括:In an optional implementation manner, before performing coordinate transformation on each of the corrected bone joint point data according to the inclination angle of each of the somatosensory sensors in the somatosensory sensor array, the method further includes:
获取所述原始三维步态数据中的人体骨骼关节点数据;acquiring human skeleton joint point data in the original three-dimensional gait data;
对所述人体骨骼关节点数据进行最小二乘法去拟合处理,得到每个所述体感传感器的所述倾斜角度。Perform a least squares fitting process on the human skeleton joint point data to obtain the inclination angle of each of the somatosensory sensors.
本申请实施例的第三方面提供了一种三维步态数据处理系统,包括:采集服务器、与所述采集服务器通讯连接的体感传感器阵列以及与所述采集服务器通讯连接的数据处理服务器;A third aspect of the embodiments of the present application provides a three-dimensional gait data processing system, including: a collection server, a somatosensory sensor array communicatively connected to the collection server, and a data processing server communicatively connected to the collection server;
所述体感传感器阵列包括按照预设排列方式排列的多个体感传感器,每个所述体感传感器之间相互独立;The somatosensory sensor array includes a plurality of somatosensory sensors arranged in a preset arrangement, and each of the somatosensory sensors is independent of each other;
所述采集服务器,用于在监测到步态信息采集指令后,同步获取原始三维步态数据,所述原始三维步态数据包括所述体感传感器阵列中每个体感传感器在预设时长内采集的三维步态数据,将所述原始三维步态数据发送至数据处理服务器;The acquisition server is configured to synchronously acquire raw three-dimensional gait data after monitoring the gait information acquisition instruction, where the raw three-dimensional gait data includes data collected by each somatosensory sensor in the somatosensory sensor array within a preset time period. three-dimensional gait data, sending the original three-dimensional gait data to a data processing server;
数据处理服务器,用于获取所述采集服务器发送的所述原始三维步态数据,基于所述原始三维步态数据的时间戳信息,确定重叠三维步态数据;所述原始三维步态数据包括人体骨骼关节点数据;所述重叠三维步态数据包括所述体感传感器阵列中任意两个相邻的体感传感器采集的多帧重叠的人体骨骼关节点数据;a data processing server, configured to acquire the original three-dimensional gait data sent by the acquisition server, and determine overlapping three-dimensional gait data based on the timestamp information of the original three-dimensional gait data; the original three-dimensional gait data includes a human body Skeletal joint point data; the overlapping three-dimensional gait data includes multi-frame overlapping human skeleton joint point data collected by any two adjacent somatosensory sensors in the somatosensory sensor array;
根据任意相邻两帧所述人体骨骼关节点数据之间的空间距离,将多帧重叠的所述人体骨骼关节点数据进行融合处理,得到目标三维步态数据。According to the spatial distance between the human skeleton joint point data of any two adjacent frames, the overlapping human skeleton joint point data of multiple frames are fused to obtain target three-dimensional gait data.
本申请实施例的第四方面提供了一种三维步态数据处理方法,包括:A fourth aspect of the embodiments of the present application provides a three-dimensional gait data processing method, including:
采集服务器在监测到步态信息采集指令后,同步获取原始三维步态数据,所述原始三维步态数据包括所述体感传感器阵列中每个体感传感器在预设时长内采集的三维步态数据,将所述原始三维步态数据发送至数据处理服务器;After monitoring the gait information collection instruction, the acquisition server synchronously acquires raw three-dimensional gait data, where the raw three-dimensional gait data includes three-dimensional gait data collected by each somatosensory sensor in the somatosensory sensor array within a preset time period, sending the original three-dimensional gait data to a data processing server;
数据处理服务器获取所述采集服务器发送的所述原始三维步态数据,基于所述原始三维步态数据的时间戳信息,确定重叠三维步态数据;所述原始三维步态数据包括人体骨骼关节点数据;所述重叠三维步态数据包括所述体感传感器阵列中任意两个相邻的体感传感器采集的多帧重叠的人体骨骼关节点数据;The data processing server acquires the original three-dimensional gait data sent by the acquisition server, and determines overlapping three-dimensional gait data based on the timestamp information of the original three-dimensional gait data; the original three-dimensional gait data includes human skeleton joint points data; the overlapping three-dimensional gait data includes multi-frame overlapping human skeleton joint point data collected by any two adjacent somatosensory sensors in the somatosensory sensor array;
根据任意相邻两帧所述人体骨骼关节点数据之间的空间距离,将多帧重叠的所述人体骨骼关节点数据进行融合处理,得到目标三维步态数据。According to the spatial distance between the human skeleton joint point data of any two adjacent frames, the overlapping human skeleton joint point data of multiple frames are fused to obtain target three-dimensional gait data.
本申请实施例的第五方面提供了一种服务器,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上实施例第一方面所述三维步态数据采集方法的步骤,或所述处理器执行所述计算机程序时实现如上实施例第二方面所述三维步态数据处理方法的步骤。A fifth aspect of the embodiments of the present application provides a server, including a memory, a processor, and a computer program stored in the memory and executable on the processor, which is implemented when the processor executes the computer program The steps of the three-dimensional gait data acquisition method described in the first aspect of the above embodiment, or the steps of implementing the three-dimensional gait data processing method described in the second aspect of the above embodiment when the processor executes the computer program.
本申请实施例第六方面提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如上实施例第一方面所述三维步态数据采集方法的步骤,或所述处理器执行所述计算机程序时实现如上第二方面所述三维步态数据处理方法的步骤。本申请实施例的第一方面提供的三维步态数据采集方法,与现有技术相比存在的有益效果是,在监测到步态信息采集指令后,同步获取由预设的体感传感器阵列中每个体感传感器在预设时长内采集的原始三维步态数据,并将所述原始三维步态数据发送至数据处理服务器,借助于预设的体感传感器阵列中的每个体感传感器在预设时长内采集所述原始三维步态数据,能够高效准确地获取步态数据。A sixth aspect of an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, realizes the three-dimensional gait described in the first aspect of the above embodiment The steps of the data acquisition method, or the steps of implementing the three-dimensional gait data processing method described in the second aspect above when the processor executes the computer program. Compared with the prior art, the three-dimensional gait data acquisition method provided by the first aspect of the embodiments of the present application has the beneficial effect that, after monitoring the gait information acquisition instruction, synchronously acquires the gait information from the preset somatosensory sensor array. The raw three-dimensional gait data collected by the somatosensory sensor within a preset time period, and the raw three-dimensional gait data is sent to the data processing server, with the help of each somatosensory sensor in the preset somatosensory sensor array within the preset time period Collecting the original three-dimensional gait data can efficiently and accurately acquire the gait data.
本申请实施例的第二方面至第六方面与现有技术相比,存在的有益效果与本申请实施例第一方面与现有技术相比,存在的有益效果相同,在此不再赘述。Compared with the prior art, the beneficial effects of the second to sixth aspects of the embodiments of the present application are the same as those of the first aspect of the embodiments of the present application compared with the prior art, which will not be repeated here.
附图说明Description of drawings
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present application more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the drawings in the following description are only for the present application. In some embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without any creative effort.
图1是本申请第一实施例提供的三维步态数据处理系统的系统结构图;1 is a system structure diagram of a three-dimensional gait data processing system provided by a first embodiment of the present application;
图2是图1中体感传感器阵列的阵列图;Fig. 2 is an array diagram of the somatosensory sensor array in Fig. 1;
图3是本申请第二实施例提供的三维步态数据采集方法的实现流程图;Fig. 3 is the realization flow chart of the three-dimensional gait data acquisition method provided by the second embodiment of the present application;
图4是本申请第三实施例提供的三维步态数据处理方法的实现流程图;Fig. 4 is the realization flow chart of the three-dimensional gait data processing method provided by the third embodiment of the present application;
图5是本申请第四实施例提供的三维步态数据处理方法的实现流程图;Fig. 5 is the realization flow chart of the three-dimensional gait data processing method provided by the fourth embodiment of the present application;
图6是图5中S502的具体实现流程图;Fig. 6 is the concrete realization flow chart of S502 in Fig. 5;
图7是本申请第五实施例提供的三维步态数据处理方法的实现流程图;Fig. 7 is the realization flow chart of the three-dimensional gait data processing method provided by the fifth embodiment of the present application;
图8是本申请第六实施例提供的三维步态数据处理方法的实现流程图;Fig. 8 is the realization flow chart of the three-dimensional gait data processing method provided by the sixth embodiment of the present application;
图9是本申请实施例提供的采集服务器的结构示意图;9 is a schematic structural diagram of a collection server provided by an embodiment of the present application;
图10是本申请实施例提供的数据处理服务器的结构示意图;10 is a schematic structural diagram of a data processing server provided by an embodiment of the present application;
图11是本申请实施例提供的服务器的示意图。FIG. 11 is a schematic diagram of a server provided by an embodiment of the present application.
具体实施方式Detailed ways
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。In the following description, for the purpose of illustration rather than limitation, specific details such as a specific system structure and technology are set forth in order to provide a thorough understanding of the embodiments of the present application. However, it will be apparent to those skilled in the art that the present application may be practiced in other embodiments without these specific details. In other instances, detailed descriptions of well-known systems, devices, circuits, and methods are omitted so as not to obscure the description of the present application with unnecessary detail.
需要说明的是,步态数据是指人类在自然状态下行走时身体的各个骨骼所处的运动状态,是一种复杂的行为特征。由于步态数据不同于指纹,面容,心率,脑电等近距离接触才能获取的生物特征,其作为一种远距离非接触式生物特征,在研究人体健康以及生活习惯领域起到了重要的作用。It should be noted that the gait data refers to the motion state of each skeleton of the body when a human walks in a natural state, which is a complex behavioral feature. Since gait data is different from fingerprints, face, heart rate, EEG and other biometrics that can only be obtained by close contact, as a long-distance non-contact biometrics, it plays an important role in the study of human health and living habits.
目前,常见的步态数据采集方法包括基于穿戴传感器设备的步态信息采集方法以及基于彩色图像的步态信息采集方法;其中,基于穿戴传感器设备的步态信息采集方法一方面由于设备穿戴复杂,笨重,会对采集对象本身的步态产生影响,另一方面,由于采集设备价格昂贵,不利于大规模的数据采集。而基于彩色图像的步态信息采集受限于环境光等影响较大,而且,彩色图像颜色提取的方式抗光线和同色系干扰的能力极差,原理上决定很难把不同的物体的远近区隔出来。At present, common gait data collection methods include a gait information collection method based on wearable sensor equipment and a gait information collection method based on color images; among them, the gait information collection method based on wearable sensor equipment is complex due to the complex wearing of the equipment. It is bulky and will have an impact on the gait of the object to be collected. On the other hand, because the acquisition equipment is expensive, it is not conducive to large-scale data collection. The gait information collection based on color images is limited by the influence of ambient light and other factors. Moreover, the color extraction method of color images has extremely poor ability to resist light and the interference of the same color system. In principle, it is difficult to distinguish the far and near areas of different objects isolate.
针对上述问题,本申请提出一种三维步态数据处理方法、系统、服务器及存储介质,旨在获取人类在自然步态下的身体运动数据,以三维体感测试为主,对被试的自然步态进行采集和测试。体感传感器是指通过3D拍摄或测量技术,具有对人体结构进行探测感知的传感器。3D拍摄或测量技术实际上是相对比较成熟的技术,具有多种解决方案,比如单彩色摄像头,双彩色摄像头,光干涉,超声波、结构光散斑和TOF(测量光的飞行时间)等等。目前,比较成熟的体感传感器是MicroSoft的Kinect产品。它具有强大的人体骨骼关节点的提取功能,不少关于步态领域的学术研究都应用该设备作为关节点运动信息的采集工具。In view of the above problems, the present application proposes a three-dimensional gait data processing method, system, server and storage medium, aiming to obtain human body motion data under natural gait. state for acquisition and testing. A somatosensory sensor refers to a sensor that detects and perceives human body structures through 3D photography or measurement technology. 3D shooting or measurement technology is actually a relatively mature technology, with a variety of solutions, such as single-color camera, dual-color camera, optical interference, ultrasonic, structured light speckle and TOF (measurement of the time of flight of light) and so on. At present, the more mature somatosensory sensor is the Kinect product of MicroSoft. It has a powerful function of extracting joint points of human bones, and many academic researches in the field of gait use this device as a tool for collecting joint point motion information.
为了说明本申请所述的技术方案,下面通过具体实施例来进行说明。如图1所示,是本申请第一实施例提供的三维步态数据处理系统的系统结构图。由图1可知,本申请实施例提供的三维步态数据处理系统10包括:采集服务器101、与所述采集服务器101通讯连接的体感传感器阵列102以及与所述采集服务器101通讯连接的数据处理服务器103;其中,In order to illustrate the technical solutions described in the present application, the following specific embodiments are used for description. As shown in FIG. 1 , it is a system structure diagram of the three-dimensional gait data processing system provided by the first embodiment of the present application. As can be seen from FIG. 1 , the three-dimensional gait
所述体感传感器阵列102包括按照预设排列方式排列的多个体感传感器1021,每个所述体感传感器1021之间相互独立。The
需要说明的是,所述体感传感器阵列102的排列方式由测试人员事先根据经验以及测试需要进行部署,对每个所述体感传感器之间的距离没有固定要求。It should be noted that the arrangement of the
例如,在一可选的实现方式中,如图2所示,是图1中体感传感器阵列的阵列图。由图2可知,在本实施例中,所述体感传感器整列102包括预设数量的(例如6个)体感传感器1021,每相邻两个所述体感传感器1021之间的距离均为2.6米,且所有所述体感传感器1021均部署于天花板吊杆之上,所述天花板吊杆距离地面的距离大于预设的人体高度距离,例如2.65米。For example, in an optional implementation manner, as shown in FIG. 2 , it is an array diagram of the somatosensory sensor array in FIG. 1 . As can be seen from FIG. 2 , in this embodiment, the
通过上述分析可知,本实施例通过预先部署在人体活动空间的体感传感器阵列,对预设范围内的人体在自然运动状态下采集三维步态数据,克服了单一传感器的测量范围的限制,实现了在不打扰用户的情况下,采集三维步态数据。It can be seen from the above analysis that this embodiment collects three-dimensional gait data for a human body within a preset range in a natural motion state through a somatosensory sensor array pre-deployed in the human activity space, which overcomes the limitation of the measurement range of a single sensor and realizes the Collect 3D gait data without disturbing the user.
在本实施例中,每个所述体感传感器为Kinect传感器,需要说明的是,每个所述体感传感器也可以是Intel RealSense等其他体感传感器,本申请实施对所述体感传感器不做具体限制。In this embodiment, each of the somatosensory sensors is a Kinect sensor. It should be noted that each of the somatosensory sensors may also be other somatosensory sensors such as Intel RealSense, which are not specifically limited in the implementation of this application.
所述采集服务器101,用于在监测到步态信息采集指令后,同步获取被监控对象的原始三维步态数据,所述原始三维步态数据包括所述体感传感器阵列中每个体感传感器在预设时长内采集的所述被监控对象的三维步态数据,将所述原始三维步态数据发送至数据处理服务器,以指示所述数据处理服务器对原始三维步态数据进行处理,得到被监测对象的三维步态数据;The
数据处理服务器102,用于获取所述采集服务器发送的所述原始三维步态数据,基于所述原始三维步态数据的时间戳信息,确定重叠三维步态数据;所述原始三维步态数据包括人体骨骼关节点数据;所述重叠三维步态数据包括所述体感传感器阵列中任意两个相邻的体感传感器采集的多帧重叠的人体骨骼关节点数据;The
根据任意相邻两帧所述人体骨骼关节点数据之间的空间距离,将多帧重叠的所述人体骨骼关节点数据进行融合处理,得到目标三维步态数据。According to the spatial distance between the human skeleton joint point data of any two adjacent frames, the overlapping human skeleton joint point data of multiple frames are fused to obtain target three-dimensional gait data.
通过上述分析可知,本申请实施例通过采集服务器在监测到步态信息采集指令后,同步获取由预先部署体感传感器阵列中每个体感传感器在预设时长内采集的三维步态数据,将所述原始三维步态数据发送至数据处理服务器,由所述数据处理服务器基于所述原始三维步态数据的时间戳信息,确定所述体感传感器阵列中任意两个相邻的体感传感器采集的多帧重叠的人体骨骼关节点数据;并根据任意相邻两帧所述人体骨骼关节点数据之间的空间距离,将多帧重叠的所述人体骨骼关节点数据进行融合处理,得到目标三维步态数据。能够快速准确地获取人体三维步态数据。It can be seen from the above analysis that in this embodiment of the present application, after monitoring the gait information collection instruction, the collection server synchronously acquires the three-dimensional gait data collected by each somatosensory sensor in the pre-deployed somatosensory sensor array within a preset period of time, and the said The raw three-dimensional gait data is sent to the data processing server, and the data processing server determines, based on the timestamp information of the raw three-dimensional gait data, the overlapping of multiple frames collected by any two adjacent somatosensory sensors in the somatosensory sensor array According to the spatial distance between the human skeleton joint point data of any two adjacent frames, the overlapping human skeleton joint point data of multiple frames are fused to obtain the target three-dimensional gait data. It can quickly and accurately obtain the three-dimensional gait data of the human body.
如图3所示,是本申请第二实施例提供的三维步态数据采集方法的实现流程图。本申请实施例由采集服务器的硬件或软件执行实现。详述如下:As shown in FIG. 3 , it is a flowchart of the realization of the three-dimensional gait data acquisition method provided by the second embodiment of the present application. The embodiments of the present application are implemented and implemented by hardware or software of a collection server. Details are as follows:
S301,监测到步态信息采集指令后,同步获取被监控对象的原始三维步态数据,所述原始三维步态数据包括预设的体感传感器阵列中每个体感传感器在预设时长内采集的所述被监控对象的三维步态数据。S301 , after monitoring the gait information collection instruction, synchronously acquire original three-dimensional gait data of the monitored object, where the original three-dimensional gait data includes all data collected by each somatosensory sensor in a preset somatosensory sensor array within a preset time period. The three-dimensional gait data of the monitored object.
可以理解地,所述步态信息采集指令,可以由工作人员通过所述采集服务器提供的操作界面触发,也可以由其他终端设备或者服务器触发。例如,在一种可选的实现方式中,所述步态信息采集指令由控制服务器触发,所述控制服务器向所述采集服务器发送步态信息采集指令,所述采集服务器监测到所述不同信息采集指令后,同步采集所述预设的体感传感器阵列中每个体感传感器在预设时长内采集的三维步态数据。所述步态信息采集指令包括所述预设时长。It can be understood that the gait information collection instruction can be triggered by a staff member through an operation interface provided by the collection server, or can be triggered by other terminal devices or servers. For example, in an optional implementation manner, the gait information collection instruction is triggered by a control server, the control server sends a gait information collection instruction to the collection server, and the collection server monitors the different information After collecting the instruction, synchronously collect the three-dimensional gait data collected by each somatosensory sensor in the preset somatosensory sensor array within a preset time period. The gait information collection instruction includes the preset duration.
需要说明的是,在一些应用场景中,通常每个所述体感传感器在所述预设时长内采集的所述三维步态数据可能较多,通过一台采集服务器无法同时获取到较多的所述三维步态数据,因此,通常可以通过多台采集服务器获取所述三维步态数据。例如,通过一台采集服务器获取对应一个体感传感器采集的所述三维步态数据,可以提高数据获取的效率,并减少采集服务器故障的概率。It should be noted that, in some application scenarios, usually each of the somatosensory sensors may collect a lot of the three-dimensional gait data within the preset time period, and it is impossible to obtain more data at the same time through one collection server. the three-dimensional gait data, therefore, the three-dimensional gait data can usually be acquired through multiple acquisition servers. For example, obtaining the three-dimensional gait data collected by a corresponding somatosensory sensor through a collection server can improve the efficiency of data acquisition and reduce the probability of failure of the collection server.
S302,将所述原始三维步态数据发送至数据处理服务器,以指示所述数据处理服务器对原始三维步态数据进行处理,得到被监测对象的三维步态数据。S302: Send the raw three-dimensional gait data to a data processing server to instruct the data processing server to process the raw three-dimensional gait data to obtain three-dimensional gait data of the monitored object.
可以理解地,所述采集服务器与所述体感传感器阵列通常布置于采集场所,而所述数据处理服务器可以布置在任意场所,当所述采集服务器获取到所述原始三维步态数据后,将所述原始三维步态数据发送至所述数据处理服务器,供后续使用。It can be understood that the collection server and the somatosensory sensor array are usually arranged at the collection site, and the data processing server can be arranged at any place. After the collection server obtains the original three-dimensional gait data, it will The original three-dimensional gait data is sent to the data processing server for subsequent use.
通过上述分析可知,本申请实施例提供的三维步态数据采集方法,在监测到步态信息采集指令后,同步获取由预设的体感传感器阵列中每个体感传感器在预设时长内采集的原始三维步态数据,并将所述原始三维步态数据发送至数据处理服务器,借助于预设的体感传感器阵列中的每个体感传感器在预设时长内采集所述原始三维步态数据,能够高效准确地获取步态数据。It can be seen from the above analysis that the three-dimensional gait data acquisition method provided by the embodiment of the present application, after monitoring the gait information acquisition instruction, synchronously acquires the original data collected by each somatosensory sensor in the preset somatosensory sensor array within a preset period of time. three-dimensional gait data, and the raw three-dimensional gait data is sent to the data processing server. With the help of each somatosensory sensor in the preset somatosensory sensor array, the raw three-dimensional gait data is collected within a preset period of time, which can efficiently Accurately acquire gait data.
如图4所示,是本申请第三实施例提供的三维步态数据处理方法的实现流程图。本申请实施例由数据处理服务器的硬件或软件实现。详述如下:As shown in FIG. 4 , it is an implementation flowchart of the three-dimensional gait data processing method provided by the third embodiment of the present application. The embodiments of the present application are implemented by hardware or software of a data processing server. Details are as follows:
S401,获取采集服务器发送的原始三维步态数据,所述原始三维步态数据包括预设的体感传感器阵列中每个体感传感器在预设时长内采集的三维步态数据。S401: Acquire raw three-dimensional gait data sent by a collection server, where the raw three-dimensional gait data includes three-dimensional gait data collected by each somatosensory sensor in a preset somatosensory sensor array within a preset time period.
可以理解地,所述原始三维步态数据为每个所述体感传感器在预设时长内采集的三维步态数据,每个所述体感传感器在不同采集时刻采集的所述三维步态数据不同,且每个所述体感传感器在对应采集时刻采集的所述三维步态数据具有时间戳信息。It can be understood that the original three-dimensional gait data is the three-dimensional gait data collected by each of the somatosensory sensors within a preset period of time, and the three-dimensional gait data collected by each of the somatosensory sensors at different collection moments are different, And the three-dimensional gait data collected by each of the somatosensory sensors at the corresponding collection moment has time stamp information.
S402,基于所述原始三维步态数据的时间戳信息,确定重叠三维步态数据,所述原始三维步态数据包括人体骨骼关节点数据;所述重叠三维步态数据包括所述体感传感器阵列中任意两个相邻的体感传感器采集的多帧重叠的人体骨骼关节点数据。S402, based on the timestamp information of the original three-dimensional gait data, determine overlapping three-dimensional gait data, where the original three-dimensional gait data includes human skeleton joint point data; the overlapping three-dimensional gait data includes data in the somatosensory sensor array Multi-frame overlapping human skeleton joint point data collected by any two adjacent somatosensory sensors.
具体地,基于所述原始三维步态数据的时间戳信息,可以定位到任意相邻两个所述体感传感器采集的所述人体骨骼关节点数据中的多帧重叠的人体骨骼关节点数据。Specifically, based on the timestamp information of the original three-dimensional gait data, the overlapping human skeleton joint point data of multiple frames in the human skeleton joint point data collected by any two adjacent somatosensory sensors can be located.
S403,根据任意相邻两帧所述人体骨骼关节点数据之间的空间距离,将多帧重叠的所述人体骨骼关节点数据进行融合处理,得到目标三维步态数据。S403 , according to the spatial distance between the human skeleton joint point data in any two adjacent frames, perform fusion processing on the human skeleton joint point data overlapping multiple frames to obtain target three-dimensional gait data.
可以理解地,每帧所述人体骨骼关节点数据包括人体的所有骨骼关节点数据,计算所述多帧重叠的人体骨骼关节点数据中任意相邻两帧所述人体骨骼关节点数据之间的空间距离,并根据所述空间距离可以将多帧重叠的所述骨骼关节点数据进行过滤处理,过滤掉重叠的所述骨骼关节点数据,实现将多帧将多帧所述人体骨骼关节点数据融合的过程,得到所述目标三维步态数据。Understandably, each frame of the human skeleton joint point data includes all the human skeleton joint point data, and calculate the difference between any two adjacent frames of the human skeleton joint point data in the multi-frame overlapping human skeleton joint point data. According to the spatial distance, the overlapping skeleton joint point data of multiple frames can be filtered, and the overlapping skeleton joint point data can be filtered out, so that the multi-frame human skeleton joint point data can be converted into multiple frames. In the process of fusion, the three-dimensional gait data of the target is obtained.
通过上述分析可知,本实施例通过基于所述原始三维步态数据的时间戳信息,确定多帧重叠的人体骨骼关节点数据,并根据任意相邻两帧所述人体骨骼关节点数据之间的空间距离,将多帧重叠的所述人体骨骼关节点数据进行融合处理,得到目标三维步态数据。进一步能够从原始三维步态数据中过滤掉重合的三维步态数据,将所述原始三维步态数据融合为预设时长内采集的完整数据,能够得到更完整准确的三维步态数据。It can be seen from the above analysis that in this embodiment, multiple frames of overlapping human skeleton joint point data are determined based on the timestamp information of the original three-dimensional gait data, and according to the difference between any two adjacent frames of the human skeleton joint point data Spatial distance, the multi-frame overlapping of the human skeleton joint point data is fused to obtain the target three-dimensional gait data. Further, overlapping 3D gait data can be filtered out from the original 3D gait data, and the original 3D gait data can be fused into complete data collected within a preset time period, so that more complete and accurate 3D gait data can be obtained.
如图5所示,是本申请第四实施例提供的三维步态数据处理方法的实现流程图。由图5可知,本实施例与图4所示实施例相比,S501与S401以及S505与S403的具体实现过程相同,不同之处在于,在S504之前还包括S502~S503,以及S504与S402的具体实现过程不同。需要说明的是,S501与S502为顺序执行关系。详述如下:As shown in FIG. 5 , it is an implementation flowchart of the three-dimensional gait data processing method provided by the fourth embodiment of the present application. It can be seen from FIG. 5 that, compared with the embodiment shown in FIG. 4 , the specific implementation processes of S501 and S401 and S505 and S403 are the same in this embodiment, the difference is that S502 to S503 are included before S504, and S504 and S402 The specific implementation process is different. It should be noted that S501 and S502 are in a sequential execution relationship. Details are as follows:
S502,根据预设的人体骨骼结构中各骨骼关节点之间的基准距离,确定所述人体骨骼关节点数据中的异常骨骼关节点数据。S502: Determine abnormal bone joint point data in the human bone joint point data according to a preset reference distance between each bone joint point in the human bone structure.
可以理解地,人体骨骼结构中各骨骼关节点之间的距离通常在一定的预设范围内,本实施例预设有人体骨骼结构中各骨骼关节点之间的基准距离,所述基准距离为根据大量的实验数据获取的人体各骨骼关节点之间的距离的额平均值。It can be understood that the distance between each skeleton joint point in the human skeleton structure is usually within a certain preset range. In this embodiment, the reference distance between each skeleton joint point in the human skeleton structure is preset, and the reference distance is: The average value of the distance between the joint points of each skeleton of the human body obtained from a large number of experimental data.
在一种可选的实现方式中,可以选取所述连续多帧的所述人体骨骼关节点数据,分别计算每帧所述人体骨骼关节点数据中各骨骼关节点数据之间的距离,将计算得到的各个距离与所述预设的人体骨骼结构中各骨骼关节点之间的基准距离进行比较,当有连续多帧对应的所述人体骨骼关节点数据中,有同一骨骼关节点数据与其它骨骼关节点数据之间的距离与所述预设的人体骨骼结构中各骨骼关节点之间的基准距离的差值的绝对值均大于预设的距离阈值,则说明该骨骼关节点数据为异常骨骼关节点数据。In an optional implementation manner, the continuous multiple frames of the human skeleton joint point data may be selected, and the distance between each skeleton joint point data in the human skeleton joint point data of each frame may be calculated respectively, and the calculated The obtained distances are compared with the reference distances between the skeletal joint points in the preset human skeleton structure. When there are multiple consecutive frames corresponding to the human skeleton joint point data, there are the same skeleton joint point data and other If the absolute value of the difference between the distance between the bone joint point data and the reference distance between each bone joint point in the preset human skeleton structure is greater than the preset distance threshold, it means that the bone joint point data is abnormal Bone joint point data.
具体地,如图6所示,是图5中S502的具体实现流程图。由图6可知,S502包括S5021~S5023。详述如下:Specifically, as shown in FIG. 6 , it is a specific implementation flowchart of S502 in FIG. 5 . It can be seen from FIG. 6 that S502 includes S5021 to S5023. Details are as follows:
S5021,根据所述原始三维步态数据的时间戳信息,将所述体感传感器阵列中每个所述体感传感器采集所述人体骨骼关节点数据进行排序,分别得到具有时间序列的多帧人体骨骼关节点数据。S5021, according to the timestamp information of the original three-dimensional gait data, sort the data of the human skeleton joint points collected by each of the somatosensory sensors in the somatosensory sensor array, and obtain a multi-frame human skeleton joint with time series respectively. point data.
可以理解地,基于时间戳信息进行排序,可以提高多帧人体骨骼关节点数据分析的准确性及效率。Understandably, sorting based on timestamp information can improve the accuracy and efficiency of multi-frame human skeleton joint point data analysis.
S5022,分别计算每帧人体骨骼关节点数据中任意相邻两个骨骼关节点数据之间的距离。S5022: Calculate the distance between any two adjacent bone joint point data in each frame of human bone joint point data, respectively.
可以理解地,通常相邻两个骨骼关节点数据之间的距离随人体运动变化的变化率最小,因此可以通过计算任意相邻两个骨骼关节点数据之间的距离来确定异常骨骼关节点数据。It is understandable that the distance between the data of two adjacent bone joint points usually has the smallest change rate with the change of human motion, so the abnormal bone joint point data can be determined by calculating the distance between any two adjacent bone joint point data. .
S5023,根据所述距离与预设的人体骨骼结构中各骨骼关节点之间的基准距离,确定所述人体骨骼关节点数据中的异常骨骼关节点数据。S5023: Determine abnormal bone joint point data in the human bone joint point data according to the distance and a preset reference distance between each bone joint point in the human bone structure.
具体地,当有骨骼关节点数据与相邻的两个骨骼关节点数据之间的所述距离与所述基准距离之间的差值的绝对值均大于预设的所述距离阈值,则确定当前所述骨骼关节点数据为异常骨骼关节点数据。Specifically, when the absolute value of the difference between the distance between the skeletal joint point data and the data of two adjacent skeletal joint points and the reference distance is greater than the preset distance threshold, it is determined that The current bone joint point data is abnormal bone joint point data.
S503,对所述异常骨骼关节点数据进行数据补偿及去噪处理,得到修正骨骼关节点数据。S503, performing data compensation and denoising processing on the abnormal bone joint point data to obtain corrected bone joint point data.
需要说明的是,对所述异常骨骼关节点数据按照预设的去噪及补偿方法进行处理,例如,所述预设的去噪及补偿方法为高斯滤波处理方式,通过所述高斯滤波处理方式对所述异常骨骼关节点数据进行去噪处理,消除所述异常骨骼关节点数据并平滑数据,得到修正骨骼关节点数据。It should be noted that the abnormal bone joint point data is processed according to a preset denoising and compensation method. For example, the preset denoising and compensation method is a Gaussian filtering processing method, and the Gaussian filtering processing method is used. The abnormal bone joint point data is denoised, the abnormal bone joint point data is eliminated and the data is smoothed to obtain corrected bone joint point data.
S504,基于所述原始三维步态数据的时间戳信息,确定所述修正骨骼关节点数据中的多帧重叠的所述人体骨骼关节点数据。S504 , based on the timestamp information of the original three-dimensional gait data, determine the overlapping human skeleton joint point data of multiple frames in the modified skeleton joint point data.
通过上述分析可知,本实施例通过对所述原始三维步态数据中的异常数据进行去噪及补偿处理之后,得到的所述修正骨骼关节点数据,能够有效地缓解由体感传感器自身导致的采集到的畸变数据。It can be seen from the above analysis that the modified skeletal joint point data obtained by denoising and compensating the abnormal data in the original three-dimensional gait data in this embodiment can effectively alleviate the collection caused by the somatosensory sensor itself. to the distortion data.
如图7所示,是本申请第五实施例提供的三维步态数据处理方法的实现流程图。由图7可知,本实施例与图5所示实施例相比,S701~S703与S501~S503以及S706与S505的具体实现过程相同,不同之处在于,在S705之前还包括S704以及S705与S504的具体实现过程不同。需要说明的是,S703与S704为顺序执行关系。详述如下:As shown in FIG. 7 , it is an implementation flowchart of the three-dimensional gait data processing method provided by the fifth embodiment of the present application. As can be seen from FIG. 7 , compared with the embodiment shown in FIG. 5 , the specific implementation processes of S701-S703 and S501-S503 and S706 and S505 are the same, the difference is that S704 and S705 and S504 are also included before S705 The specific implementation process is different. It should be noted that S703 and S704 are in a sequential execution relationship. Details are as follows:
S704,根据所述体感传感器阵列中每个所述体感传感器的倾斜角度,分别将各个所述修正骨骼关节点数据进行坐标转换,得到同一预设坐标系下的标准骨骼关节点数据。S704, according to the inclination angle of each of the somatosensory sensors in the somatosensory sensor array, perform coordinate transformation on each of the modified skeleton joint point data respectively to obtain standard skeleton joint point data in the same preset coordinate system.
可以理解地,由于安装所述体感传感器的过程中,难以避免的误差以及所述体感传感器在生产过程中产生的误差,每个所述体感传感器与地面的角度都有细微的差别。在本实施例中,将每个所述体感传感器与地面的角度称为所述倾斜角度。且每个所述体感传感器采集的所述原始骨骼关节点数据均以自身对应的空间坐标系为基准,因此,根据所述倾斜角度进行坐标转换,将所述修正骨骼关节点数据转换为同一预设坐标系下的标准骨骼关节点数据,能够为后续研究提供更准确的数据依据。It can be understood that, due to unavoidable errors in the process of installing the somatosensory sensors and errors generated in the production process of the somatosensory sensors, each of the somatosensory sensors has a slight difference in the angle between the ground and the ground. In this embodiment, the angle between each of the somatosensory sensors and the ground is referred to as the inclination angle. And the original bone joint point data collected by each somatosensory sensor is based on its corresponding spatial coordinate system. Therefore, coordinate transformation is performed according to the tilt angle, and the modified bone joint point data is converted into the same preset. The standard skeletal joint point data in the coordinate system can provide a more accurate data basis for subsequent research.
S705,基于所述原始三维步态数据的时间戳信息,确定所述标准骨骼关节点数据中的多帧重叠的所述人体骨骼关节点数据。S705 , based on the timestamp information of the original three-dimensional gait data, determine the overlapping human skeleton joint point data of multiple frames in the standard skeleton joint point data.
通过上述分析可知,本实施例通过根据每个所述体感传感器的倾斜角度,将所述修正骨骼关节点数据进行坐标转换,得到同一预设坐标系下的标准骨骼关节点数据,能够得到更准确的三维步态数据。It can be seen from the above analysis that in this embodiment, the modified bone joint point data is coordinately transformed according to the inclination angle of each somatosensory sensor to obtain the standard bone joint point data in the same preset coordinate system, which can obtain more accurate bone joint point data. 3D gait data.
如图8所示,是本申请第六实施例提供的三维步态数据处理方法的实现流程图。由图8可知,本实施例与图7所示实施例相比,S801~S803与S701~S703以及S806~S808与S704~S706的具体实现过程相同,不同之处在于,在S806之前还包括S804~S805。需要说明的是,S804与S803为并列执行关系。详述如下:As shown in FIG. 8 , it is an implementation flowchart of the three-dimensional gait data processing method provided by the sixth embodiment of the present application. It can be seen from FIG. 8 that, compared with the embodiment shown in FIG. 7 , the specific implementation processes of S801-S803 and S701-S703 and S806-S808 and S704-S706 are the same, the difference is that S804 is also included before S806 ~S805. It should be noted that S804 and S803 are in a parallel execution relationship. Details are as follows:
S804,获取所述原始三维步态数据中的人体骨骼关节点数据。S804: Acquire human skeleton joint point data in the original three-dimensional gait data.
S805,对所述人体骨骼关节点数据进行最小二乘法去拟合处理,得到每个所述体感传感器的所述倾斜角度。S805 , performing least squares fitting processing on the human skeleton joint point data to obtain the inclination angle of each of the somatosensory sensors.
本申请提出以所述人体骨骼关节点数据中相对稳定的骨骼关节点数据,例如,经过大量数据分析后发现SpineBase关节点数据在行进过程中相对稳定。以相对稳定的关节点数据的z轴数据和y轴数据为依据,使用最小二乘法去拟合直线y=k*x+b,拟合后的直线斜率k即为对应相对稳定的关节点数据的倾斜角度的正切值。The present application proposes to use relatively stable skeleton joint point data in the human skeleton joint point data. For example, after a large amount of data analysis, it is found that the SpineBase joint point data is relatively stable during travel. Based on the z-axis data and y-axis data of the relatively stable joint point data, the least squares method is used to fit the straight line y=k*x+b, and the fitted straight line slope k is the corresponding relatively stable joint point data The tangent of the tilt angle.
通过上述分析可知,本实施例通过最小二乘法去拟合处理所述人体骨骼关节点数据,得到每个所述体感传感器的所述倾斜角度。能够方便快速地解决由安装每个所述体感传感器导致的误差。It can be seen from the above analysis that in this embodiment, the least squares method is used to fit and process the data of the joint points of the human skeleton to obtain the inclination angle of each of the somatosensory sensors. Errors caused by installing each of the somatosensory sensors can be solved easily and quickly.
图9是本申请实施例提供的采集服务器的结构示意图。由图9可知,本实施例提供的采集服务器9包括:FIG. 9 is a schematic structural diagram of a collection server provided by an embodiment of the present application. It can be seen from FIG. 9 that the
采集模块901,用于在监测到步态信息采集指令后,同步获取原始三维步态数据,所述原始三维步态数据包括所述体感传感器阵列中每个体感传感器在预设时长内采集的三维步态数据。The
发送模块902,用于将所述原始三维步态数据发送至数据处理服务器。The sending
如图10所示,是本申请实施例提供的数据处理服务器的结构示意图。由图10可知,本申请实施例提供的数据处理服务器10包括:As shown in FIG. 10 , it is a schematic structural diagram of a data processing server provided by an embodiment of the present application. As can be seen from FIG. 10 , the
第一确定模块1001,用于获取所述采集服务器发送的所述原始三维步态数据,基于所述原始三维步态数据的时间戳信息,确定重叠三维步态数据;所述原始三维步态数据包括人体骨骼关节点数据;所述重叠三维步态数据包括所述体感传感器阵列中任意两个相邻的体感传感器采集的多帧重叠的人体骨骼关节点数据;The
第一得到模块1002,用于根据任意相邻两帧所述人体骨骼关节点数据之间的空间距离,将多帧重叠的所述人体骨骼关节点数据进行融合处理,得到目标三维步态数据。The first obtaining
在一种可选的实现方式中,还包括:In an optional implementation manner, it also includes:
第二确定模块,用于根据预设的人体骨骼结构中各骨骼关节点之间的基准距离,确定所述人体骨骼关节点数据中的异常骨骼关节点数据;The second determining module is configured to determine the abnormal bone joint point data in the human bone joint point data according to the preset reference distance between each bone joint point in the human bone structure;
第二得到模块,用于对所述异常骨骼关节点数据进行数据补偿及去噪处理,得到修正骨骼关节点数据;The second obtaining module is used for performing data compensation and denoising processing on the abnormal skeleton joint point data to obtain corrected skeleton joint point data;
对应地,所述第一确定模块具体用于:Correspondingly, the first determining module is specifically used for:
基于所述原始三维步态数据的时间戳信息,确定所述修正骨骼关节点数据中的多帧重叠的所述人体骨骼关节点数据。Based on the timestamp information of the original three-dimensional gait data, the overlapping human skeleton joint point data of multiple frames in the modified skeleton joint point data is determined.
在一种可选的实现方式中,所述第二确定模块,包括:In an optional implementation, the second determining module includes:
排序单元,用于根据所述原始三维步态数据的时间戳信息,将所述体感传感器阵列中每个所述体感传感器采集所述人体骨骼关节点数据进行排序,分别得到具有时间序列的多帧人体骨骼关节点数据;a sorting unit, configured to sort the human skeleton joint point data collected by each of the somatosensory sensors in the somatosensory sensor array according to the timestamp information of the original three-dimensional gait data, and obtain multiple frames with time series respectively Human skeleton joint point data;
计算单元,用于分别计算每帧人体骨骼关节点数据中任意相邻两个骨骼关节点数据之间的距离;a calculation unit, used to calculate the distance between any two adjacent skeleton joint point data in each frame of human skeleton joint point data;
确定单元,用于根据所述距离与预设的人体骨骼结构中各骨骼关节点之间的基准距离,确定所述人体骨骼关节点数据中的异常骨骼关节点数据。The determining unit is configured to determine abnormal bone joint point data in the human bone joint point data according to the distance and a preset reference distance between each bone joint point in the human bone structure.
在一种可选的实现方式中,还包括:In an optional implementation manner, it also includes:
转换模块,用于根据所述体感传感器阵列中每个所述体感传感器的倾斜角度,分别将各个所述修正骨骼关节点数据进行坐标转换,得到同一预设坐标系下的标准骨骼关节点数据;a conversion module, configured to perform coordinate transformation on each of the modified bone joint point data according to the inclination angle of each of the somatosensory sensors in the somatosensory sensor array, to obtain standard bone joint point data in the same preset coordinate system;
对应地,所述第一确定模块具体用于:Correspondingly, the first determining module is specifically used for:
基于所述原始三维步态数据的时间戳信息,确定所述标准骨骼关节点数据中的多帧重叠的所述人体骨骼关节点数据。Based on the timestamp information of the original three-dimensional gait data, the overlapping human skeleton joint point data of multiple frames in the standard skeleton joint point data is determined.
在一种可选的实现方式中,还包括:In an optional implementation manner, it also includes:
获取模块,用于获取所述原始三维步态数据中的人体骨骼关节点数据;an acquisition module, used for acquiring the human skeleton joint point data in the original three-dimensional gait data;
处理模块,用于对所述人体骨骼关节点数据进行最小二乘法去拟合处理,得到每个所述体感传感器的所述倾斜角度。The processing module is configured to perform least squares fitting processing on the human skeleton joint point data to obtain the inclination angle of each of the somatosensory sensors.
图11是本申请实施例提供的服务器的示意图。如图11所示,该实施例的服务器2包括:处理器20、存储器21以及存储在存储器21中并可在处理器20上运行的计算机程序22,例如远程控制终端的程序。处理器20执行计算机程序22时实现上述各个三维步态数据采集方法实施例中的步骤或三维步态数据处理方法实施例中的步骤,例如图3所示的步骤301至302,或者图4所示的步骤401至403。FIG. 11 is a schematic diagram of a server provided by an embodiment of the present application. As shown in FIG. 11 , the server 2 of this embodiment includes a
示例性的,计算机程序22可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在存储器21中,并由处理器20执行,以完成本申请。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述计算机程序22在所述服务器2中的执行过程。例如,计算机程序22可以被分割成采集模块及发送模块(虚拟装置中的模块),各模块具体功能如下:Exemplarily, the
采集模块,用于在监测到步态信息采集指令后,同步获取原始三维步态数据,所述原始三维步态数据包括所述体感传感器阵列中每个体感传感器在预设时长内采集的三维步态数据;The acquisition module is used for synchronously acquiring raw three-dimensional gait data after monitoring the gait information acquisition instruction, where the raw three-dimensional gait data includes the three-dimensional steps collected by each somatosensory sensor in the somatosensory sensor array within a preset period of time state data;
发送模块,用于将所述原始三维步态数据发送至数据处理服务器。The sending module is used for sending the original three-dimensional gait data to a data processing server.
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that, for the convenience and simplicity of description, only the division of the above-mentioned functional units and modules is used as an example. Module completion, that is, dividing the internal structure of the device into different functional units or modules to complete all or part of the functions described above. Each functional unit and module in the embodiment may be integrated in one processing unit, or each unit may exist physically alone, or two or more units may be integrated in one unit, and the above-mentioned integrated units may adopt hardware. It can also be realized in the form of software functional units. In addition, the specific names of the functional units and modules are only for the convenience of distinguishing from each other, and are not used to limit the protection scope of the present application. For the specific working processes of the units and modules in the above-mentioned system, reference may be made to the corresponding processes in the foregoing method embodiments, which will not be repeated here.
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。In the foregoing embodiments, the description of each embodiment has its own emphasis. For parts that are not described or described in detail in a certain embodiment, reference may be made to the relevant descriptions of other embodiments.
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。Those of ordinary skill in the art can realize that the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein can be implemented in electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
在本申请所提供的实施例中,应该理解到,所揭露的装置/终端设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/终端设备实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。In the embodiments provided in this application, it should be understood that the disclosed apparatus/terminal device and method may be implemented in other manners. For example, the apparatus/terminal device embodiments described above are only illustrative. For example, the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods, such as multiple units. Or components may be combined or may be integrated into another system, or some features may be omitted, or not implemented. On the other hand, the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个通信单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。The units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple communication units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。In addition, each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit. The above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
所述集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。The integrated modules/units, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium. Based on this understanding, the present application can implement all or part of the processes in the methods of the above embodiments, and can also be completed by instructing the relevant hardware through a computer program. The computer program can be stored in a computer-readable storage medium, and the computer When the program is executed by the processor, the steps of the foregoing method embodiments can be implemented. . Wherein, the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate form, and the like. The computer-readable medium may include: any entity or device capable of carrying the computer program code, a recording medium, a U disk, a removable hard disk, a magnetic disk, an optical disk, a computer memory, a read-only memory (ROM, Read-Only Memory) , Random Access Memory (RAM, Random Access Memory), electric carrier signal, telecommunication signal and software distribution medium, etc. It should be noted that the content contained in the computer-readable media may be appropriately increased or decreased according to the requirements of legislation and patent practice in the jurisdiction, for example, in some jurisdictions, according to legislation and patent practice, the computer-readable media Electric carrier signals and telecommunication signals are not included.
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。The above-mentioned embodiments are only used to illustrate the technical solutions of the present application, but not to limit them; although the present application has been described in detail with reference to the above-mentioned embodiments, those of ordinary skill in the art should understand that: it can still be used for the above-mentioned implementations. The technical solutions described in the examples are modified, or some technical features thereof are equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions in the embodiments of the application, and should be included in the within the scope of protection of this application.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911283552.7A CN111035393B (en) | 2019-12-13 | 2019-12-13 | Three-dimensional gait data processing method, system, server and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911283552.7A CN111035393B (en) | 2019-12-13 | 2019-12-13 | Three-dimensional gait data processing method, system, server and storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111035393A CN111035393A (en) | 2020-04-21 |
CN111035393B true CN111035393B (en) | 2022-08-09 |
Family
ID=70236229
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911283552.7A Active CN111035393B (en) | 2019-12-13 | 2019-12-13 | Three-dimensional gait data processing method, system, server and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111035393B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111539327B (en) * | 2020-04-23 | 2023-08-18 | 四川大学华西医院 | Method and device for identifying mild cognitive impairment based on gait information |
CN111582081A (en) * | 2020-04-24 | 2020-08-25 | 西安交通大学 | A spatiotemporal merging method and measuring device for gait data in series with multiple Kinects |
CN114359408B (en) * | 2021-12-31 | 2024-11-19 | 北京荣顺智行科技开发有限公司 | A method and device for optimizing spatiotemporal fusion of multi-source sensors |
WO2024172013A1 (en) * | 2023-02-13 | 2024-08-22 | 公立大学法人大阪 | Coordinate transformation method, coordinate transformation device, motion analysis method, motion analysis device, and computer program |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101558996A (en) * | 2009-05-15 | 2009-10-21 | 天津大学 | Gait recognition method based on orthogonal projection three-dimensional reconstruction of human motion structure |
CN107993249A (en) * | 2017-08-23 | 2018-05-04 | 北京航空航天大学 | A kind of body gait data fusion method based on more Kinect |
CN108572731A (en) * | 2018-03-16 | 2018-09-25 | 中国科学院自动化研究所 | Motion capture data presentation method and device based on multiple Kinects and UE4 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IN2013MU03837A (en) * | 2013-12-06 | 2015-07-31 | Tata Consultancy Services Ltd |
-
2019
- 2019-12-13 CN CN201911283552.7A patent/CN111035393B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101558996A (en) * | 2009-05-15 | 2009-10-21 | 天津大学 | Gait recognition method based on orthogonal projection three-dimensional reconstruction of human motion structure |
CN107993249A (en) * | 2017-08-23 | 2018-05-04 | 北京航空航天大学 | A kind of body gait data fusion method based on more Kinect |
CN108572731A (en) * | 2018-03-16 | 2018-09-25 | 中国科学院自动化研究所 | Motion capture data presentation method and device based on multiple Kinects and UE4 |
Non-Patent Citations (1)
Title |
---|
Abnormal Gait Recognition Using 3D Joint information of Multiple Kinects System and RNN-LSTM;Deok-Won Lee等;《2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)》;20191007;第542-545页 * |
Also Published As
Publication number | Publication date |
---|---|
CN111035393A (en) | 2020-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111035393B (en) | Three-dimensional gait data processing method, system, server and storage medium | |
EP3876191B1 (en) | Estimator generation device, monitoring device, estimator generation method, estimator generation program | |
US10445930B1 (en) | Markerless motion capture using machine learning and training with biomechanical data | |
CN104408718B (en) | A kind of gait data processing method based on Binocular vision photogrammetry | |
CN106175780A (en) | Facial muscle motion-captured analysis system and the method for analysis thereof | |
AU2017202152A1 (en) | Method and system for determining postural balance of a person | |
CN111506199B (en) | High-precision label-free whole body motion tracking system based on Kinect | |
CN114332421B (en) | An augmented reality assisted assembly system considering human factors | |
CN102932638A (en) | 3D video monitoring method based on computer modeling | |
CN107993249A (en) | A kind of body gait data fusion method based on more Kinect | |
CN104013401B (en) | A kind of human body electroencephalogram's signal and action behavior signal synchronous collection system and method | |
CN110837751A (en) | Human motion capture and gait analysis method based on RGBD depth camera | |
Xu et al. | [Retracted] An Inertial Sensing‐Based Approach to Swimming Pose Recognition and Data Analysis | |
CN115553779A (en) | Emotion recognition method and device, electronic equipment and storage medium | |
CN110837748B (en) | Remote gait acquisition and analysis system | |
CN107368188B (en) | Foreground extraction method and system based on multiple spatial positioning in mediated reality | |
CN118351592A (en) | Animal-based gait analysis method and terminal equipment | |
CN113255462A (en) | Gait scoring method, system, computer program product and readable storage medium | |
ElSayed et al. | Ambient and wearable sensing for gait classification in pervasive healthcare environments | |
WO2021114230A1 (en) | Three-dimensional gait data processing method and system, server, and storage medium | |
CN115479601B (en) | A three-dimensional space positioning method, system, device and storage medium | |
JP2020091535A (en) | Preprocessing device, preprocessing method and preprocessing program | |
CN113345603A (en) | Six-axis motion capture system and motion capture method | |
CN108309294A (en) | A kind of human body active state movable recognition system | |
CN208097330U (en) | A kind of technology analysis system for swimming exercise |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |