CN111032820A - 具有碱性纳米颗粒基分散体和水不溶性可水解聚酯的堵漏材料组合物 - Google Patents
具有碱性纳米颗粒基分散体和水不溶性可水解聚酯的堵漏材料组合物 Download PDFInfo
- Publication number
- CN111032820A CN111032820A CN201880052907.9A CN201880052907A CN111032820A CN 111032820 A CN111032820 A CN 111032820A CN 201880052907 A CN201880052907 A CN 201880052907A CN 111032820 A CN111032820 A CN 111032820A
- Authority
- CN
- China
- Prior art keywords
- water
- lost circulation
- lcm
- nanosilica dispersion
- basic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/50—Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
- C09K8/504—Compositions based on water or polar solvents
- C09K8/506—Compositions based on water or polar solvents containing organic compounds
- C09K8/508—Compositions based on water or polar solvents containing organic compounds macromolecular compounds
- C09K8/5086—Compositions based on water or polar solvents containing organic compounds macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/20—Graphite
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/14—Colloidal silica, e.g. dispersions, gels, sols
- C01B33/141—Preparation of hydrosols or aqueous dispersions
- C01B33/1415—Preparation of hydrosols or aqueous dispersions by suspending finely divided silica in water
- C01B33/1417—Preparation of hydrosols or aqueous dispersions by suspending finely divided silica in water an aqueous dispersion being obtained
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F11/00—Compounds of calcium, strontium, or barium
- C01F11/18—Carbonates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/24—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/24—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
- C04B28/26—Silicates of the alkali metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/06—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
- C08G63/08—Lactones or lactides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/50—Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
- C09K8/504—Compositions based on water or polar solvents
- C09K8/5045—Compositions based on water or polar solvents containing inorganic compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/50—Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
- C09K8/504—Compositions based on water or polar solvents
- C09K8/506—Compositions based on water or polar solvents containing organic compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/50—Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
- C09K8/516—Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls characterised by their form or by the form of their components, e.g. encapsulated material
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2208/00—Aspects relating to compositions of drilling or well treatment fluids
- C09K2208/08—Fiber-containing well treatment fluids
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2208/00—Aspects relating to compositions of drilling or well treatment fluids
- C09K2208/10—Nanoparticle-containing well treatment fluids
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/02—Well-drilling compositions
- C09K8/03—Specific additives for general use in well-drilling compositions
- C09K8/032—Inorganic additives
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Structural Engineering (AREA)
- Geology (AREA)
- Dispersion Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Civil Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
本发明提供了一种具有碱性纳米二氧化硅分散体和聚酯活化剂的堵漏材料(LCM)。碱性纳米二氧化硅分散体和聚酯活化剂在经过一段接触时间相互作用后可形成胶凝固体。本发明还提供了使用该LCM进行井漏控制的方法。
Description
技术领域
本公开主要涉及在用钻井液进行钻井期间控制井中的井漏。更具体地,本公开的实施方案涉及堵漏材料(LCM)。
背景技术
在油气井的钻井和生产作业期间会遇到各种挑战。例如,在钻井、完井或井眼维修中使用的流体可能在使该流体在井眼中循环时漏失到地下地层中。特别地,该流体可能经由枯竭区域、相对低压的区域、具有天然存在的裂缝的井漏区域、钻井液的静水压力超过压裂梯度的薄弱区域等进入地下地层。进入地层的漏失量的程度可从较小的损失(例如,小于10桶/小时(bbl/hr),也称为渗漏损失)到严重的损失(例如,大于100bbl/hr)或更高(也称为完全漏失)。作为结果,由这种流体提供的服务更困难或实现成本更高。
这种井漏可能在作业的任何阶段遇到,并且当泵送至井中的钻井液(或钻井泥浆)部分返回或不返回地表时发生。尽管较低程度的漏失是意料之中的,但是从安全、经济或环境的角度来看,不希望有过多的漏失。井漏与井控、井眼不稳定、卡钻、不成功的试采、完井后差的烃产量以及由泥浆颗粒堵塞孔隙和孔喉造成的地层损害的问题有关。井漏问题还会带来钻井作业的非生产时间(NPT)。在极端情况下,井漏问题可能会迫使井报废。
发明内容
堵漏材料(LCM)用于通过阻塞钻井泥浆进入地层的路径来减轻井漏。在井漏情况中使用的LCM的类型取决于井漏的程度和地层的类型。现有的LCM在减轻和防止中度井漏和渗漏型井漏方面可能表现不佳,并且可能不适合于控制严重的循环液漏失。井漏情况中产生的成本可能是由于钻井液损失、生产损失以及LCM的成本所致。
在一个实施方案中,提供了一种控制井眼中的井漏区域中的井漏的方法。该方法包括将堵漏材料(LCM)引入井眼中,使得LCM接触井漏区域,并且与引入LCM之前的时间段相比,降低进入井漏区域的井漏量。LCM包含碱性纳米二氧化硅分散体和水不溶性聚酯。在一些实施方案中,其中LCM由碱性纳米二氧化硅分散体和水不溶性聚酯组成。在一些实施方案中,水不溶性聚酯包括聚丙交酯、聚羟基烷酸酯、聚乙交酯、聚乙丙交酯(polylactoglycolide)和聚己内酯中的至少一种。在一些实施方案中,水不溶性聚酯的量在总体积的0.1体积%(v/v%)至10v/v%的范围内。在一些实施方案中,该方法包括使碱性纳米二氧化硅分散体和水不溶性聚酯与井漏区域保持接触一段接触时间,从而使得碱性纳米二氧化硅分散体形成胶凝固体。在一些实施方案中,接触时间为0.5小时至24小时的范围。在一些实施方案中,井漏区域的温度为至少100°F。在一些实施方案中,该方法包括在将LCM引入井眼中之前,将碱性纳米二氧化硅分散体和水不溶性聚酯混合以在地表形成LCM。在一些实施方案中,LCM包括碳酸钙颗粒、纤维、云母和石墨中的至少一种。在一些实施方案中,纤维包括聚酯纤维、聚丙烯纤维、淀粉纤维、聚酮纤维、陶瓷纤维、玻璃纤维和尼龙纤维中的至少一种。
在一个实施方案中,堵漏材料(LCM)组合物包含碱性纳米二氧化硅分散体和水不溶性聚酯,所选择的水不溶性聚酯在一段时间后与碱性纳米二氧化硅分散体形成胶凝固体。在一些实施方案中,该一段时间为0.5小时至24小时的范围。在一些实施方案中,水不溶性聚酯包括聚丙交酯、聚羟基烷酸酯、聚乙交酯、聚乙丙交酯和聚己内酯中的至少一种。在一些实施方案中,水不溶性聚酯的含量在总体积的0.1体积%(v/v%)至10v/v%的范围内。
在另一个实施方案中,提供了用于减轻井漏的固体胶凝材料。固体胶凝材料是通过将碱性纳米二氧化硅分散体和水不溶性聚酯引入井漏区域而形成的。纳米二氧化硅分散体包含无定形二氧化硅和水,使得纳米二氧化硅分散体和水不溶性聚酯与井漏区域接触一段时间,从而形成固体胶凝材料。在一些实施方案中,水不溶性聚酯包括聚丙交酯、聚羟基烷酸酯、聚乙交酯、聚乙丙交酯和聚己内酯中的至少一种。在一些实施方案中,水不溶性聚酯的含量在总体积的0.1体积%(v/v%)至10v/v%的范围内。在一些实施方案中,将水不溶性聚酯和碱性纳米二氧化硅分散体分别引入井漏区域。在一些实施方案中,将水不溶性聚酯和碱性纳米二氧化硅分散体同时引入井漏区域。
附图说明
图1为由碱性纳米二氧化硅分散体与聚丙交酯活化剂的混合物形成的固体的照片;以及
图2为由碱性纳米二氧化硅分散体与聚丙交酯活化剂的混合物形成的固体的照片。
具体实施方式
将参照示出本公开的实施方案的附图来更全面地描述本公开。然而,可以许多不同的形式实施本公开,并且不应被解释为受限于所示出的实施方案。相反地,提供这些实施方案使得本公开将是全面且完整的,并将向本领域技术人员充分传达本公开的范围。
本公开的实施方案包括堵漏材料(LCM),其包括碱性纳米二氧化硅分散体和水不溶性可水解聚酯活化剂。LCM可减轻或防止井中的井漏,以及提供渗漏控制并使漏失最小化或防止漏失。在一些实施方案中,聚酯活化剂可为聚丙交酯。在其他实施方案中,聚酯活化剂可包括聚羟基烷酸酯、聚乙交酯、聚乙丙交酯和聚己内酯。在与聚酯活化剂相互作用之前,碱性纳米二氧化硅分散体的pH可为至少8,如在约8.5至约10.5的范围内。可将碱性纳米二氧化硅分散体和聚酯活化剂LCM引入井眼中的井漏区域中,使得碱性纳米二氧化硅分散体和聚酯活化剂LCM改变井漏区域。可使碱性纳米二氧化硅分散体和聚酯活化剂LCM与井漏区域相互作用一段时间,从而使得由于碱性纳米二氧化硅分散体与由聚酯活化剂经由水解生成的酸之间的相互作用而能够原位形成胶凝固体。
碱性纳米二氧化硅分散体和聚酯活化剂LCM
在一些实施方案中,LCM包含碱性纳米二氧化硅分散体和水不溶性可水解聚酯活化剂。碱性纳米二氧化硅分散体可包括无定形二氧化硅和水性介质。例如,在一些实施方案中,可使用水或其他合适的水性介质(例如水和甘油)来形成碱性纳米二氧化硅分散体。在一些实施方案中,在与聚酯活化剂相互作用之前,纳米二氧化硅分散体在25℃时的pH为约8.5至约10.5。在一些实施方案中,在与活化剂相互作用之前,纳米二氧化硅分散体的pH至少为8。在一些实施方案中,纳米二氧化硅分散体的比重为1.2(g/ml)。在一些实施方案中,纳米二氧化硅分散体可得自美国新泽西州帕西波尼(Parsippany)的赢创公司(EvonikCorporation)。
在一些实施方案中,水不溶性可水解聚酯活化剂可包括聚丙交酯。在其他实施方案中,聚酯活化剂可包括其他水不溶性可水解聚酯,如聚羟基烷酸酯、聚乙交酯、聚乙丙交酯和聚己内酯。在一些实施方案中,碱性纳米二氧化硅分散体与聚酯活化剂的重量比在50:1至80:1的范围内。例如,在一些实施方案中,碱性纳米二氧化硅分散体与聚酯活化剂的重量比为66:1。在一些实施方案中,聚酯活化剂的量可在总体积的约0.1体积%(v/v%)至约10v/v%的范围内。
在一些实施方案中,纳米二氧化硅分散体和聚酯活化剂LCM可包括另外的材料。例如,在一些实施方案中,纳米二氧化硅分散体和聚酯活化剂LCM可包括碳酸钙颗粒、纤维(例如,聚酯纤维、聚丙烯纤维、淀粉纤维、聚酮纤维、陶瓷纤维、玻璃纤维、尼龙纤维或它们的组合)、云母、石墨或它们的组合。
可将碱性纳米二氧化硅分散体和聚酯活化剂LCM引入(例如,通过泵送)井眼中的井漏区域中以控制井漏。在一些实施方案中,可使碱性纳米二氧化硅分散体和聚酯活化剂LCM与井漏区域相互作用一段接触时间。接触时间可为足够的持续时间,以使得由于碱性纳米二氧化硅分散体与聚酯活化剂之间的相互作用而能够形成固体。所形成的固体可改变井漏区域(例如,通过进入和阻塞井漏区域中的地层中的多孔且可渗透路径、裂纹和裂缝,如在裂口中或裂缝内形成结构)。在一些实施方案中,可以将聚酯和碱性纳米二氧化硅分散体同时引入井漏区域。在其他实施方案中,可将聚酯活化剂和碱性纳米二氧化硅分散体分开引入井漏区域。
在一些实施方案中,接触时间可在约0.5小时至约24小时的范围内。例如,在一些实施方案中,接触时间可为大约16小时。在一些实施方案中,可基于井漏区域的地层的类型来选择接触时间。
如下文所示,碱性纳米二氧化硅分散体和聚酯活化剂可在足够的时间段之后形成固体LCM。在一些实施方案中,可通过改变聚酯活化剂的浓度来控制碱性纳米二氧化硅分散体的胶凝,并且可通过改变LCM的pH来控制胶凝。例如,提高聚酯活化剂的浓度可增大LCM的pH并提高LCM的胶凝速率。此外,在高温下,聚酯活化剂与碱性纳米二氧化硅分散体不会表现出沉淀,因此使得能够将LCM组合物用作单一流体段塞(即,无需分阶段地混合各组分)。因此,碱性纳米二氧化硅分散体LCM的延迟和受控胶凝可提供更易于泵送的LCM。碱性纳米二氧化硅分散体和聚酯活化剂LCM可在井眼中、在高温下使用,例如,高于100°F的温度,如300°F。在一些实施方案中,碱性纳米二氧化硅分散体和聚酯活化剂LCM可在温度低于100°F的井漏区域中使用。在这样的实施方案中,LCM可包含催化剂以提高酯的水解速率。在一些实施方案中,催化剂可包括盐酸、硫酸或其他合适的酸。此外,碱性纳米二氧化硅分散体和聚酯活化剂LCM的环境友好性质可最小化或防止任何环境影响以及对使用碱性纳米二氧化硅分散体和聚酯活化剂LCM的钻井现场处或周围的生态系统、栖息地、种群、作物和植物的影响。
实施例
本公开包括以下示例以说明本公开的实施方案。本领域技术人员应理解,以下示例中公开的技术和组合物表示被发现在本公开的实践中能够很好地起作用的技术和组合物,因此可以被认为是用于本公开实践的构成模式。然而,本领域技术人员应当理解,鉴于本公开内容,在不脱离本公开的精神和范围的情况下,可以对所公开的具体实施方案进行许多改变并且仍然获得相同或相似的结果。
使用水不溶性可水解聚酯活化剂对碱性纳米二氧化硅分散体的以下非限制性实例进行测试。
表1:碱性纳米二氧化硅分散体的性质
使用碱性纳米二氧化硅分散体和聚丙交酯制备组合物。将100毫升(ml)碱性纳米二氧化硅分散体添加到空的烧杯中。将2克(g)聚丙交酯(即,每66克碱性纳米二氧化硅分散体1克聚丙交酯)添加到碱性纳米二氧化硅分散体中,并使用搅拌器进行混合。使碱性纳米二氧化硅分散体-聚丙交酯混合物在老化池中进行静态老化。该池在约250°F的温度进行静态老化约16小时以模拟井下条件。
静态老化16小时后,碱性纳米二氧化硅分散体转化为固体。聚丙交酯在碱性纳米二氧化硅分散体的水性介质(例如水)中水解以生成所得的酸。酸起到活化剂的作用,使碱性纳米二氧化硅分散体失去稳定性并产生固体。图1和图2分别为由碱性纳米二氧化硅分散体与聚丙交酯活化剂的混合物形成的固体的照片100和200。在250°F的高温下静态老化后形成固体表明,当与水不溶性可水解聚酯活化剂一起引入时,碱性纳米二氧化硅分散体可以起到LCM的作用。
在本公开中,范围可以表示为从约某个特定值,或至约另一个特定值,并包括这两者。当表示这样的范围时,应当理解,另一实施方案是从一个特定值到其他特定值,或包括这两者,以及所述范围内的所有组合。
基于本说明书,本公开的各个方面的进一步修改和替代实施方案对本领域技术人员是明显的。因此,本说明书仅被解释为说明性的,并且是为了教导本领域技术人员实现本公开中描述的实施方案的一般方式。应理解,本公开中示出和描述的形式将被视为实施方案的实例。本公开中示出和描述的元件和材料可被替代,部件和步骤可被颠倒或省略,并且某些特征可被独立地采用,所有这些对受益于本说明书的本领域技术人员而言是显而易见的。在不脱离所附权利要求中描述的公开内容的精神和范围的情况下,可以对本公开中描述的元素进行改变。本公开中所述使用的标题仅用于组织目的,并不意味着用于限制说明书的范围。
Claims (20)
1.一种控制井眼中的井漏区域中的井漏的方法,包括:
将堵漏材料(LCM)引入所述井眼中,使得所述LCM接触所述井漏区域,并且与引入所述LCM之前的时间段相比,降低进入所述井漏区域的井漏量,其中所述LCM包含碱性纳米二氧化硅分散体和水不溶性聚酯。
2.根据前述权利要求中任一项所述的方法,其中所述LCM由所述碱性纳米二氧化硅分散体和所述水不溶性聚酯组成。
3.根据前述权利要求中任一项所述的方法,其中所述水不溶性聚酯包括聚丙交酯、聚羟基烷酸酯、聚乙交酯、聚乙丙交酯和聚己内酯中的至少一种。
4.根据前述权利要求中任一项所述的方法,其中所述水不溶性聚酯的量在总体积的0.1体积%(v/v%)至10v/v%的范围内。
5.根据前述权利要求中任一项所述的方法,包括使所述碱性纳米二氧化硅分散体和水不溶性聚酯与所述井漏区域保持接触一段接触时间,从而使得所述碱性纳米二氧化硅分散体形成胶凝固体。
6.根据权利要求5所述的方法,其中所述接触时间在0.5小时至24小时的范围内。
7.根据前述权利要求中任一项所述的方法,其中所述井漏区域的温度为至少100°F。
8.根据前述权利要求中任一项所述的方法,包括在将所述LCM引入所述井眼中之前,将所述碱性纳米二氧化硅分散体和所述水不溶性聚酯混合以在地表形成所述LCM。
9.根据前述权利要求中任一项所述的方法,其中所述LCM包括碳酸钙颗粒、纤维、云母和石墨中的至少一种。
10.根据权利要求9所述的方法,其中所述纤维包括聚酯纤维、聚丙烯纤维、淀粉纤维、聚酮纤维、陶瓷纤维、玻璃纤维和尼龙纤维中的至少一种。
11.根据前述权利要求中任一项所述的方法,其中所述LCM包括催化剂,所选择的催化剂用以提高所述水不溶性聚酯的水解速率。
12.一种堵漏材料(LCM)组合物,包含:
碱性纳米二氧化硅分散体;以及
水不溶性聚酯,所选择的水不溶性聚酯在一段时间后与所述碱性纳米二氧化硅分散体形成胶凝固体。
13.根据权利要求12的LCM组合物,其中所述一段时间在0.5小时至24小时的范围内。
14.根据权利要求12或13所述的LCM组合物,其中所述水不溶性聚酯包括聚丙交酯、聚羟基烷酸酯、聚乙交酯、聚乙丙交酯和聚己内酯中的至少一种。
15.根据权利要求12、13或14所述的LCM组合物,其中所述水不溶性聚酯的量在总体积的0.1体积%(v/v%)至10v/v%的范围内。
16.一种用于减轻井漏的固体胶凝材料,其中所述固体胶凝材料是通过将碱性纳米二氧化硅分散体和水不溶性聚酯引入井漏区域而形成的,所述纳米二氧化硅分散体包含无定形二氧化硅和水,使得所述纳米二氧化硅分散体和所述水不溶性聚酯与所述井漏区域接触一段时间,从而形成所述固体胶凝材料。
17.根据权利要求16所述的固体胶凝材料,其中所述水不溶性聚酯包括聚丙交酯、聚羟基烷酸酯、聚乙交酯、聚乙丙交酯和聚己内酯中的至少一种。
18.根据权利要求16或17所述的固体胶凝材料,其中所述水不溶性聚酯的量在总体积的0.1体积%(v/v%)至10v/v%的范围内。
19.根据权利要求16、17或18所述的固体胶凝材料,其中将所述水不溶性聚酯和所述碱性纳米二氧化硅分散体分别引入所述井漏区域。
20.根据权利要求16、17、18或19所述的固体胶凝材料,其中将所述水不溶性聚酯和所述碱性纳米二氧化硅分散体同时引入所述井漏区域。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/679,884 US10351755B2 (en) | 2017-08-17 | 2017-08-17 | Loss circulation material composition having alkaline nanoparticle based dispersion and water insoluble hydrolysable polyester |
US15/679,884 | 2017-08-17 | ||
PCT/US2018/046830 WO2019036553A1 (en) | 2017-08-17 | 2018-08-17 | COMPOSITION OF ALKALINE NANOPARTICLE DISPERSION DISPERSION-LIKE CIRCULATION MATERIAL AND WATER-INSOLUBLE HYDROLYZABLE POLYESTER |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111032820A true CN111032820A (zh) | 2020-04-17 |
Family
ID=63638318
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201880052907.9A Pending CN111032820A (zh) | 2017-08-17 | 2018-08-17 | 具有碱性纳米颗粒基分散体和水不溶性可水解聚酯的堵漏材料组合物 |
Country Status (6)
Country | Link |
---|---|
US (2) | US10351755B2 (zh) |
EP (1) | EP3645657A1 (zh) |
JP (1) | JP2020531613A (zh) |
CN (1) | CN111032820A (zh) |
CA (1) | CA3071429A1 (zh) |
WO (1) | WO2019036553A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111690388A (zh) * | 2020-07-15 | 2020-09-22 | 中海石油(中国)有限公司 | 一种抗高温应急堵漏材料及其应用 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10351755B2 (en) | 2017-08-17 | 2019-07-16 | Saudi Arabian Oil Company | Loss circulation material composition having alkaline nanoparticle based dispersion and water insoluble hydrolysable polyester |
US10759986B2 (en) | 2017-08-17 | 2020-09-01 | Saudi Arabian Oil Company | Loss circulation material composition having alkaline nanoparticle based dispersion and water soluble hydrolysable ester |
US11015102B2 (en) | 2017-08-17 | 2021-05-25 | Saudi Arabian Oil Company | Loss circulation material composition having alkaline nanoparticle based dispersion, water insoluble hydrolysable polyester, and formaldehyde resin |
WO2020243331A1 (en) * | 2019-05-28 | 2020-12-03 | Saudi Arabian Oil Company | Loss circulation material composition having alkaline nanoparticle based dispersion, water insoluble hydrolysable polyester, and formaldehyde resin |
US11078398B2 (en) * | 2019-06-24 | 2021-08-03 | Saudi Arabian Oil Company | Drilling fluids that include water-insoluble acid catalyst precursors |
US11535785B2 (en) * | 2019-06-24 | 2022-12-27 | Saudi Arabian Oil Company | Drilling fluids that include water-soluble acid catalyst precursors or reaction products of such and uses for such drilling fluids |
US11591507B2 (en) | 2019-06-24 | 2023-02-28 | Saudi Arabian Oil Company | Drilling fluids that include water-soluble acid catalysts and uses for such |
US11299662B2 (en) | 2020-07-07 | 2022-04-12 | Saudi Arabian Oil Company | Method to use lost circulation material composition comprising alkaline nanoparticle based dispersion and sodium bicarbonate in downhole conditions |
CN111909673B (zh) * | 2020-08-25 | 2022-12-13 | 大庆中联信实石油科技开发有限公司 | 一种缝网体积压裂用生物基清洁暂堵剂及其制备方法 |
CN113004012A (zh) * | 2021-04-29 | 2021-06-22 | 西京学院 | 一种抗开裂抗冻混凝土及其制备方法 |
US11753574B2 (en) | 2021-07-30 | 2023-09-12 | Saudi Arabian Oil Company | Packer fluid with nanosilica dispersion and sodium bicarbonate for thermal insulation |
US11685855B2 (en) | 2021-10-25 | 2023-06-27 | Saudi Arabian Oil Company and King Fahd University of Petroleum & Minerals | Treatment of subterranean formations |
US11718776B2 (en) | 2021-12-16 | 2023-08-08 | Saudi Arabian Oil Company | Method to use loss circulation material composition comprising acidic nanoparticle based dispersion and sodium bicarbonate in downhole conditions |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103013469A (zh) * | 2012-12-07 | 2013-04-03 | 中国地质大学(武汉) | 使用纳米二氧化硅改善不同温度下水基钻井液性能的方法 |
US20130292120A1 (en) * | 2012-05-01 | 2013-11-07 | Halliburton Energy Services, Inc. | Biodegradable activators to gel silica sol for blocking permeability |
US20140158354A1 (en) * | 2012-12-12 | 2014-06-12 | Halliburton Energy Services, Inc. | Viscous settable fluid for lost circulation in subterranean formations |
US20150369029A1 (en) * | 2014-06-24 | 2015-12-24 | Schlumberger Technology Corporation | Compound cluster placement in fractures |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2551451B1 (fr) | 1983-08-31 | 1987-06-26 | Hoechst France | Composition d'injection pour le colmatage ou la consolidation des sols |
US4732213A (en) * | 1986-09-15 | 1988-03-22 | Conoco Inc. | Colloidal silica-based fluid diversion |
US5320171A (en) | 1992-10-09 | 1994-06-14 | Halliburton Company | Method of preventing gas coning and fingering in a high temperature hydrocarbon bearing formation |
US7013973B2 (en) | 2003-11-11 | 2006-03-21 | Schlumberger Technology Corporation | Method of completing poorly consolidated formations |
GB0508732D0 (en) * | 2005-04-29 | 2005-06-08 | Cleansorb Ltd | Method for controlled gelation of silicates |
US7458424B2 (en) | 2006-05-16 | 2008-12-02 | Schlumberger Technology Corporation | Tight formation water shut off method with silica gel |
US7934557B2 (en) | 2007-02-15 | 2011-05-03 | Halliburton Energy Services, Inc. | Methods of completing wells for controlling water and particulate production |
US9206344B2 (en) | 2007-05-10 | 2015-12-08 | Halliburton Energy Services, Inc. | Sealant compositions and methods utilizing nano-particles |
US8119574B2 (en) | 2007-07-25 | 2012-02-21 | Schlumberger Technology Corporation | High solids content slurries and methods |
US9040468B2 (en) | 2007-07-25 | 2015-05-26 | Schlumberger Technology Corporation | Hydrolyzable particle compositions, treatment fluids and methods |
US7789146B2 (en) * | 2007-07-25 | 2010-09-07 | Schlumberger Technology Corporation | System and method for low damage gravel packing |
WO2009034287A1 (en) | 2007-09-13 | 2009-03-19 | Halliburton Energy Services, Inc. | Methods of using colloidal silica based gels |
US9708523B2 (en) | 2009-10-27 | 2017-07-18 | Halliburton Energy Services, Inc. | Swellable spacer fluids and associated methods |
US20140162910A1 (en) * | 2012-12-10 | 2014-06-12 | Halliburton Energy Services, Inc. | Wellbore Servicing Compositions and Methods of Making and Using Same |
US9909052B2 (en) | 2012-12-20 | 2018-03-06 | Lawrence Livermore National Security, Llc | Using colloidal silica as isolator, diverter and blocking agent for subsurface geological applications |
US9677386B2 (en) * | 2013-02-28 | 2017-06-13 | Halliburton Energy Services, Inc. | Methods of stabilizing weakly consolidated subterranean formation intervals |
US9388335B2 (en) | 2013-07-25 | 2016-07-12 | Schlumberger Technology Corporation | Pickering emulsion treatment fluid |
US9523268B2 (en) | 2013-08-23 | 2016-12-20 | Schlumberger Technology Corporation | In situ channelization method and system for increasing fracture conductivity |
US9587477B2 (en) | 2013-09-03 | 2017-03-07 | Schlumberger Technology Corporation | Well treatment with untethered and/or autonomous device |
US9631468B2 (en) | 2013-09-03 | 2017-04-25 | Schlumberger Technology Corporation | Well treatment |
US9994761B2 (en) | 2013-09-04 | 2018-06-12 | Halliburton Energy Services, Inc. | Hydrolyzable compounds for treatment of a subterranean formation and methods of using the same |
US20150075797A1 (en) | 2013-09-16 | 2015-03-19 | Schlumberger Technology Corporation | Well treatment |
WO2015041703A1 (en) | 2013-09-23 | 2015-03-26 | Halliburton Energy Services, Inc. | A solidified, thermally insulating composition |
WO2015094006A1 (en) | 2013-12-18 | 2015-06-25 | Schlumberger Canada Limited | Shear thickening fluid method and system to deliver materials downhole |
US20150322328A1 (en) | 2014-01-29 | 2015-11-12 | Halliburton Energy Services, Inc. | Colloidal high aspect ratio nanosilica additives in sealants and methods relating thereto |
US20150275644A1 (en) | 2014-03-28 | 2015-10-01 | Schlumberger Technology Corporation | Well treatment |
US20150344772A1 (en) | 2014-05-30 | 2015-12-03 | Schlumberger Technology Corporation | Well treatment |
US20150369028A1 (en) | 2014-06-24 | 2015-12-24 | Schlumberger Technology Corporation | Compound cluster placement in fractures |
US20160040518A1 (en) | 2014-08-06 | 2016-02-11 | Schlumberger Technology Corporation | Well treatment fluids |
US10759986B2 (en) | 2017-08-17 | 2020-09-01 | Saudi Arabian Oil Company | Loss circulation material composition having alkaline nanoparticle based dispersion and water soluble hydrolysable ester |
US10351755B2 (en) | 2017-08-17 | 2019-07-16 | Saudi Arabian Oil Company | Loss circulation material composition having alkaline nanoparticle based dispersion and water insoluble hydrolysable polyester |
WO2020146885A1 (en) | 2019-01-11 | 2020-07-16 | Saudi Arabian Oil Company | Methods and compositions for controlling excess water production |
-
2017
- 2017-08-17 US US15/679,884 patent/US10351755B2/en active Active
-
2018
- 2018-08-17 CA CA3071429A patent/CA3071429A1/en not_active Abandoned
- 2018-08-17 JP JP2020508371A patent/JP2020531613A/ja not_active Ceased
- 2018-08-17 CN CN201880052907.9A patent/CN111032820A/zh active Pending
- 2018-08-17 EP EP18772964.5A patent/EP3645657A1/en not_active Withdrawn
- 2018-08-17 WO PCT/US2018/046830 patent/WO2019036553A1/en unknown
-
2019
- 2019-05-28 US US16/423,883 patent/US10961430B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130292120A1 (en) * | 2012-05-01 | 2013-11-07 | Halliburton Energy Services, Inc. | Biodegradable activators to gel silica sol for blocking permeability |
CN103013469A (zh) * | 2012-12-07 | 2013-04-03 | 中国地质大学(武汉) | 使用纳米二氧化硅改善不同温度下水基钻井液性能的方法 |
US20140158354A1 (en) * | 2012-12-12 | 2014-06-12 | Halliburton Energy Services, Inc. | Viscous settable fluid for lost circulation in subterranean formations |
US20150369029A1 (en) * | 2014-06-24 | 2015-12-24 | Schlumberger Technology Corporation | Compound cluster placement in fractures |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111690388A (zh) * | 2020-07-15 | 2020-09-22 | 中海石油(中国)有限公司 | 一种抗高温应急堵漏材料及其应用 |
Also Published As
Publication number | Publication date |
---|---|
US10961430B2 (en) | 2021-03-30 |
JP2020531613A (ja) | 2020-11-05 |
EP3645657A1 (en) | 2020-05-06 |
US20190055455A1 (en) | 2019-02-21 |
US10351755B2 (en) | 2019-07-16 |
US20190276727A1 (en) | 2019-09-12 |
WO2019036553A1 (en) | 2019-02-21 |
CA3071429A1 (en) | 2019-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111032820A (zh) | 具有碱性纳米颗粒基分散体和水不溶性可水解聚酯的堵漏材料组合物 | |
US11352546B2 (en) | Loss circulation material composition having alkaline nanoparticle based dispersion and water soluble hydrolysable ester | |
US11015102B2 (en) | Loss circulation material composition having alkaline nanoparticle based dispersion, water insoluble hydrolysable polyester, and formaldehyde resin | |
AU2018215222B2 (en) | Nanosilica dispersion lost circulation material (LCM) | |
WO2020243331A1 (en) | Loss circulation material composition having alkaline nanoparticle based dispersion, water insoluble hydrolysable polyester, and formaldehyde resin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200417 |