CN111030142B - 一种高比例风电电力系统多时间尺度频率优化控制方法 - Google Patents

一种高比例风电电力系统多时间尺度频率优化控制方法 Download PDF

Info

Publication number
CN111030142B
CN111030142B CN202010002957.5A CN202010002957A CN111030142B CN 111030142 B CN111030142 B CN 111030142B CN 202010002957 A CN202010002957 A CN 202010002957A CN 111030142 B CN111030142 B CN 111030142B
Authority
CN
China
Prior art keywords
frequency modulation
generator set
time scale
synchronous generator
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010002957.5A
Other languages
English (en)
Other versions
CN111030142A (zh
Inventor
欧阳金鑫
李梦阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN202010002957.5A priority Critical patent/CN111030142B/zh
Publication of CN111030142A publication Critical patent/CN111030142A/zh
Application granted granted Critical
Publication of CN111030142B publication Critical patent/CN111030142B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Abstract

本发明提供一种高比例风电电力系统多时间尺度频率优化控制方法,用于含火电机组和高比例双馈风电场的电力系统,解决现有技术中由于风速剧烈波动或负荷大规模突变导致的同步发电机组调频容量和调频速度无法满足系统调频需求的技术问题,充分考虑风电预测误差、负荷变化、双馈风电机组减载控制约束、同步发电机组调频容量和系统经济性对双馈发电机组调频容量的影响,基于双馈风电机组在减载控制约束下的双向调频容量,建立多时间尺度频率优化控制模型,从而实现双馈风电机组的动态减载,在快速且有效地平抑电网频率波动的前提下,实现电力系统经济效益最大化。

Description

一种高比例风电电力系统多时间尺度频率优化控制方法
技术领域
本发明涉及风电控制领域,具体地说,涉及一种高比例风电电力系统多时间尺度频率优化控制方法。
背景技术
近年来,风电渗透率不断提高,其随机性给电力系统的功率平衡和频率稳定带来了新的挑战。双馈发电机组具有快速、灵活的功率调控能力,是当前风力发电的主流机型。但是,双馈风电机组的转子与电网频率解耦,无法在频率波动时提供惯性响应。大容量风电的接入使电网的整体惯性减弱,导致电网在风速波动、负荷突变等扰动下的频率控制能力减弱,电网频率稳定问题日趋严峻。
储能能够增大电网的备用容量,是解决高比例风电系统频率稳定问题的最直接方法。但是,储能安装成本高,投资回报率低,尚不具备大容量推广应用的条件。同步发电机组是当前电网调频的主要手段,同步发电机组的调频容量和开机组合决定了电网调频容量。结合风电预测功率和预测负荷安排同步发电机组的出力和备用计划,是目前缓解风电随机性影响的方法。但是,风电功率预测值与实际值之间始终存在偏差,即风电预测误差。风电预测误差与负荷变化量共同构成了系统初始有功不平衡量,即风电预测误差引入了更多的随机功率波动。风电比例越高,系统初始有功不平衡量越大,但是同步发电机组容量相对越小,易造成同步发电机组备用容量不足,导致频率越限甚至失稳。系统初始有功不平衡量对电网调频容量和调频控制的灵活性提出了更高的要求。
风电参与电网调频被认为是解决风电随机性影响的有效方法。通过转子动能控制使双馈风电机组具有惯性是目前主要的实现方法。但是,双馈风电机组转子动能可提供的功率有限,且持续时间较短,仅适用于对电网频率的紧急支持,无法满足系统初始有功不平衡量产生的长期功率缺额。双馈风电机组一般采用最大功率跟踪控制使其运行于最大功率点,其有功功率不能进一步提升,因此无法为电网提供功率支持。但是,在某一风速下,通过转子转速控制和桨距角控制可以驱使双馈风电机组的运行点背向最大功率点移动,使得双馈风电机组输出功率减小,即可实现减载运行。提前减载运行能够使双馈风电机组具有双向调频能力,且可维持较长时间,是实现风电可调度的有效技术。
风电相较于最大功率点的功率减小量与最大功率之比被称为减载率。目前已有研究提出双馈风电机组以固定减载率参与电网调频。但是,风电预测误差具有不确定性,固定减载率难以有效匹配系统初始有功不平衡量,易导致调频容量不足或产生不必要的弃风。根据不同时间尺度的同步发电机组调频容量和风电预测误差概率分布,动态调整减载率可以兼顾系统安全性和经济性,但是目前尚未有可行的方法。此外,转子转速控制响应速度快,但是仅适用于一定的风速区间;变桨控制可以应用于整个风速区间,但其响应速度较慢,且频繁变桨易导致机械部件磨损,控制代价较大,因此双馈风电机组的减载运行依赖于转子转速控制与变桨控制的配合。尽管已有研究提出根据风速区间来确定转子转速控制和变桨控制的顺序,但这种配合方式基于固定减载率,难以用于实现减载率的动态调整。
因此,本发明公开了一种高比例风电电力系统多时间尺度频率优化控制方法,通过建立频率优化模型,实现双馈风电机组动态减载,在满足电网频率不越限的前提下,提高电网经济性。
发明内容
针对上述现有技术的不足,本发明提供一种高比例风电电力系统多时间尺度频率优化控制方法,用于含火电机组和高比例双馈风电场的电力系统,解决现有技术中由于风速剧烈波动或负荷大规模突变导致的同步发电机组调频容量和调频速度无法满足系统调频需求的技术问题,充分考虑风电预测误差、负荷变化、双馈风电机组减载控制约束、同步发电机组调频容量和系统经济性对双馈发电机组调频容量的影响,基于双馈风电机组在减载控制约束下的双向调频容量,建立多时间尺度频率优化模型,从而实现双馈风电机组的动态减载,在快速且有效地平抑电网频率波动的前提下,实现电力系统经济效益最大化。
为了解决现有技术中的问题,本发明采用了如下的技术方案:
一种高比例风电电力系统多时间尺度频率优化控制方法,本方法适用于含火电机组和高比例双馈风电场的电力系统,包括如下步骤:
S101、根据系统运行参数和下一时段预测信息,计算计及风电预测误差的电网初始有功不平衡量ΔPL0
S102、比较电网初始有功不平衡量与功率临界值PD的大小,若ΔPL0>PD,则电网初始有功不平衡量会导致电网频率越限,执行步骤S103,否则,返回执行步骤S101;
S103、以计及双馈风电机组调频成本的系统综合运行成本最小为目标,利用长时间尺度频率优化模型确定同步发电机组的开机机组组合;
S104、以计及双馈风电机组调频成本的系统综合运行成本最小为目标,利用短时间尺度频率优化模型计算双馈风电机组和同步发电机组的调频容量和输出的有功功率,保证电网频率不越限;
S105、基于双馈风电机组和同步发电机组的调频容量和输出的有功功率对电力系统进行调度。
优选地,步骤S101中,计及风电预测误差的电网初始有功不平衡量根据下一时段系统负荷变化量和下一时段系统风电预测误差计算,计算公式为:
ΔPL0=ΔPLoad0-ΔPw
式中,ΔPLoad0为下一时段系统负荷变化量;ΔPw为下一时段系统风电预测误差;
优选地,步骤S102中,功率临界值PD的计算方法如下:
Figure GDA0002919687860000031
式中,
Figure GDA0002919687860000032
为系统允许的频率波动量的标幺值;
Figure GDA0002919687860000033
为负荷调节系数的标幺值;
Figure GDA0002919687860000034
为电网等值同步发电机组调节系数的标幺值;
Figure GDA0002919687860000035
为电网初始频率的标幺值。
优选地,步骤S103中,长时间尺度频率优化模型的目标函数为F1,计算公式如下:
Figure GDA0002919687860000036
式中,
Figure GDA0002919687860000037
为长时间尺度的时段数;i=1,2,...,NG,NG为系统中同步发电机组的数目;j=1,2,...,NG2,NG2为系统中调频同步发电机组的数目;k=1,2,...,NW,NW为系统中风电场的数目;Bi.t=max(Ui.t-Ui.t-1,0)是表示t时刻第i台同步发电机组开停机状态的0-1变量,Ui.t、Ui.t-1分别是表示t和t-1时刻第i台同步发电机组开机状态的0-1变量;Si为第i台同步发电机组的启动成本;
Figure GDA0002919687860000038
为长时间尺度下t时刻第i台同步发电机组的有功功率;ai、bi、ci为第i台同步发电机组的耗能系数;Uj.t是表示t时刻第j台调频同步发电机组开机状态的0-1变量;
Figure GDA0002919687860000039
分别为长时间尺度下t时刻第j台调频同步发电机组向电网提供的正、负调频容量;
Figure GDA00029196878600000310
分别为长时间尺度下t时刻第k个风电场向电网提供的正、负调频容量;
Figure GDA00029196878600000311
分别为长时间尺度下t时刻第j台调频同步发电机组和第k个风电场的调频成本,计算公式如下:
Figure GDA00029196878600000312
式中,
Figure GDA0002919687860000041
分别为第j台调频同步发电机组的正、负调频单价;
Figure GDA0002919687860000042
分别为第k个风电场的正、负调频单价;
长时间尺度频率优化模型的约束包括:
系统有功功率平衡约束:
Figure GDA0002919687860000043
式中,
Figure GDA0002919687860000044
为长时间尺度下t时刻第k个风电场减载后的有功功率;
Figure GDA0002919687860000045
为长时间尺度下t时刻第k个风电场的预测有功功率;
Figure GDA0002919687860000046
为长时间尺度下t时刻系统预测的总有功负荷;
同步发电机组有功功率约束:
Figure GDA0002919687860000047
式中,PG.i.max、PG.i.min分别为第i台同步发电机组的有功出力上、下限;
同步发电机组爬坡速率约束:
Figure GDA0002919687860000048
式中,
Figure GDA0002919687860000049
为长时间尺度下t-1时刻第i台同步发电机组的有功出力;Ru.i、Rd.i分别为第i台同步发电机组的爬坡速率、滑坡速率,D4h为长时间尺度的时段间隔;
同步发电机组最小开停机时间约束:
Figure GDA00029196878600000410
式中,
Figure GDA00029196878600000411
分别为t-1时刻第i台同步发电机组已连续开、停机时间;
Figure GDA00029196878600000412
分别为第i台同步发电机组的最小连续开、停机时间;
风电场有功功率约束:
Figure GDA00029196878600000413
式中,
Figure GDA00029196878600000414
是在长时间尺度t时刻的预测风速下,第k个风电场在最大减载率下的有功功率;
调频同步发电机组调频容量约束:
Figure GDA0002919687860000051
式中,
Figure GDA0002919687860000052
为长时间尺度下t-1时刻第j台调频同步发电机组的有功出力;Ru.j、Rd.j分别为第j台调频同步发电机组的爬坡速率、滑坡速率;PG.j.max、PG.j.min分别为第j台调频同步发电机组的有功功率上、下限;
风电场调频容量约束:
Figure GDA0002919687860000053
式中,m=1,2,...,nW.k,nW.k为第k个风电场中双馈风电机组的数量;
Figure GDA0002919687860000054
分别为长时间尺度下t时刻第k个风电场中一台双馈风电机组的最大正、负调频容量;
电网频率约束:
Figure GDA0002919687860000055
式中,
Figure GDA0002919687860000056
为长时间尺度下t时刻第i台同步发电机组的一次调频容量;
Figure GDA0002919687860000057
为长时间尺度下t时刻电网的初始有功不平衡量;KG为电网等值同步发电机组的调节系数;KL为负荷调节系数;
Figure GDA0002919687860000058
分别为电网允许的频率波动的上、下限。
优选地,步骤S104中,短时间尺度频率优化模型的目标函数为F2,计算公式如下:
Figure GDA0002919687860000059
式中,
Figure GDA00029196878600000510
为短时间尺度下t时刻第i台同步发电机组的有功功率;
Figure GDA00029196878600000511
分别为短时间尺度下t时刻第j台调频同步发电机组和第k个风电场的调频成本;
Figure GDA00029196878600000512
分别为短时间尺度下t时刻第j台调频同步发电机组的正、负调频容量;
Figure GDA00029196878600000513
分别为短时间尺度下t时刻第k个风电场的正、负调频容量;
短时间尺度频率优化模型的约束包括:
系统有功功率平衡约束:
Figure GDA0002919687860000061
式中,
Figure GDA0002919687860000062
为短时间尺度下t时刻第k个风电场减载后的有功功率;
Figure GDA0002919687860000063
为短时间尺度下t时刻第k个风电场的预测有功功率;
Figure GDA0002919687860000064
为短时间尺度下t时刻系统预测的总有功负荷;
同步发电机组有功功率约束:
Figure GDA0002919687860000065
同步发电机组爬坡速率约束:
Figure GDA0002919687860000066
式中,
Figure GDA0002919687860000067
为短时间尺度下t-1时刻第i台同步发电机组的有功出力;D5m为短时间尺度的时段间隔;
风电场有功有功功率约束:
Figure GDA0002919687860000068
式中,
Figure GDA0002919687860000069
是在短时间尺度t时刻的预测风速下,第k个风电场在最大减载率下的有功功率;
调频同步发电机组调频容量约束:
Figure GDA00029196878600000610
式中,
Figure GDA00029196878600000611
为短时间尺度下t-1时刻第j台调频同步发电机组的有功出力;
风电场调频容量约束:
Figure GDA00029196878600000612
式中,
Figure GDA00029196878600000613
分别为短时间尺度下t时刻第k个风电场中一台双馈风电机组的最大正、负调频容量;
电网频率约束:
Figure GDA0002919687860000071
式中,
Figure GDA0002919687860000072
为短时间尺度下t时刻第i台同步发电机组的一次调频容量;
Figure GDA0002919687860000073
为短时间尺度下t时刻电网的初始有功不平衡量。
优选地,双馈风电机组在最大减载率下输出的有功功率为
Figure GDA0002919687860000074
的计算公式如下:
Figure GDA0002919687860000075
式中,ρ为空气密度;R为风轮机叶片半径;vw为预测风速;CpmaxR/vw,vβtref)是在风速为vw,转子转速为ωmax,桨距角为vβtref时,双馈风电机组的风能利用系数;ωmax为双馈风力发电机的最高转速;vβ为双馈风电机组的变桨速度;tref为双馈风电机组的调频作用时间。
优选地,双馈风电机组的最大正、负调频容量的表达式如下:
Figure GDA0002919687860000076
式中,
Figure GDA0002919687860000077
为双馈风电机组的最大正调频容量;
Figure GDA0002919687860000078
为双馈风电机组的最大负调频容量;Pg为正常运行条件下双馈风电机组输出的有功功率;Pdeload是在d0%的减载率目标值下,双馈风电机组输出的有功功率,计算公式如下:
Figure GDA0002919687860000079
式中,CpoptR/vw,0)是风速为vw时,双馈风电机组的最大风能利用系数;ωopt为双馈风电机组的最优转子转速。
与现有技术相比,本发明有以下有益效果:
1、与现有技术中电力系统优化调度模型仅考虑系统经济性不同,本发明是在快速且有效地平抑电网频率波动的前提下,实现电力系统经济效益最大化。
2、与现有技术中风电以固定减载率参与电网频率控制不同,本发明是通过优化调度模型对双馈风电机组的转子转速和桨距角控制参考值进行优化,进而实现双馈风电机组的动态减载,使其具备频率调节能力。
3、与现有技术中双馈风电机组减载运行仅考虑转子转速控制不同,本发明通过转子转速控制和桨距角控制共同实现双馈风电机组的减载运行,相应地,与现有技术中双馈风电机组最大正、负调频容量仅受转子最高转速限制不同,本发明中双馈风电机组最大正、负调频容量受转子最高转速和桨距角最大调整量限制。
附图说明
为了使发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步的详细描述,其中:
图1为一种高比例风电电力系统多时间尺度频率优化控制方法的流程图;
图2为多时间尺度频率优化控制模型的说明图;
图3为基于动态减载率的双馈风电机组减载运行策略。
具体实施方式
下面结合附图对本发明作进一步的详细说明。
如图1所示,一种高比例风电电力系统多时间尺度频率优化控制方法,本方法适用于含火电机组和高比例双馈风电场的电力系统,包括如下步骤:
S101、根据系统运行参数和下一时段预测信息,计算计及风电预测误差的电网初始有功不平衡量ΔPL0
S102、比较电网初始有功不平衡量与功率临界值PD的大小,若ΔPL0>PD,则电网初始有功不平衡量会导致电网频率越限,执行步骤S103,否则,返回执行步骤S101;
S103、以计及双馈风电机组调频成本的系统综合运行成本最小为目标,利用长时间尺度频率优化模型确定同步发电机组的开机机组组合;
S104、以计及双馈风电机组调频成本的系统综合运行成本最小为目标,利用短时间尺度频率优化模型计算双馈风电机组和同步发电机组的调频容量和输出的有功功率,保证电网频率不越限;
S105、基于双馈风电机组和同步发电机组的调频容量和输出的有功功率对电力系统进行调度。
在本发明中风电比例超过30%,即可称为高比例风电系统。
本发明充分考虑风电预测误差、负荷变化、双馈风电机组减载控制约束、同步发电机组调频容量和系统经济性对双馈发电机组调频容量的影响,基于双馈风电机组在减载控制约束下的双向调频容量,建立多时间尺度频率优化控制模型,从而实现双馈风电机组的动态减载,在快速且有效地平抑电网频率波动的前提下,实现电力系统经济效益最大化。
具体实施时,步骤S101中,计及风电预测误差的电网初始有功不平衡量根据下一时段系统负荷变化量和下一时段系统风电预测误差计算,计算公式为:
ΔPL0=ΔPLoad0-ΔPw
式中,ΔPLoad0为下一时段系统负荷变化量;ΔPw为下一时段系统风电预测误差;
具体实施时,步骤S102中,功率临界值PD的计算方法如下:
Figure GDA0002919687860000091
式中,
Figure GDA0002919687860000092
为系统允许的频率波动量的标幺值;
Figure GDA0002919687860000093
为负荷调节系数的标幺值;
Figure GDA0002919687860000094
为电网等值同步发电机组调节系数的标幺值;
Figure GDA0002919687860000095
为电网初始频率的标幺值。
具体实施时,步骤S103中,长时间尺度频率优化模型的目标函数为F1,计算公式如下:
Figure GDA0002919687860000096
式中,
Figure GDA0002919687860000097
为长时间尺度的时段数;i=1,2,...,NG,NG为系统中同步发电机组的数目;j=1,2,...,NG2,NG2为系统中调频同步发电机组的数目;k=1,2,...,NW,NW为系统中风电场的数目;Bi.t=max(Ui.t-Ui.t-1,0)是表示t时刻第i台同步发电机组开停机状态的0-1变量,Ui.t、Ui.t-1分别是表示t和t-1时刻第i台同步发电机组开机状态的0-1变量;Si为第i台同步发电机组的启动成本;
Figure GDA0002919687860000098
为长时间尺度下t时刻第i台同步发电机组的有功功率;ai、bi、ci为第i台同步发电机组的耗能系数;Uj.t是表示t时刻第j台调频同步发电机组开机状态的0-1变量;
Figure GDA0002919687860000099
分别为长时间尺度下t时刻第j台调频同步发电机组向电网提供的正、负调频容量;
Figure GDA00029196878600000910
分别为长时间尺度下t时刻第k个风电场向电网提供的正、负调频容量;
Figure GDA00029196878600000911
分别为长时间尺度下t时刻第j台调频同步发电机组和第k个风电场的调频成本,计算公式如下:
Figure GDA00029196878600000912
式中,
Figure GDA00029196878600000913
分别为第j台调频同步发电机组的正、负调频单价;
Figure GDA00029196878600000914
分别为第k个风电场的正、负调频单价;
长时间尺度频率优化模型的约束包括:
系统有功功率平衡约束:
Figure GDA0002919687860000101
式中,
Figure GDA0002919687860000102
为长时间尺度下t时刻第k个风电场减载后的有功功率;
Figure GDA0002919687860000103
为长时间尺度下t时刻第k个风电场的预测有功功率;
Figure GDA0002919687860000104
为长时间尺度下t时刻系统预测的总有功负荷;
同步发电机组有功功率约束:
Figure GDA0002919687860000105
式中,PG.i.max、PG.i.min分别为第i台同步发电机组的有功出力上、下限;
同步发电机组爬坡速率约束:
Figure GDA0002919687860000106
式中,
Figure GDA0002919687860000107
为长时间尺度下t-1时刻第i台同步发电机组的有功出力;Ru.i、Rd.i分别为第i台同步发电机组的爬坡速率、滑坡速率,D4h为长时间尺度的时段间隔;
同步发电机组最小开停机时间约束:
Figure GDA0002919687860000108
式中,
Figure GDA0002919687860000109
分别为t-1时刻第i台同步发电机组已连续开、停机时间;
Figure GDA00029196878600001010
分别为第i台同步发电机组的最小连续开、停机时间;
风电场有功功率约束:
Figure GDA00029196878600001011
式中,
Figure GDA00029196878600001012
是在长时间尺度t时刻的预测风速下,第k个风电场在最大减载率下的有功功率;
调频同步发电机组调频容量约束:
Figure GDA00029196878600001013
式中,
Figure GDA00029196878600001014
为长时间尺度下t-1时刻第j台调频同步发电机组的有功出力;Ru.j、Rd.j分别为第j台调频同步发电机组的爬坡速率、滑坡速率;PG.j.max、PG.j.min分别为第j台调频同步发电机组的有功功率上、下限;
风电场调频容量约束:
Figure GDA0002919687860000111
式中,m=1,2,...,nW.k,nW.k为第k个风电场中双馈风电机组的数量;
Figure GDA0002919687860000112
分别为长时间尺度下t时刻第k个风电场中一台双馈风电机组的最大正、负调频容量;
电网频率约束:
Figure GDA0002919687860000113
式中,
Figure GDA0002919687860000114
为长时间尺度下t时刻第i台同步发电机组的一次调频容量;
Figure GDA0002919687860000115
为长时间尺度下t时刻电网的初始有功不平衡量;KG为电网等值同步发电机组的调节系数;KL为负荷调节系数;
Figure GDA0002919687860000116
分别为电网允许的频率波动的上、下限。
具体实施时,步骤S104中,短时间尺度频率优化模型的目标函数为F2,计算公式如下:
Figure GDA0002919687860000117
式中,
Figure GDA0002919687860000118
为短时间尺度下t时刻第i台同步发电机组的有功功率;
Figure GDA0002919687860000119
分别为短时间尺度下t时刻第j台调频同步发电机组和第k个风电场的调频成本;
Figure GDA00029196878600001110
分别为短时间尺度下t时刻第j台调频同步发电机组的正、负调频容量;
Figure GDA00029196878600001111
分别为短时间尺度下t时刻第k个风电场的正、负调频容量;
短时间尺度频率优化模型的约束包括:
系统有功功率平衡约束:
Figure GDA00029196878600001112
式中,
Figure GDA00029196878600001113
为短时间尺度下t时刻第k个风电场减载后的有功功率;
Figure GDA0002919687860000121
为短时间尺度下t时刻第k个风电场的预测有功功率;
Figure GDA0002919687860000122
为短时间尺度下t时刻系统预测的总有功负荷;
同步发电机组有功功率约束:
Figure GDA0002919687860000123
同步发电机组爬坡速率约束:
Figure GDA0002919687860000124
式中,
Figure GDA0002919687860000125
为短时间尺度下t-1时刻第i台同步发电机组的有功出力;D5m为短时间尺度的时段间隔;
风电场有功有功功率约束:
Figure GDA0002919687860000126
式中,
Figure GDA0002919687860000127
是在短时间尺度t时刻的预测风速下,第k个风电场在最大减载率下的有功功率;
调频同步发电机组调频容量约束:
Figure GDA0002919687860000128
式中,
Figure GDA0002919687860000129
为短时间尺度下t-1时刻第j台调频同步发电机组的有功出力;
风电场调频容量约束:
Figure GDA00029196878600001210
式中,
Figure GDA00029196878600001211
分别为短时间尺度下t时刻第k个风电场中一台双馈风电机组的最大正、负调频容量;
电网频率约束:
Figure GDA00029196878600001212
式中,
Figure GDA00029196878600001213
为短时间尺度下t时刻第i台同步发电机组的一次调频容量;
Figure GDA00029196878600001214
为短时间尺度下t时刻电网的初始有功不平衡量。
同步发电机组的一次调频容量可由下式计算:
Figure GDA0002919687860000131
式中,
Figure GDA0002919687860000132
为第i台同步发电机组一次调频的功率调整量;Ri *为第i台同步发电机组调差系数的标幺值;PGiN为第i台同步发电机组的初始有功功率;
Figure GDA0002919687860000133
为一次调频后电网频率较初始时的变化量标幺值,计算公式如下:
Figure GDA0002919687860000134
式中,
Figure GDA0002919687860000135
为电网初始有功不平衡量的标幺值。
具体实施时,双馈风电机组在最大减载率下输出的有功功率为
Figure GDA0002919687860000136
的计算公式如下:
Figure GDA0002919687860000137
式中,ρ为空气密度;R为风轮机叶片半径;vw为预测风速;CpmaxR/vw,vβtref)是在风速为vw,转子转速为ωmax,桨距角为vβtref时,双馈风电机组的风能利用系数;ωmax为双馈风力发电机的最高转速;vβ为双馈风电机组的变桨速度;tref为双馈风电机组的调频作用时间。
具体实施时,双馈风电机组的最大正、负调频容量的表达式如下:
Figure GDA0002919687860000138
式中,
Figure GDA0002919687860000139
为双馈风电机组的最大正调频容量;
Figure GDA00029196878600001310
为双馈风电机组的最大负调频容量;Pg为正常运行条件下双馈风电机组输出的有功功率;Pdeload是在d0%的减载率目标值下,双馈风电机组输出的有功功率,计算公式如下:
Figure GDA00029196878600001311
式中,CpoptR/vw,0)是风速为vw时,双馈风电机组的最大风能利用系数;ωopt为双馈风电机组的最优转子转速。
本发明中,计算双馈风电机组和同步发电机组的调频容量和输出的有功功率时,需要先确定双馈发电机组的转子转速控制参考值和桨距角控制参考值。
如图3所示,可根据双馈风电机组的减载率目标值和预测风速划分风速区间,在不同风速区间内采取不同控制方法,使双馈风电机组减载运行,具体包括:
获取下一时段双馈风电机组的减载率目标值d0%和预测风速vw,确定第一临界风速Vcr、第二临界风速Vw2、第三临界风速Vw1和第四临界风速Vn,划分[Vcr,Vw2]、[Vw2,Vw1]及[Vw1,Vn]三个风速区间,分别如图3中OSC区、OS-PAC区和PAC区所示;
在下一时段双馈风电机组的减载率目标值d0%下,当预测风速vw位于[Vcr,Vw2]风速区间时,双馈风电机组仅通过转子加速控制即可实现d0%的减载率目标值,即转子转速控制参考值为ωrp1,桨距角控制参考值为βrp1
在下一时段双馈风电机组的减载率目标值d0%下,当预测风速vw位于[Vw2,Vw1]风速区间时,双馈风电机组需通过转子加速控制和桨距角控制共同实现d0%的减载率目标值,即转子转速控制参考值为ωrp2,桨距角控制参考值为βrp2
在下一时段双馈风电机组的减载率目标值d0%下,当预测风速vw位于[Vw1,Vn]风速区间时,双馈风电机组只能通过桨距角控制实现d0%的减载率目标值,即转子转速控制参考值为ωrp3,桨距角控制参考值为βrp3
第一临界风速的计算方式为:
Figure GDA0002919687860000141
式中,R为风轮机叶片半径;Gr为齿轮箱升速比;λopt为最优叶尖速比;ωmin为双馈风力发电机的最低转速;
第二临界风速的计算模型为:
Figure GDA0002919687860000142
式中,Pg为正常运行时,双馈风电机组输出的有功功率;Pde.0为在d0%减载率下,双馈风电机组输出的有功功率;ρ为空气密度;CpmaxR/Vw2,0)是在风速为Vw2,转子转速为ωmax,桨距角为0时,双馈风电机组的风能利用系数;ωmax为双馈风力发电机的最高转速;
第三临界风速的计算方式为:
Figure GDA0002919687860000143
第四临界风速为双馈风电机组输出额定有功功率时对应的风速,计算方式为:
Figure GDA0002919687860000144
式中,PgN为双馈风电机组的额定有功功率;Cp.n是风速为Vn,转子转速为ωmax,桨距角为0时,双馈风电机组的风能利用系数。
桨距角控制参考值βrp1=0,转子转速控制参考值ωrp1的计算方法为:
Figure GDA0002919687860000151
式中,Cprp1R/vwrp1)是转子转速为ωrp1,桨距角为0时,双馈风电机组的风能利用系数;
转子转速控制参考值ωrp2=ωmax,桨距角控制参考值βrp2的计算公式如下:
Figure GDA0002919687860000152
式中,Cprp2R/vwrp2)是转子转速达到最大值ωmax,桨距角为βrp2时,双馈风电机组的风能利用系数;
转子转速控制参考值ωrp3=ωmax,桨距角控制参考值βrp3的计算公式如下:
Figure GDA0002919687860000153
式中,Cprp3R/vwrp3)是转子转速为ωmax,桨距角为βrp3时,双馈风电机组的风能利用系数。
如图3所示,风速为Vw2时,在转子转速控制作用下,双馈风电机组运行点可沿曲线BB'向B'移动,当运行点达到B'时,利用转子转速控制无法进一步减载。但是,在桨距角控制作用下,随着桨距角增加,运行点可沿直线B'F向F点移动。F点是转速为ωmax、桨距角为vβtref时的运行点。所以,在预测风速为Vw2时,双馈风电机组在最大减载率下输出的有功功率
Figure GDA0002919687860000154
的计算公式如下:
Figure GDA0002919687860000155
式中,ρ为空气密度;R为风轮机叶片半径;CpmaxR/Vw2,vβtref)是在风速为Vw2,转子转速为ωmax,桨距角为vβtref时,双馈风电机组的风能利用系数;ωmax为双馈风力发电机的最高转速;vβ为双馈风电机组的变桨速度;tref为双馈风电机组的调频作用时间。
如图3所示,t0时刻风速为Vx,若根据减载率目标值d0%,通过转子转速控制和桨距角控制将双馈风电机组运行点移动至E0,此时的桨距角为βE0。当风速在t1时刻减小至Vw2时,双馈风电机组的运行点随着风速变化移动至B0点。此时,通过提前减载,双馈风电机组获得的最大正、负调频容量的表达式如下:
Figure GDA0002919687860000161
式中,
Figure GDA0002919687860000162
为双馈风电机组的最大正调频容量;
Figure GDA0002919687860000163
为双馈风电机组的最大负调频容量;Pg为正常运行条件下双馈风电机组输出的有功功率;Pdeload是双馈风电机组在B0点输出的有功功率,计算公式如下:
Figure GDA0002919687860000164
式中,CpmaxR/Vw2E0)是风速为Vw2,转子转速为ωmax,桨距角为βE0时,双馈风电机组的风能利用系数。
此外,还可以根据风速所处区间,对双馈风电机组划分低风速控制模式、中风速控制模式、高风速控制模式,在不同风速下采取不同的控制方法(超速与变桨协调的双馈风电机组频率控制,孙元章),从而确定双馈发电机组的转子转速控制参考值和桨距角控制参考值。
针对上述现有技术中由于风速剧烈波动或负荷大规模突变导致的同步发电机组调频容量和调频速度无法满足系统调频需求的技术问题,本发明充分考虑风电预测误差、负荷变化、双馈风电机组减载控制约束、同步发电机组调频容量和系统经济性对双馈发电机组调频容量的影响,基于双馈风电机组在减载控制约束下的双向调频容量,建立多时间尺度频率优化控制模型,从而实现双馈风电机组的动态减载,能够通过少量弃风,快速且有效地平抑电网频率波动。本发明提供的一种高比例风电电力系统多时间尺度频率优化控制方法,能够有效改善风速预测误差对电网频率的影响与同步发电机组调频容量和速度不足之间的矛盾,能够在快速且有效地平抑电网频率波动的前提下,实现电力系统经济效益最大化。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管通过参照本发明的优选实施例已经对本发明进行了描述,但本领域的普通技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离所附权利要求书所限定的本发明的精神和范围。

Claims (5)

1.一种高比例风电电力系统多时间尺度频率优化控制方法,其特征在于,本方法适用于含火电机组和高比例双馈风电场的电力系统,包括如下步骤:
S101、根据系统运行参数和下一时段预测信息,计算计及风电预测误差的电网初始有功不平衡量ΔPL0
S102、比较电网初始有功不平衡量与功率临界值PD的大小,若ΔPL0>PD,则电网初始有功不平衡量会导致电网频率越限,执行步骤S103,否则,返回执行步骤S101;
S103、以计及双馈风电机组调频成本的系统综合运行成本最小为目标,利用长时间尺度频率优化模型确定同步发电机组的开机机组组合;
长时间尺度频率优化模型的目标函数为F1,计算公式如下:
Figure FDA0002919687850000011
式中,
Figure FDA0002919687850000012
Figure FDA0002919687850000013
为长时间尺度的时段数;i=1,2,...,NG,NG为系统中同步发电机组的数目;j=1,2,...,NG2,NG2为系统中调频同步发电机组的数目;k=1,2,...,NW,NW为系统中风电场的数目;Bi.t=max(Ui.t-Ui.t-1,0)是表示t时刻第i台同步发电机组开停机状态的0-1变量,Ui.t、Ui.t-1分别是表示t和t-1时刻第i台同步发电机组开机状态的0-1变量;Si为第i台同步发电机组的启动成本;
Figure FDA0002919687850000014
为长时间尺度下t时刻第i台同步发电机组的有功功率;ai、bi、ci为第i台同步发电机组的耗能系数;Uj.t是表示t时刻第j台调频同步发电机组开机状态的0-1变量;
Figure FDA0002919687850000015
分别为长时间尺度下t时刻第j台调频同步发电机组向电网提供的正、负调频容量;
Figure FDA0002919687850000016
分别为长时间尺度下t时刻第k个风电场向电网提供的正、负调频容量;
Figure FDA0002919687850000017
分别为长时间尺度下t时刻第j台调频同步发电机组和第k个风电场的调频成本,计算公式如下:
Figure FDA0002919687850000018
式中,
Figure FDA0002919687850000019
分别为第j台调频同步发电机组的正、负调频单价;
Figure FDA00029196878500000110
分别为第k个风电场的正、负调频单价;
长时间尺度频率优化模型的约束包括:
系统有功功率平衡约束:
Figure FDA0002919687850000021
式中,
Figure FDA0002919687850000022
Figure FDA0002919687850000023
为长时间尺度下t时刻第k个风电场减载后的有功功率;
Figure FDA0002919687850000024
为长时间尺度下t时刻第k个风电场的预测有功功率;
Figure FDA0002919687850000025
为长时间尺度下t时刻系统预测的总有功负荷;
同步发电机组有功功率约束:
Figure FDA0002919687850000026
式中,PG.i.max、PG.i.min分别为第i台同步发电机组的有功出力上、下限;
同步发电机组爬坡速率约束:
Figure FDA0002919687850000027
式中,
Figure FDA0002919687850000028
为长时间尺度下t-1时刻第i台同步发电机组的有功出力;Ru.i、Rd.i分别为第i台同步发电机组的爬坡速率、滑坡速率,D4h为长时间尺度的时段间隔;
同步发电机组最小开停机时间约束:
Figure FDA0002919687850000029
式中,
Figure FDA00029196878500000210
分别为t-1时刻第i台同步发电机组已连续开、停机时间;
Figure FDA00029196878500000211
分别为第i台同步发电机组的最小连续开、停机时间;
风电场有功功率约束:
Figure FDA00029196878500000212
式中,
Figure FDA00029196878500000213
是在长时间尺度t时刻的预测风速下,第k个风电场在最大减载率下的有功功率;
调频同步发电机组调频容量约束:
Figure FDA00029196878500000214
式中,
Figure FDA0002919687850000031
为长时间尺度下t-1时刻第j台调频同步发电机组的有功出力;Ru.j、Rd.j分别为第j台调频同步发电机组的爬坡速率、滑坡速率;PG.j.max、PG.j.min分别为第j台调频同步发电机组的有功功率上、下限;
风电场调频容量约束:
Figure FDA0002919687850000032
式中,m=1,2,...,nW.k,nW.k为第k个风电场中双馈风电机组的数量;
Figure FDA0002919687850000033
分别为长时间尺度下t时刻第k个风电场中一台双馈风电机组的最大正、负调频容量;
电网频率约束:
Figure FDA0002919687850000034
式中,
Figure FDA0002919687850000035
为长时间尺度下t时刻第i台同步发电机组的一次调频容量;
Figure FDA0002919687850000036
为长时间尺度下t时刻电网的初始有功不平衡量;KG为电网等值同步发电机组的调节系数;KL为负荷调节系数;
Figure FDA0002919687850000037
分别为电网允许的频率波动的上、下限;
S104、以计及双馈风电机组调频成本的系统综合运行成本最小为目标,利用短时间尺度频率优化模型计算双馈风电机组和同步发电机组的调频容量和输出的有功功率,保证电网频率不越限;
短时间尺度频率优化模型的目标函数为F2,计算公式如下:
Figure FDA0002919687850000038
式中,
Figure FDA0002919687850000039
为短时间尺度下t时刻第i台同步发电机组的有功功率;
Figure FDA00029196878500000310
分别为短时间尺度下t时刻第j台调频同步发电机组和第k个风电场的调频成本;
Figure FDA00029196878500000311
分别为短时间尺度下t时刻第j台调频同步发电机组的正、负调频容量;
Figure FDA00029196878500000312
分别为短时间尺度下t时刻第k个风电场的正、负调频容量;
短时间尺度频率优化模型的约束包括:
系统有功功率平衡约束:
Figure FDA0002919687850000041
式中,
Figure FDA0002919687850000042
Figure FDA0002919687850000043
为短时间尺度下t时刻第k个风电场减载后的有功功率;
Figure FDA0002919687850000044
为短时间尺度下t时刻第k个风电场的预测有功功率;
Figure FDA0002919687850000045
为短时间尺度下t时刻系统预测的总有功负荷;
同步发电机组有功功率约束:
Figure FDA0002919687850000046
同步发电机组爬坡速率约束:
Figure FDA0002919687850000047
式中,
Figure FDA0002919687850000048
为短时间尺度下t-1时刻第i台同步发电机组的有功出力;D5m为短时间尺度的时段间隔;
风电场有功有功功率约束:
Figure FDA0002919687850000049
式中,
Figure FDA00029196878500000410
是在短时间尺度t时刻的预测风速下,第k个风电场在最大减载率下的有功功率;
调频同步发电机组调频容量约束:
Figure FDA00029196878500000411
式中,
Figure FDA00029196878500000412
为短时间尺度下t-1时刻第j台调频同步发电机组的有功出力;
风电场调频容量约束:
Figure FDA00029196878500000413
式中,
Figure FDA00029196878500000414
分别为短时间尺度下t时刻第k个风电场中一台双馈风电机组的最大正、负调频容量;
电网频率约束:
Figure FDA0002919687850000051
式中,
Figure FDA0002919687850000052
为短时间尺度下t时刻第i台同步发电机组的一次调频容量;
Figure FDA0002919687850000053
为短时间尺度下t时刻电网的初始有功不平衡量;
S105、基于双馈风电机组和同步发电机组的调频容量和输出的有功功率对电力系统进行调度。
2.如权利要求1所述的高比例风电电力系统多时间尺度频率优化控制方法,其特征在于,
步骤S101中,计及风电预测误差的电网初始有功不平衡量根据下一时段系统负荷变化量和下一时段系统风电预测误差计算,计算公式为:
ΔPL0=ΔPLoad0-ΔPw
式中,ΔPLoad0为下一时段系统负荷变化量;ΔPw为下一时段系统风电预测误差。
3.如权利要求1所述的高比例风电电力系统多时间尺度频率优化控制方法,其特征在于,步骤S102中,功率临界值PD的计算方法如下:
Figure FDA0002919687850000054
式中,
Figure FDA0002919687850000055
为系统允许的频率波动量的标幺值;
Figure FDA0002919687850000056
为负荷调节系数的标幺值;
Figure FDA0002919687850000057
为电网等值同步发电机组调节系数的标幺值;
Figure FDA0002919687850000058
为电网初始频率的标幺值。
4.如权利要求1所述的高比例风电电力系统多时间尺度频率优化控制方法,其特征在于,双馈风电机组在最大减载率下输出的有功功率为
Figure FDA0002919687850000059
的计算公式如下:
Figure FDA00029196878500000510
式中,ρ为空气密度;R为风轮机叶片半径;vw为预测风速;CpmaxR/vw,vβtref)是在风速为vw,转子转速为ωmax,桨距角为vβtref时,双馈风电机组的风能利用系数;ωmax为双馈风力发电机的最高转速;vβ为双馈风电机组的变桨速度;tref为双馈风电机组的调频作用时间。
5.如权利要求4所述的高比例风电电力系统多时间尺度频率优化控制方法,其特征在于,双馈风电机组的最大正、负调频容量的表达式如下:
Figure FDA0002919687850000061
式中,
Figure FDA0002919687850000062
为双馈风电机组的最大正调频容量;
Figure FDA0002919687850000063
为双馈风电机组的最大负调频容量;Pg为正常运行条件下双馈风电机组输出的有功功率;Pdeload是在d0%的减载率目标值下,双馈风电机组输出的有功功率,计算公式如下:
Figure FDA0002919687850000064
式中,CpoptR/vw,0)是风速为vw时,双馈风电机组的最大风能利用系数;ωopt为双馈风电机组的最优转子转速。
CN202010002957.5A 2020-01-02 2020-01-02 一种高比例风电电力系统多时间尺度频率优化控制方法 Active CN111030142B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010002957.5A CN111030142B (zh) 2020-01-02 2020-01-02 一种高比例风电电力系统多时间尺度频率优化控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010002957.5A CN111030142B (zh) 2020-01-02 2020-01-02 一种高比例风电电力系统多时间尺度频率优化控制方法

Publications (2)

Publication Number Publication Date
CN111030142A CN111030142A (zh) 2020-04-17
CN111030142B true CN111030142B (zh) 2021-03-23

Family

ID=70198278

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010002957.5A Active CN111030142B (zh) 2020-01-02 2020-01-02 一种高比例风电电力系统多时间尺度频率优化控制方法

Country Status (1)

Country Link
CN (1) CN111030142B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111900741B (zh) * 2020-06-16 2024-02-20 苏州斯威高科信息技术有限公司 一种电网快速调频装置和方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012171532A2 (en) * 2011-06-14 2012-12-20 Vestas Wind Systems A/S Selective droop response control for a wind turbine power plant
CN103474986A (zh) * 2013-08-23 2013-12-25 国家电网公司 一种长时间尺度电力系统频率波动仿真方法
CN105896617A (zh) * 2016-06-16 2016-08-24 浙江大学 一种计及风机有功主动控制的风电调节备用容量评估方法
WO2016136237A1 (en) * 2015-02-23 2016-09-01 Okinawa Institute of Science and Technology Graduate University System and method of determining forecast error for renewable energy fluctuations
CN106374496A (zh) * 2016-09-14 2017-02-01 东北电力大学 双馈风电机组‑储能系统模拟同步机调频特性控制策略
CN106953363A (zh) * 2017-05-04 2017-07-14 西南交通大学 一种风电场限功率运行状态下电网旋转备用优化配置方法
CN109217374A (zh) * 2018-11-13 2019-01-15 重庆大学 一种风电电力系统无功电压事前多时间尺度优化控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012171532A2 (en) * 2011-06-14 2012-12-20 Vestas Wind Systems A/S Selective droop response control for a wind turbine power plant
CN103474986A (zh) * 2013-08-23 2013-12-25 国家电网公司 一种长时间尺度电力系统频率波动仿真方法
WO2016136237A1 (en) * 2015-02-23 2016-09-01 Okinawa Institute of Science and Technology Graduate University System and method of determining forecast error for renewable energy fluctuations
CN105896617A (zh) * 2016-06-16 2016-08-24 浙江大学 一种计及风机有功主动控制的风电调节备用容量评估方法
CN106374496A (zh) * 2016-09-14 2017-02-01 东北电力大学 双馈风电机组‑储能系统模拟同步机调频特性控制策略
CN106953363A (zh) * 2017-05-04 2017-07-14 西南交通大学 一种风电场限功率运行状态下电网旋转备用优化配置方法
CN109217374A (zh) * 2018-11-13 2019-01-15 重庆大学 一种风电电力系统无功电压事前多时间尺度优化控制方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Multi-timescale active and reactive power-coordinated control of largescale wind integrated power system for severe wind speed fluctuation;Jinxin Ouyang et al.;《IEEE Access》;20190416;第7卷;全文 *
含高渗透率风电的电力系统频率控制;汪海蛟;《中国博士学位论文全文数据库 工程科技Ⅱ辑》;20150715;全文 *
高比例风电对电力系统调频指标影响的定量分析;丁立等;《电力系统自动化》;20140725;第38卷(第14期);全文 *

Also Published As

Publication number Publication date
CN111030142A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
CN111064206B (zh) 基于双馈风电机组动态减载的电力系统频率应急控制方法
CN106992556B (zh) 一种基于混合电源多时间尺度互补的优化调度方法
CN110120677B (zh) 双馈可变速抽水蓄能机组的自适应动态虚拟惯量调频方法
CN108493960A (zh) 一种基于规则的储能参与风电调频控制方法
CN112381424A (zh) 新能源及负荷不确定性的多时间尺度有功优化决策方法
CN110880795B (zh) 基于超速风机释放功率提升的风电调频控制方法及系统
CN110829408A (zh) 基于发电成本约束的计及储能电力系统的多域调度方法
CN112994042A (zh) 考虑风电机组参与电网一次调频的机组组合建模及优化方法
CN111786424B (zh) 一种风电场惯量响应及一次调频潜力的量化评估方法
CN113489073A (zh) 一种基于风机集群的多时空分层综合调频控制系统
CN111030142B (zh) 一种高比例风电电力系统多时间尺度频率优化控制方法
EP3482069B1 (en) A wind power plant having a plurality of wind turbine generators and a power plant controller
CN111416365A (zh) 风电场与常规调频机组异步协同最优agc控制系统
CN117081111B (zh) 一种考虑风机限幅的新能源电力系统一次调频优化方法
Wang et al. Frequency response methods for grid-connected wind power generations: A review
CN114336665B (zh) 一种提高风电场惯量储备水平的有功功率控制方法
CN115085262A (zh) 基于时空不确定性的风电场调频控制方法及装置
CN113013930B (zh) 一种虚拟电厂经柔性直流外送的二次调频控制方法及系统
Ma et al. Two-stage optimal dispatching based on wind-photovoltaic-pumped storage-thermal power combined power generation system
Ge et al. Optimization of wind power grid connection in multi-source and multi-region power generation system based on peak adjustment margin
CN115473238B (zh) 一种考虑风速差异的风电场调频备用协调控制方法
CN116093970B (zh) 计及转速保护的双馈风机一次调频模型预测控制方法
CN114844127B (zh) 基于暂态和稳态约束的储能容量配置方法
Lu et al. Pitch Deloading Method of Wind Farm for Optimal Frequency Control Performance
Zhou et al. Analysis of Energy Storage Operation Configuration of Power System Based on Multi-Objective Optimization

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant