CN111030129A - 屋顶光伏发电用tct型低压静止无功补偿装置 - Google Patents
屋顶光伏发电用tct型低压静止无功补偿装置 Download PDFInfo
- Publication number
- CN111030129A CN111030129A CN201911421433.3A CN201911421433A CN111030129A CN 111030129 A CN111030129 A CN 111030129A CN 201911421433 A CN201911421433 A CN 201911421433A CN 111030129 A CN111030129 A CN 111030129A
- Authority
- CN
- China
- Prior art keywords
- tct
- power generation
- photovoltaic power
- transformer
- branch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 25
- 230000003068 static effect Effects 0.000 title claims abstract description 18
- 238000004804 winding Methods 0.000 claims abstract description 8
- 230000001939 inductive effect Effects 0.000 claims abstract description 4
- 239000003990 capacitor Substances 0.000 claims description 12
- 238000005070 sampling Methods 0.000 claims description 7
- 230000005540 biological transmission Effects 0.000 claims description 6
- 230000003321 amplification Effects 0.000 claims description 5
- 230000005284 excitation Effects 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 5
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 5
- 230000001052 transient effect Effects 0.000 claims description 5
- 238000002955 isolation Methods 0.000 claims description 4
- 230000002457 bidirectional effect Effects 0.000 claims description 3
- 238000005265 energy consumption Methods 0.000 abstract description 2
- 230000005611 electricity Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/12—Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
- H02J3/16—Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/18—Arrangements for adjusting, eliminating or compensating reactive power in networks
- H02J3/1821—Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/18—Arrangements for adjusting, eliminating or compensating reactive power in networks
- H02J3/1821—Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
- H02J3/1835—Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/10—Photovoltaic [PV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/30—Reactive power compensation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/20—Climate change mitigation technologies for sector-wide applications using renewable energy
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Control Of Electrical Variables (AREA)
Abstract
屋顶光伏发电用TCT型低压静止无功补偿装置。光伏发电是清洁能源,光伏每千瓦投资成本不断下降,屋顶光伏电站,降低企业能耗。本发明组成包括:所述的屋顶光伏发电用TCT型低压静止无功补偿装置包括设置在400KV侧的输出连续可调的感性无功的一个TCT支路和输出容性无功功率的两个TSC支路,以TSC支路作分级粗调、以TCT支路作相控细调,TCT支路的容量为TSC支路容量的1/4,所述的TCT支路为磁集成晶闸管控制变压器,是在变压器的二次绕组与电抗器绕组串接后接晶闸管。本发明用于屋顶光伏发电TCT型低压静止无功补偿。
Description
技术领域:
本发明涉及一种屋顶光伏发电用TCT型低压静止无功补偿装置,尤其是在自发自用、余电上网的企业屋顶光伏发电模式。
背景技术:
光伏发电是清洁能源,光伏每千瓦投资成本不断下降,屋顶光伏电站,降低企业能耗。
光伏发电接入配电网对电压有一定的提升作用,也带来其他的其他问题,例如企业功率因素降低带来利率调整电费,逆变器的带来谐波问题,电容器组谐波放大问题,电源切换过程中的暂态过电压问题等等。屋顶光伏电站的可靠运行与电网结构和用户的电气拓扑结构、用户的用电习惯紧密相关,目前,分布式并网光伏发电中用到的逆变器均以电流源并网,即不控制并网点电压。储能装置的性价比太低,所以最优的解决方案就是采用复合型静止型无功补偿器SVC来进行电压和无功的综合控制。
发明内容:
本发明的目的是为了解决屋顶光伏电站的存在的电压波动,功率因数和谐振过电压等问题,本发明提供一种TCT型静止无功补偿装置。
上述的目的通过以下的技术方案实现:
一种屋顶光伏发电用TCT型低压静止无功补偿装置,所述的屋顶光伏发电用TCT型低压静止无功补偿装置包括设置在400KV侧的输出连续可调的感性无功的一个TCT支路,输出容性无功功率的两个TSC支路以及控制和保护系统,以 TSC 支路作分级粗调、以 TCT支路作相控细调,TCT支路的容量为TSC支路容量的1/41/3;
本装置的采样点来自于在输线进线侧的10kV公共连接点处设置的电压互感器和电流互感器,实时采集系统电压,自动判断系统谐振状态,迅速改变TCT的阻抗至最小,消除系统谐振,此时TCT的容量达到最大,抑制电压升高;
所述的TCT支路和两个TSC支路上都设置有电流互感器,实时监测电容器组的电流,一旦发生谐波放大或者电源切换过程造成的谐振发生,立即切除电容器组,避免暂态过电压造成设备损坏;
所述的TCT支路为磁集成晶闸管控制变压器,是在其变压器的二次绕组与电抗器绕组反向串联接后接双向晶闸管。
所述的屋顶光伏发电用TCT型低压静止无功补偿装置,所述的输线的10KV处的电压互感器和电流互感器为功率因数采样点,在轻载时补偿进线变压器和光伏发电隔离变压器自身的励磁无功功率。
所述的屋顶光伏发电用TCT型低压静止无功补偿装置,所述的TSC支路为晶闸管投切电容器。
有益效果:
1.本发明功率因数采样点儿在10kV侧,能够在轻载时补偿进线变压器和光伏发电隔离变压器自身的励磁无功功率,保证计量考核点儿10kV侧的功率因数大于0.99。
本发明采用磁集成技术的晶闸管控制变压器型可控电抗器,即TCT型可控电抗器,响应速度快;
3.本发明实时采集系统电压,自动判断系统谐振状态,迅速改变TCT的阻抗至最小,消除系统谐振,此时TCT的容量达到最大,抑制电压升高;
4.本发明实时监测电容器组的电流,一旦发生谐波放大或者电源切换过程造成的谐振发生,立即切除电容器组,避免暂态过电压造成设备损坏。
附图说明:
附图1是本发明的原理图;
具体实施方式:
实施例1:
一种屋顶光伏发电用TCT型低压静止无功补偿装置,所述的屋顶光伏发电用TCT型低压静止无功补偿装置包括设置在400KV侧的输出连续可调的感性无功的一个TCT支路,输出容性无功功率的两个TSC支路以及控制和保护系统,以 TSC 支路作分级粗调、以 TCT支路作相控细调,TCT支路的容量为TSC支路容量的1/41/3;
本装置的采样点来自于在输线进线侧的10kV公共连接点处设置的电压互感器和电流互感器,实时采集系统电压,自动判断系统谐振状态,迅速改变TCT的阻抗至最小,消除系统谐振,此时TCT的容量达到最大,抑制电压升高;
所述的TCT支路和两个TSC支路上都设置有电流互感器,实时监测电容器组的电流,一旦发生谐波放大或者电源切换过程造成的谐振发生,立即切除电容器组,避免暂态过电压造成设备损坏;
所述的TCT支路为磁集成晶闸管控制变压器,是在其变压器的二次绕组与电抗器绕组反向串联接后接双向晶闸管。
实施例2:
根据实施例1所述的屋顶光伏发电用TCT型低压静止无功补偿装置,所述的输线的10KV处的电压互感器和电流互感器为功率因数采样点,在轻载时补偿进线变压器和光伏发电隔离变压器自身的励磁无功功率。
实施例3:
根据实施例1或2所述的屋顶光伏发电用TCT型低压静止无功补偿装置,所述的TSC支路为晶闸管投切电容器。
Claims (3)
1.一种屋顶光伏发电用TCT型低压静止无功补偿装置,其特征是:所述的屋顶光伏发电用TCT型低压静止无功补偿装置包括设置在400KV侧的输出连续可调的感性无功的一个TCT支路,输出容性无功功率的两个TSC支路以及控制和保护系统,以 TSC 支路作分级粗调、以TCT支路作相控细调,TCT支路的容量为TSC支路容量的1/41/3;
本装置的采样点来自于在输线进线侧的10kV公共连接点处设置的电压互感器和电流互感器,实时采集系统电压,自动判断系统谐振状态,迅速改变TCT的阻抗至最小,消除系统谐振,此时TCT的容量达到最大,抑制电压升高;
所述的TCT支路和两个TSC支路上都设置有电流互感器,实时监测电容器组的电流,一旦发生谐波放大或者电源切换过程造成的谐振发生,立即切除电容器组,避免暂态过电压造成设备损坏;
所述的TCT支路为磁集成晶闸管控制变压器,是在其变压器的二次绕组与电抗器绕组反向串联接后接双向晶闸管。
2.根据权利要求1所述的屋顶光伏发电用TCT型低压静止无功补偿装置,其特征是:所述的输线的10KV处的电压互感器和电流互感器为功率因数采样点,在轻载时补偿进线变压器和光伏发电隔离变压器自身的励磁无功功率。
3.根据权利要求2所述的屋顶光伏发电用TCT型低压静止无功补偿装置,其特征是:所述的TSC支路为晶闸管投切电容器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911421433.3A CN111030129A (zh) | 2019-12-31 | 2019-12-31 | 屋顶光伏发电用tct型低压静止无功补偿装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911421433.3A CN111030129A (zh) | 2019-12-31 | 2019-12-31 | 屋顶光伏发电用tct型低压静止无功补偿装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111030129A true CN111030129A (zh) | 2020-04-17 |
Family
ID=70201707
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911421433.3A Pending CN111030129A (zh) | 2019-12-31 | 2019-12-31 | 屋顶光伏发电用tct型低压静止无功补偿装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111030129A (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201181845Y (zh) * | 2007-07-31 | 2009-01-14 | 湖南大学 | 基于定点dsp的静止无功补偿器 |
CN201860120U (zh) * | 2010-11-25 | 2011-06-08 | 广东雅达电子股份有限公司 | 一种具有谐波超限保护的无功补偿器 |
CN102122821A (zh) * | 2010-12-17 | 2011-07-13 | 中国电力科学研究院 | 一种抑制超、特高压空载线路合闸后工频电压升高的方法 |
CN104319790A (zh) * | 2014-11-14 | 2015-01-28 | 国家电网公司 | 一种6脉动tct式可控并联电抗器 |
-
2019
- 2019-12-31 CN CN201911421433.3A patent/CN111030129A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201181845Y (zh) * | 2007-07-31 | 2009-01-14 | 湖南大学 | 基于定点dsp的静止无功补偿器 |
CN201860120U (zh) * | 2010-11-25 | 2011-06-08 | 广东雅达电子股份有限公司 | 一种具有谐波超限保护的无功补偿器 |
CN102122821A (zh) * | 2010-12-17 | 2011-07-13 | 中国电力科学研究院 | 一种抑制超、特高压空载线路合闸后工频电压升高的方法 |
CN104319790A (zh) * | 2014-11-14 | 2015-01-28 | 国家电网公司 | 一种6脉动tct式可控并联电抗器 |
Non-Patent Citations (1)
Title |
---|
吕志斗, 辽宁科学技术出版社 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103560520B (zh) | 适用于故障穿越的统一电能质量控制器及控制方法 | |
Guo et al. | An overview of series-connected power electronic converter with function extension strategies in the context of high-penetration of power electronics and renewables | |
Shevchenko et al. | Use of capacitor batteries to improve the quality of electrical energy | |
Suja et al. | Power quality improvement in grid connected wind energy system using STATCOM | |
Babu et al. | A Review on Dynamic Voltage Restorer in power systems concerned to the issues of Power Quality | |
Kechroud et al. | Taking the experience from flexible AC transmission systems to flexible AC distribution systems | |
Mahela et al. | Power quality improvement in hybrid power system using synchronous reference frame theory based distribution static compensator with battery energy storage system | |
Huang et al. | Voltage rise regulation with voltage source inverter in grid connected pv generation system | |
Tian et al. | Research status analysis of reactive power compensation technology for power grid | |
CN111030129A (zh) | 屋顶光伏发电用tct型低压静止无功补偿装置 | |
Kalita et al. | FACTS controllers' impact on Power Quality: A comparative analysis | |
CN202084937U (zh) | Mcr型svc装置 | |
Song-cen et al. | Mitigation of voltage sags by grid-connected distributed generation system in series and shunt configurations | |
Lei et al. | Coordinated control strategy based on network parameters for voltage sags compensating in Microgrid | |
Li et al. | High Voltage Ride-Through Control Strategy for Two-Stage PV Grid-Connected Systems | |
CN219892969U (zh) | 高低压无功补偿装置 | |
Sharma et al. | Minimization of Impact of Disturbances on Performance of Utility Grid with Wind Energy Penetration Using Battery Energy Storage Device | |
CN209375148U (zh) | 主动配电网中配电变压器主动响应控制装置 | |
Kureel et al. | Pv-Statcom Power Quality Enhancement with Shunt Active Power Filter | |
Zhou et al. | Overview on VSC-HVDC systems based on PV | |
Guan-qiu et al. | Research on Power Electronics Technology in Modern Power Grid | |
Joy et al. | Electrical Power Flow Improvement by Reducing Fault Current using FACTS Devices | |
Zhang et al. | Research on the Coordinated control Strategy of fault crossing capability of offshore wind power multi-terminal flexible DC system | |
Bhatt et al. | Voltage Improvement in Distribution System using Shunt FACTS Device | |
Kumar et al. | Voltage Enhancement In a Distribution Power System With SMES Based DVR |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20200417 |
|
WD01 | Invention patent application deemed withdrawn after publication |