CN111029132A - Winding method of high-power high-frequency transformer - Google Patents

Winding method of high-power high-frequency transformer Download PDF

Info

Publication number
CN111029132A
CN111029132A CN201911391014.XA CN201911391014A CN111029132A CN 111029132 A CN111029132 A CN 111029132A CN 201911391014 A CN201911391014 A CN 201911391014A CN 111029132 A CN111029132 A CN 111029132A
Authority
CN
China
Prior art keywords
winding
enameled wire
turns
primary winding
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911391014.XA
Other languages
Chinese (zh)
Other versions
CN111029132B (en
Inventor
李文
胡艳浩
李杨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GUANGZHOU KAIHUI ELECTRONICS CO.,LTD.
Original Assignee
Feidong Kelly Electronic Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Feidong Kelly Electronic Technology Co ltd filed Critical Feidong Kelly Electronic Technology Co ltd
Priority to CN201911391014.XA priority Critical patent/CN111029132B/en
Publication of CN111029132A publication Critical patent/CN111029132A/en
Application granted granted Critical
Publication of CN111029132B publication Critical patent/CN111029132B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding
    • H01F41/08Winding conductors onto closed formers or cores, e.g. threading conductors through toroidal cores

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

The invention discloses a winding method of a high-power high-frequency transformer, which comprises a magnetic ring, a primary winding and a secondary winding, wherein the purpose of reducing the leakage inductance of the transformer is realized by winding the primary winding into a coil gap of the secondary winding.

Description

Winding method of high-power high-frequency transformer
Technical Field
The invention relates to the technical field of winding methods of transformers, in particular to a winding method of a high-power high-frequency transformer.
Background
A transformer is a device that changes an alternating voltage using the principle of electromagnetic induction, and main components are a primary coil, a secondary coil, and an iron core (magnetic core). The conventional transformer is formed by winding a plurality of turns of primary and secondary windings on one iron core (ferrite core), and thus a large leakage inductance is generated.
Disclosure of Invention
The invention provides a winding method of a high-power high-frequency transformer, aiming at reducing the leakage inductance of the transformer.
The technical scheme adopted by the invention for solving the problems is as follows:
a winding method of a high-power high-frequency transformer comprises a magnetic ring, a primary winding and a secondary winding, and comprises the following steps:
a1, calculating the ratio V1/V2 of the input voltage V1 to the output voltage V2;
a2, determining the ratio of the number of turns N1 of the enameled wire for the primary winding to the number of turns N2 of the enameled wire for the secondary winding according to the ratio of the input voltage V1 to the output voltage V2 in A1, wherein V1/V2 is N1/N2;
a3, selecting the size of the enameled wire for the primary winding and the size of the enameled wire for the secondary winding according to the turn ratio in A2, the inner diameter of the magnetic ring and the current;
a4, selecting a starting point of a secondary winding on a magnetic ring by using an enameled wire, and uniformly and densely winding N2 turns around the annular outline of the magnetic ring, wherein the starting point is a first group of secondary windings;
a5, continuously winding N2 turns of a secondary winding enameled wire at the end of the previous winding wire, which is a second group of secondary windings, in the same winding direction;
a6, repeating the step A5 until the inner diameter of the magnetic ring is fully wound by the enameled wire for the secondary winding, and using enameled wires G for the secondary winding;
a7, winding an enameled wire for the primary winding from the initial position of the first group of secondary windings in the winding direction of each group of secondary windings for N1 turns, using an enameled wire for the primary winding between each two groups of secondary windings, and winding at least one turn of enameled wire for the primary winding in the gap of every two turns of enameled wire for the secondary winding;
a8, taking a primary winding enameled wire and continuing to wind for N1 turns at the end position of the previous primary winding enameled wire according to the winding method A7;
a9, repeating the step A8 until G/2 enameled wires for the primary winding are wound;
the primary coil and the secondary coil of the transformer are wound in a crossed manner to reduce the leakage inductance of the transformer; the enameled wire is fully wound in the inner diameter of the magnetic ring, so that the magnetic flux in the iron core cannot penetrate through the inner wall to radiate outwards, the leakage inductance of the transformer is reduced, and the di/dt and du/dt of the thyristor for controlling the on-off of the transformer are further reduced.
Further, as a preferred technical solution, in the step a7, the outgoing direction of the primary winding enameled wire is opposite to the outgoing direction of the secondary winding enameled wire. The line feet are divided into different surfaces, so that different line feet can be distinguished conveniently, and welding and installation are facilitated.
Further, as a preferred technical solution, at most two turns of enameled wire for primary winding are wound in each slot in step a 7. An enameled wire for the primary winding needs to be wound between every two groups of secondary windings, when the number of turns of each group of primary windings is larger than that of gaps of the two groups of secondary windings, the extra primary windings can be uniformly wound in other gaps, and the uniform winding can enable the magnetic flux of the transformer to be more uniform.
Further, as preferred technical scheme, the magnetic ring internal diameter is 21 mm.
Further, as a preferred technical scheme, the enameled wire for the primary winding is 0.8mm, and the enameled wire for the secondary winding is 1.2 mm.
Further, as a preferred technical solution, in the step a7, two turns of enameled wire for primary winding are wound in three gaps, and the three gaps are uniformly distributed.
Further, as a preferred technical scheme, the method also comprises the steps of A10, removing the paint of the outgoing wire pin of the enameled wire, and filling the enameled wire pin into a die.
Compared with the prior art, the invention has the advantages that the leakage inductance of the transformer can be effectively reduced by adopting the winding method, the leakage inductance of the general transformer in the market is about 2 percent of the inductance of the transformer, and the leakage inductance of the transformer adopting the winding method of the invention is only less than 0.1 percent.
Drawings
FIG. 1 is a schematic diagram of two sets of secondary windings and one set of primary windings;
FIG. 2 is a schematic view of a magnetic ring with a secondary winding wound thereon;
reference numbers and corresponding part names in the drawings: 1. enameled wire for secondary winding, 2, enameled wire for primary winding
Detailed Description
The present invention will be described in further detail with reference to examples and drawings, but the present invention is not limited to these examples.
In the description of the present invention, it should be noted that the terms "center", "upper", "lower", "left", "right", "vertical", "longitudinal", "lateral", "horizontal", "inner", "outer", "front", "rear", "top", "bottom", and the like indicate orientations or positional relationships that are based on the orientations or positional relationships shown in the drawings, or that are conventionally placed when the product of the present invention is used, and are used only for convenience in describing and simplifying the description, but do not indicate or imply that the device or element referred to must have a particular orientation, be constructed in a particular orientation, and be operated, and thus should not be construed as limiting the invention.
In the description of the present invention, it should also be noted that, unless otherwise explicitly specified or limited, the terms "disposed," "open," "mounted," "connected," and "connected" are to be construed broadly, e.g., as meaning either a fixed connection, a removable connection, or an integral connection; can be mechanically or electrically connected; they may be connected directly or indirectly through intervening media, or they may be interconnected between two elements. The specific meanings of the above terms in the present invention can be understood in specific cases to those skilled in the art.
Examples
A winding method of a high-power high-frequency transformer comprises a magnetic ring, a primary winding and a secondary winding, and comprises the following steps:
a1, calculating the ratio V1/V2 of the input voltage V1 to the output voltage V2;
a2, determining the ratio of the number of turns N1 of the enameled wire 2 for the primary winding to the number of turns N2 of the enameled wire 1 for the secondary winding according to the ratio of the input voltage V1 to the output voltage V2 in a1, wherein V1/V2 is N1/N2;
a3, selecting the sizes of the enameled wire 2 for the primary winding and the enameled wire 1 for the secondary winding according to the turn ratio in A2, the inner diameter of the magnetic ring and the current;
a4, selecting a starting point of a secondary winding on a magnetic ring by using an enameled wire 1, and uniformly and densely winding N2 turns around the annular outline of the magnetic ring, wherein the starting point is a first group of secondary windings;
a5, taking a secondary winding enameled wire 1, and continuously winding N2 turns in the same winding direction at the position immediately adjacent to the end of the previous winding, wherein the secondary winding enameled wire is taken as a second group of secondary windings;
a6, repeating the step A5 until the inner diameter of the magnetic ring is fully wound by the enameled wire 1 for the secondary winding, and at the moment, using 1G enameled wires for the secondary winding;
a7, winding an enameled wire for primary winding 2 from the initial position of the first group of secondary windings for N1 turns according to the winding direction of each group of secondary windings, and using an enameled wire for primary winding between each two groups of secondary windings
2, winding at least one turn of enameled wire 2 for the primary winding in the gap of every two turns of enameled wire 1 for the secondary winding;
a8, taking a primary winding enameled wire 2, and continuously winding N1 turns at the end position of the previous primary winding enameled wire 2 according to the winding method A7;
a9, repeating the step A8 until G/2 enameled wires 2 for the primary winding are wound;
the primary coil and the secondary coil of the transformer are wound in a crossed manner to reduce the leakage inductance of the transformer; the enameled wire is fully wound in the inner diameter of the magnetic ring, so that the magnetic flux in the iron core cannot penetrate through the inner wall to radiate outwards, the leakage inductance of the transformer is reduced, and the di/dt and du/dt of the thyristor for controlling the on-off of the transformer are further reduced.
Preferably, the outgoing direction of the enameled wire for primary winding 2 in the step a7 is opposite to the outgoing direction of the enameled wire for secondary winding 1; in the step a7, at most two turns of the enameled wire 2 for the primary winding are wound in each slot. The line feet are divided into different surfaces, so that different line feet can be distinguished conveniently, and welding and installation are facilitated; an enameled wire 2 for the primary winding is required to be wound between every two groups of secondary windings, when the number of turns of each group of primary windings is larger than that of the gaps of the two groups of secondary windings, the extra primary windings can be uniformly wound in other gaps, and the magnetic flux of the transformer can be more uniform due to uniform winding.
Specifically, if the input voltage is 72V, the output voltage is 25V, and the inner diameter of the magnetic ring is 21 mm.
A1、V1/V2=2.88;
A2, according to V1/V2 ═ N1/N2, N1 is 11, and N2 is 4;
a3, selecting 0.8mm for the enameled wire 2 for the primary winding and 1.2mm for the enameled wire 1 for the secondary winding because the inner diameter of the magnetic ring is 21 mm. The inner diameter of the magnetic ring is 21mm, the circumference is 66mm, the outer diameter of the 1.2mm wire is 1.3, 1.35mm is taken, 1.35mm is 4 circles, 12 groups are 64.8, and the inner layer is exactly one circle; because of the overlapping of one coil, the inner diameter for winding the primary coil is only 17.5mm, the circumference is 55mm, and 0.85 × 11 × 6 is 56 mm.
A4, selecting a starting point of a secondary winding on a magnetic ring by using the enameled wire 1, and uniformly and densely winding 4 turns around the annular outline of the magnetic ring, wherein the starting point is a first group of secondary windings;
a5, continuously winding the enameled wire 1 for the secondary winding immediately after the end of the previous winding for 4 turns according to the same winding direction to form a second group of secondary windings;
a6, repeating the step A5 until the inner diameter of the magnetic ring is fully wound by the enameled wires 1 for the secondary winding, and at the moment, using 1 twelve enameled wires for the secondary winding;
a7, winding a primary winding enameled wire 2 from the initial position of the first group of secondary windings for 11 turns according to the winding direction of each group of secondary windings, and using a primary winding enameled wire between each two groups of secondary windings
2, winding at least one turn of enameled wire 2 for the primary winding in the gap of every two turns of enameled wire 1 for the secondary winding;
in this embodiment, the enameled wire 1 for the secondary winding is wound from bottom to top, and the enameled wire for the primary winding is wound from bottom to top
2, winding from top to bottom; two turns of the enameled wires 2 for the primary winding are wound in gaps of the enameled wires 1 for the 2 nd, 4 th and 6 th secondary windings, and the rest gaps are only wound by one turn.
A8, taking a primary winding enameled wire 2, and continuously winding for 11 turns at the end position of the previous primary winding enameled wire 2 according to the winding method A7;
a9, repeating the step A8 until the six enameled wires 2 for the primary winding are wound;
and A10, removing the paint of the outgoing wire pin of the enameled wire, and filling the enameled wire into a die.
According to the test, the transformer of the present embodiment has an inductance of 1.5mH, a leakage inductance of about 800nH, and a ratio of the leakage inductance to the inductance of 0.53 per thousand.
As described above, the present invention can be preferably realized.
The foregoing is only a preferred embodiment of the present invention, and the present invention is not limited thereto in any way, and any simple modification, equivalent replacement and improvement made to the above embodiment within the spirit and principle of the present invention still fall within the protection scope of the present invention.

Claims (7)

1. A winding method of a high-power high-frequency transformer comprises a magnetic ring, a primary winding and a secondary winding, and is characterized by comprising the following steps:
a1, calculating the ratio V1/V2 of the input voltage V1 to the output voltage V2;
a2, determining the ratio of the number of turns N1 of the enameled wire for primary winding (2) to the number of turns N2 of the enameled wire for secondary winding (1) according to the ratio of the input voltage V1 to the output voltage V2 in A1, wherein V1/V2 is equal to N1/N2;
a3, selecting the sizes of the enameled wire (1) for the secondary winding and the enameled wire (2) for the primary winding according to the turn ratio in A2, the inner diameter of the magnetic ring and the current;
a4, selecting a starting point of a secondary winding on a magnetic ring by using an enameled wire (1), and uniformly and densely winding N2 turns around the annular outline of the magnetic ring, wherein the starting point is a first group of secondary windings;
a5, taking a secondary winding enameled wire (1) to continue winding N2 turns in the same winding direction at the end of the previous winding, wherein the secondary winding enameled wire is taken as a second group of secondary windings;
a6, repeating the step A5 until the inner diameter of the magnetic ring is fully wound by the enameled wire (1) for the secondary winding, and using G enameled wires (1) for the secondary winding;
a7, winding an enameled wire (2) for the primary winding from the initial position of the first group of secondary windings in the winding direction of each group of secondary windings for N1 turns, using an enameled wire (2) for the primary winding between each two groups of secondary windings, and winding at least one turn of enameled wire (2) for the primary winding in the gap of every two turns of enameled wire (1) for the secondary winding;
a8, taking a primary winding enameled wire (2) and continuing to wind for N1 turns at the end position of the previous primary winding enameled wire (2) according to the winding method A7;
and A9, repeating the step A8 until G/2 enameled wires for the primary winding are wound (2).
2. The winding method of a high power high frequency transformer according to claim 1, wherein the outgoing direction of the enameled wire for primary winding (2) is opposite to the outgoing direction of the enameled wire for secondary winding in step A7.
3. The winding method for high power high frequency transformer according to claim 1, wherein at most two turns of enameled wire (2) for primary winding are wound in each slot in step a 7.
4. The winding method for high power high frequency transformer as claimed in claim 1, wherein the inner diameter of the magnetic ring is 21 mm.
5. The winding method of the high-power high-frequency transformer according to claim 4, wherein the enameled wire (2) for the primary winding is 0.8mm, and the enameled wire (1) for the secondary winding is 1.2 mm.
6. The winding method for high power high frequency transformer according to claim 5, wherein two turns of the enameled wire (2) for primary winding are wound in three gaps in step A7, and the three gaps are uniformly distributed.
7. The winding method of the high-power high-frequency transformer according to any one of claims 1 to 6, further comprising the steps of A10, removing the paint on the outgoing wire pin of the enameled wire, and loading into a mold.
CN201911391014.XA 2019-12-30 2019-12-30 Winding method of high-power high-frequency transformer Active CN111029132B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911391014.XA CN111029132B (en) 2019-12-30 2019-12-30 Winding method of high-power high-frequency transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911391014.XA CN111029132B (en) 2019-12-30 2019-12-30 Winding method of high-power high-frequency transformer

Publications (2)

Publication Number Publication Date
CN111029132A true CN111029132A (en) 2020-04-17
CN111029132B CN111029132B (en) 2022-03-22

Family

ID=70195645

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911391014.XA Active CN111029132B (en) 2019-12-30 2019-12-30 Winding method of high-power high-frequency transformer

Country Status (1)

Country Link
CN (1) CN111029132B (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030048165A1 (en) * 1997-09-18 2003-03-13 Honeywell International Inc. High pulse rate ignition system
US20040080393A1 (en) * 2002-10-18 2004-04-29 Phadke Vijay Gangadhar Insulation and integrated heat sink for high frequency, low output voltage toroidal inductors and transformers
CN1564277A (en) * 2004-04-21 2005-01-12 深圳市瑞凌实业有限公司 High efficiency low leakage intermediate-frequency power transformer and its mfg. method
CN1747290A (en) * 2004-09-08 2006-03-15 有限会社金星研究所 Motor and devive using this
WO2009008740A1 (en) * 2007-07-09 2009-01-15 Power Concepts Nz Limited A transformer
CN101882503A (en) * 2010-06-21 2010-11-10 贵州航天电器股份有限公司 Coupling transformer
US20160372259A1 (en) * 2014-03-04 2016-12-22 Murata Manufacturing Co., Ltd. Coil component, coil module, and method for manufacturing coil component
CN106783146A (en) * 2017-03-20 2017-05-31 惠州永进电子有限公司 A kind of photovoltaic transformer annular core founds winding technologe
CN109103000A (en) * 2017-06-20 2018-12-28 胜美达集团株式会社 The manufacturing method of flat coil, reactor and reactor
CN110233044A (en) * 2019-07-12 2019-09-13 蚌埠市双环电感股份有限公司 A kind of ring-shaped inductors method for winding and its inductance

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030048165A1 (en) * 1997-09-18 2003-03-13 Honeywell International Inc. High pulse rate ignition system
US20040080393A1 (en) * 2002-10-18 2004-04-29 Phadke Vijay Gangadhar Insulation and integrated heat sink for high frequency, low output voltage toroidal inductors and transformers
CN1564277A (en) * 2004-04-21 2005-01-12 深圳市瑞凌实业有限公司 High efficiency low leakage intermediate-frequency power transformer and its mfg. method
CN1747290A (en) * 2004-09-08 2006-03-15 有限会社金星研究所 Motor and devive using this
WO2009008740A1 (en) * 2007-07-09 2009-01-15 Power Concepts Nz Limited A transformer
CN101882503A (en) * 2010-06-21 2010-11-10 贵州航天电器股份有限公司 Coupling transformer
US20160372259A1 (en) * 2014-03-04 2016-12-22 Murata Manufacturing Co., Ltd. Coil component, coil module, and method for manufacturing coil component
CN106783146A (en) * 2017-03-20 2017-05-31 惠州永进电子有限公司 A kind of photovoltaic transformer annular core founds winding technologe
CN109103000A (en) * 2017-06-20 2018-12-28 胜美达集团株式会社 The manufacturing method of flat coil, reactor and reactor
CN110233044A (en) * 2019-07-12 2019-09-13 蚌埠市双环电感股份有限公司 A kind of ring-shaped inductors method for winding and its inductance

Also Published As

Publication number Publication date
CN111029132B (en) 2022-03-22

Similar Documents

Publication Publication Date Title
CN103608878B (en) High frequency transformer
US20220130602A1 (en) Transformer And Method For Manufacturing Transformer
JP2727462B2 (en) Electric winding parts and winding method
CN111029132B (en) Winding method of high-power high-frequency transformer
US20050001709A1 (en) Inductive device and methods for assembling same
CN205621555U (en) Flat flat line of annular magnetic core is immediately around inductance
JPH02151008A (en) Method of winding electric winding component
CN205621554U (en) Mix flat flat line of metal powder core combination immediately around inductance
CN111029133B (en) Winding method of high-frequency high-power low-leakage-inductance transformer
CN216597252U (en) Transformer winding structure
CN201378491Y (en) Magnetic assembly with embedded type coil, and winding rack thereof
JP2004327763A (en) Magnetic shielding method and magnetic field generator using the same
CN213877792U (en) Coil inductance device
CN214428461U (en) Magnetic integrated coil and wireless energy transmission system thereof
CN106328362B (en) A kind of toroidal transformer
EP4390984A1 (en) Common mode inductor, common mode inductor winding method, and adapter
KR101563259B1 (en) Transformer
CN216698003U (en) PFC inductor capable of being wound automatically
CN218038797U (en) Magnetic core mounting structure for high-frequency switch transformer
CN219642645U (en) Ring resonant inductor and control circuit
CN103680867A (en) Side-winding type winding transformer and winding method thereof
CN220208723U (en) Magnetic part combined structure with double magnetic integrated structure
CN210628078U (en) Transformer capable of reducing current impact
US20230411062A1 (en) Choke coil
CN107123543B (en) A kind of effective magnet ring winding method for reducing EMC

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20220304

Address after: 511400 floor 2, building 8, No. 2, self compiled Cole Road, Dongyong Town, Nansha District, Guangzhou City, Guangdong Province

Applicant after: GUANGZHOU KAIHUI ELECTRONICS CO.,LTD.

Address before: 230000 south of the west end of Guhe Road, Feidong Economic Development Zone, Hefei City, Anhui Province

Applicant before: FEIDONG KELLY ELECTRONIC TECHNOLOGY Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant