CN111017862A - Mems桥梁柱结构及形成方法 - Google Patents

Mems桥梁柱结构及形成方法 Download PDF

Info

Publication number
CN111017862A
CN111017862A CN201911125309.2A CN201911125309A CN111017862A CN 111017862 A CN111017862 A CN 111017862A CN 201911125309 A CN201911125309 A CN 201911125309A CN 111017862 A CN111017862 A CN 111017862A
Authority
CN
China
Prior art keywords
layer
silicon oxide
substrate
window
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911125309.2A
Other languages
English (en)
Other versions
CN111017862B (zh
Inventor
刘善善
朱黎敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Original Assignee
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huahong Grace Semiconductor Manufacturing Corp filed Critical Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority to CN201911125309.2A priority Critical patent/CN111017862B/zh
Publication of CN111017862A publication Critical patent/CN111017862A/zh
Application granted granted Critical
Publication of CN111017862B publication Critical patent/CN111017862B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0064Constitution or structural means for improving or controlling the physical properties of a device
    • B81B3/0067Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/00142Bridges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00642Manufacture or treatment of devices or systems in or on a substrate for improving the physical properties of a device
    • B81C1/0065Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0109Bridges

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Pressure Sensors (AREA)
  • Micromachines (AREA)

Abstract

本发明公开了一种MEMS桥梁柱结构及形成方法,所述结构采用多层薄膜复合结构,主要包括第一氧化硅层、第二氧化硅层、第三氧化硅层、非晶硅层、钛/氮化钛层以及ONO层;所述的衬底中包含有电连接层。本发明所述的MEMS桥梁柱结构及形成方法,通过将不同的模层结构组合,得到一种适用于MEMS产品中桥梁柱的结构应用,可以有效的支撑整个悬空MEMS结构,降低梁柱倒塌风险,同时不影响桥梁柱的导通性能。

Description

MEMS桥梁柱结构及形成方法
技术领域
本发明涉及半导体器件制造领域,特别是指一种MEMS 产品桥梁结构中,能够有效的支撑MEMS镂空的MEMS桥梁柱结构,可以有效的降低桥梁结构翘曲带来的后续封装异常。
本发明还涉及所述MEMS桥梁柱结构的形成方法。
背景技术
微机电系统(MEMS, Micro-Electro-Mechanical System),也叫做微电子机械系统、微系统、微机械等,指尺寸在几毫米乃至更小的高科技装置,其内部结构一般在微米甚至纳米量级,是一个独立的智能系统。主要由传感器、动作器(执行器)和微能源三大部分组成。微机电系统涉及物理学、半导体、光学、电子工程、化学、材料工程、机械工程、医学、信息工程及生物工程等多种学科和工程技术,为智能系统、消费电子、可穿戴设备、智能家居、系统生物技术的合成生物学与微流控技术等领域开拓了广阔的用途。常见的产品包括MEMS加速度计、MEMS麦克风、微马达、微泵、微振子、MEMS压力传感器、MEMS陀螺仪、MEMS湿度传感器等以及它们的集成产品。
MEMS是一个独立的智能系统,可大批量生产,其系统尺寸在几毫米乃至更小,其内部结构一般在微米甚至纳米量级。例如,常见的MEMS产品尺寸一般都在3mm×3mm×1.5mm,甚至更小。
微机电系统在国民经济和军事系统方面将有着广泛的应用前景。主要民用领域是电子、医学、工业、汽车和航空航天系统。
MEMS具有以下几个基本特点:微型化、智能化、多功能、高集成度和适于大批量生产。MEMS技术的目标是通过系统的微型化、集成化来探索具有新原理、新功能的元件和系统。 MEMS技术是一种典型的多学科交叉的前沿性研究领域,侧重于超精密机械加工,几乎涉及到自然及工程科学的所有领域,如电子技术、机械技术、物理学、化学、生物医学、材料科学、能源科学等。其研究内容一般可以归纳为以下三个基本方面: 1.理论基础: 在当前MEMS所能达到的尺度下,宏观世界基本的物理规律仍然起作用,但由于尺寸缩小带来的影响(Scaling Effects),许多物理现象与宏观世界有很大区别,因此许多原来的理论基础都会发生变化,如力的尺寸效应、微结构的表面效应、微观摩擦机理等,因此有必要对微动力学、微流体力学、微热力学、微摩擦学、微光学和微结构学进行深入的研究。这一方面的研究虽然受到重视,但难度较大,往往需要多学科的学者进行基础研究。2.技术基础研究:主要包括微机械设计、微机械材料、微细加工、微装配与封装、集成技术、微测量等技术基础研究。3.微机械在各学科领域的应用研究。
微机电系统是在微电子技术(半导体制造技术)基础上发展起来的,融合了光刻、腐蚀、薄膜、LIGA、硅微加工、非硅微加工和精密机械加工等技术制作的高科技电子机械器件。
微机电系统是集微传感器、微执行器、微机械结构、微电源微能源、信号处理和控制电路、高性能电子集成器件、接口、通信等于一体的微型器件或系统。MEMS是一项革命性的新技术,广泛应用于高新技术产业,是一项关系到国家的科技发展、经济繁荣和国防安全的关键技术。常见的产品包括MEMS加速度计、MEMS麦克风、微马达、微泵、微振子、MEMS光学传感器、MEMS压力传感器、MEMS陀螺仪、MEMS湿度传感器、MEMS气体传感器等等以及它们的集成产品。
非晶硅是硅的同素异形体形式,能够以薄膜形式沉积在各种基板上,为各种电子应用提供某些独特的功能。非晶硅被用在大规模生产的微机电系统(MEMS)和纳米机电系统(NEMS)、太阳能电池、微晶硅和微非晶硅、甚至对于各种基板上的滚压工艺技术都是有用的。传统MEMES器件比较依赖于在硅基层电路制造中使用的那些典型材料,例如单晶硅,多晶硅,氧化硅和氮化硅。由于MEMS器件的机械本质,像杨氏模量,热膨胀系数和屈服强度这些材料属性对于MEMS的设计来说是非常重要的。MEMS结构中经常会有无支撑(或悬垂)的元件,因此对于薄膜中的应力和应力梯度需要严格控制,否则无支撑元件将会断裂或卷曲,致使结构失效。
发明内容
本发明所要解决的技术问题在于提供一种MEMS桥梁柱结构及形成方法,可以有效的支撑整个悬空MEMS结构,降低梁柱倒塌风险,同时不影响梁柱的导通性能。
为解决上述问题,本发明所述的MEMS桥梁柱结构,包括衬底结构及衬底上方的上部结构;所述衬底上还包含有介质层,所述介质层开有第一窗口区形成一个沟槽,所述MEMS桥梁柱结构的上部结构形成于所述的沟槽中。
所述衬底的上部结构采用多层薄膜复合结构;主要包括第一氧化硅层、第二氧化硅层、第三氧化硅层、非晶硅层、钛/氮化钛层以及ONO层;所述的衬底中包含有电连接层。
所述的第一氧化硅层覆盖于衬底表面,所述介质层形成与第一氧化硅层上方,且所述第一氧化硅层在衬底表面包含第二窗口区,以露出衬底,所述窗口区下方是位于衬底中的电连接层。
所述的第二氧化硅层覆盖于第一窗口区内的第一氧化硅层之上,所述第二氧化硅层同样打开第二窗口。
所述非晶硅层覆盖于第二氧化硅层之上;且所述的第二氧化硅层及非晶硅层覆盖第一窗口内的介质层侧壁及介质层表面。
所述的钛/氮化钛层覆盖整个第一窗口及第二窗口,即钛/氮化钛层覆盖第二窗口内的硅衬底及其上方的其他膜层,形成具有台阶状的倒立几字形。
所述第三氧化硅层及ONO层依次附着于钛/氮化钛层上,形成与钛/氮化钛层相同的倒立几字形结构。
进一步地改进是,所述的衬底为硅衬底,或者是带有不限于氧化硅层或者非晶硅膜层的带有衬底膜层的硅衬底。
进一步地改进是,所述的第一氧化硅层的厚度为1000~3000Å。
进一步地改进是,所述的第二氧化硅层的厚度为500~800Å。
进一步地改进是,所述的非晶硅层,其厚度为1000~2000Å。
进一步地改进是,所述的钛/氮化钛层,其厚度为100~200Å。
进一步地改进是,所述的ONO层,其各层膜厚度分别为100~400Å/300~600Å/100~400Å。
为解决上述问题,本发明还提供一种MEMS桥梁主结构的形成方法,所述方法包含:
步骤一,在衬底上形成第一氧化硅层,然后在第一氧化硅层上沉积一层介质层。
步骤二,通过光刻及刻蚀,对介质层打开第一窗口,所述介质层第一窗口是对介质层向下刻蚀到露出第一氧化硅层;然后对第一氧化硅层继续刻蚀,形成第二窗口,露出衬底;所述第二窗口小于第一窗口。
步骤三,在介质层上依次淀积第二氧化硅层及非晶硅层,所述第二氧化硅层及非晶硅层覆盖第一窗口内介质层侧壁及第一窗口外的介质层表面。
步骤四,对第一窗口内的第二氧化硅层及非晶硅层进行刻蚀,以重新打开第二窗口,露出衬底。
步骤五,依次淀积钛/氮化钛层、第三氧化硅层以及ONO层。
进一步地改进是,所述步骤一中,第一氧化硅层,其成膜方法为CVD,成膜厚度为1000~3000Å。
进一步地改进是,所述步骤三中,第二氧化硅层,其成膜方法为CVD,成膜厚度为500~800Å。
进一步地改进是,所述步骤三中,非晶硅层,其成膜方法为CVD,成膜厚度为1000~2000Å。
进一步地改进是,所述的非晶硅层是进行了掺杂的非晶硅层。
进一步地改进是,所述的非晶硅层是进行了B掺杂的非晶硅层。
进一步地改进是,所述的钛/氮化钛层的复合层,或者是替换为单层的氮化钛层。
进一步地改进是,所述的钛/氮化钛层,其成膜方法为PVD方法成膜,薄膜厚度为100~200Å。
进一步地改进是,所述的ONO层,其成膜方法为CVD,其ONO层各层成膜厚度分别为100~400Å/300~600Å/100~400Å。
本发明所述的MEMS桥梁柱结构及形成方法,通过将不同的模层结构组合,得到一种适用于MEMS产品中桥梁柱的结构应用,可以有效的支撑整个悬空MEMS结构,降低梁柱倒塌风险,同时不影响桥梁柱的导通性能。
附图说明
图1 是本发明所述的MEMS桥梁柱的结构示意图。
附图标记说明
1是第一氧化硅层,2是钛/氮化钛层,3是非晶硅层,4是第二氧化硅层,5是ONO层,6是第三氧化硅层。
具体实施方式
本发明所述的MEMS桥梁柱结构,如图1所示,包括衬底结构及衬底上方的上部结构;所述衬底上还包含有介质层,所述介质层开有第一窗口区形成一个沟槽,所述MEMS桥梁柱结构的上部结构形成与所述的沟槽中。
所述衬底的上部结构采用多层薄膜复合结构,主要包括第一氧化硅层1、第二氧化硅层4、第三氧化硅层6、非晶硅层3、钛/氮化钛层2以及ONO层5。
所述的第一氧化硅层1覆盖于衬底表面,所述介质层形成与第一氧化硅层1上方,且所述第一氧化硅层1在衬底表面包含第二窗口区,以露出衬底,所述窗口区下方是位于衬底中的电连接层。
所述的第二氧化硅层4覆盖于第一窗口区内的第一氧化硅层1之上,所述第二氧化硅层4同样打开第二窗口。
所述非晶硅层3覆盖于第二氧化硅层4之上,且所述的第二氧化硅层4及非晶硅层3覆盖第一窗口内的介质层侧壁及介质层表面。
所述的钛/氮化钛层覆盖整个第一窗口及第二窗口,即钛/氮化钛层覆盖第二窗口内的硅衬底及其上方的其他膜层,形成具有台阶状的倒立几字形。由于第一氧化硅层1、第二氧化硅层4以及非晶硅层3刻蚀打开第二窗口后,这三个膜层在第一窗口中形成了一个台阶,该台阶所包围的区域即为打开的第二窗口,再淀积钛/氮化钛层之后,在整个所打开的沟槽内,淀积钛/氮化钛层就形成了倒立的几字形,准确来说,在几字形结构的两侧还包括有延伸段,再各自形成一个直角。
所述的衬底中包含有电连接层,所述的钛/氮化钛层2即与第二窗口中的硅衬底上的电连接层接触。
所述第三氧化硅层及ONO层依次附着于钛/氮化钛层上,因此具有与钛/氮化钛层相同的形貌,形成与钛/氮化钛层相同的倒立几字形结构。
所述的衬底为硅衬底,或者是带有不限于氧化硅层或者非晶硅膜层的带有衬底膜层的硅衬底。
本发明所述的MEMS桥梁主结构的形成方法,包含:
步骤一,在衬底上通过CVD法,形成第一氧化硅层,成膜厚度为1000~3000Å。然后在第一氧化硅层上沉积一层介质层。
步骤二,通过光刻及刻蚀,对介质层打开第一窗口,所述介质层第一窗口是对介质层向下刻蚀到露出第一氧化硅层;然后对第一氧化硅层继续刻蚀,形成第二窗口,露出衬底;所述第二窗口小于第一窗口。
步骤三,在介质层上依次淀积第二氧化硅层及非晶硅层,第二氧化硅的成膜方法为CVD,成膜厚度为500~800Å;非晶硅层的成膜方法为CVD,成膜厚度为1000~2000Å。所述第二氧化硅层及非晶硅层覆盖第一窗口内介质层侧壁及第一窗口外的介质层表面。所述的非晶硅层是进行了掺杂的膜层,掺杂的杂质为B等杂质。
步骤四,对第一窗口内的第二氧化硅层及非晶硅层进行刻蚀,以重新打开第二窗口,露出衬底。
步骤五,依次淀积钛/氮化钛层、第三氧化硅层以及ONO层。钛/氮化钛层,其成膜方法为PVD方法成膜,薄膜厚度为100~200Å。本实施例采用的是钛/氮化钛层的复合膜层,也可以是氮化钛的单层。
所述的ONO层,其成膜方法为CVD,其ONO层各层成膜厚度分别为100~400Å/300~600Å/100~400Å。
本发明提供的MEMS桥梁柱结构,其桥梁柱结构为一端接触下部衬底基板的电连接层,通过各种不同材质膜层的组合,可以有效的支撑MEMS镂空结构薄膜层,降低梁柱倒塌风险,同时不影响梁柱的导通性能。
以上仅为本发明的优选实施例,并不用于限定本发明。对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (16)

1.一种MEMS桥梁柱结构,其特征在于:所述结构包括衬底结构及衬底上方的上部结构;所述衬底上还包含有介质层,所述介质层开有第一窗口区形成一个沟槽,所述MEMS桥梁柱结构的上部结构形成与所述的沟槽中;
所述衬底的上部结构采用多层薄膜复合结构;主要包括第一氧化硅层、第二氧化硅层、第三氧化硅层、非晶硅层、钛/氮化钛层以及ONO层;所述的衬底中包含有电连接层;
所述的第一氧化硅层覆盖于衬底表面,所述介质层形成与第一氧化硅层上方,且所述第一氧化硅层在衬底表面包含第二窗口区,以露出衬底,所述窗口区下方是位于衬底中的电连接层;
所述的第二氧化硅层覆盖于第一窗口区内的第一氧化硅层之上,所述第二氧化硅层同样打开第二窗口;
所述非晶硅层覆盖于第二氧化硅层之上;且所述的第二氧化硅层及非晶硅层覆盖第一窗口内的介质层侧壁及介质层表面;
所述的钛/氮化钛层覆盖整个第一窗口及第二窗口,即钛/氮化钛层覆盖第二窗口内的硅衬底及其上方的其他膜层,形成具有台阶状的倒立几字形;
所述第三氧化硅层及ONO层依次附着于钛/氮化钛层上,形成与钛/氮化钛层相同的倒立几字形结构。
2.根据权利要求1所述的MEMS桥梁柱结构,其特征在于:所述的衬底为硅衬底,或者是带有不限于氧化硅层或者非晶硅膜层的带有衬底膜层的硅衬底。
3.根据权利要求1所述的MEMS桥梁柱结构,其特征在于:所述的第一氧化硅层的厚度为1000~3000Å。
4.根据权利要求1所述的MEMS桥梁柱结构,其特征在于:所述的第二氧化硅层的厚度为500~800Å。
5.根据权利要求1所述的MEMS桥梁柱结构,其特征在于:所述的非晶硅层,其厚度为1000~2000Å。
6.根据权利要求1所述的MEMS桥梁柱结构,其特征在于:所述的钛/氮化钛层,其厚度为100~200Å。
7.根据权利要求1所述的MEMS桥梁柱结构,其特征在于:所述的ONO层,其各层膜厚度分别为100~400Å/300~600Å/100~400Å。
8.一种MEMS桥梁主结构的形成方法,其特征在于:所述方法包含:
步骤一,在衬底上形成第一氧化硅层,然后在第一氧化硅层上沉积一层介质层;
步骤二,通过光刻及刻蚀,对介质层打开第一窗口,所述介质层第一窗口是对介质层向下刻蚀到露出第一氧化硅层;然后对第一氧化硅层继续刻蚀,形成第二窗口,露出衬底;所述第二窗口小于第一窗口;
步骤三,在介质层上依次淀积第二氧化硅层及非晶硅层,所述第二氧化硅层及非晶硅层覆盖第一窗口内介质层侧壁及第一窗口外的介质层表面;
步骤四,对第一窗口内的第二氧化硅层及非晶硅层进行刻蚀,以重新打开第二窗口,露出衬底;
步骤五,依次淀积钛/氮化钛层、第三氧化硅层以及ONO层。
9.根据权利要求8所述的MEMS桥梁柱结构,其特征在于:所述步骤一中,第一氧化硅层,其成膜方法为CVD,成膜厚度为1000~3000Å。
10.根据权利要求8所述的MEMS桥梁柱结构,其特征在于:所述步骤三中,第二氧化硅层,其成膜方法为CVD,成膜厚度为500~800Å。
11.根据权利要求8所述的MEMS桥梁柱结构,其特征在于:所述步骤三中,非晶硅层,其成膜方法为CVD,成膜厚度为1000~2000Å。
12.根据权利要求11所述的MEMS桥梁柱结构,其特征在于:所述的非晶硅层是进行了掺杂的非晶硅层。
13.根据权利要求11所述的MEMS桥梁柱结构,其特征在于:所述的非晶硅层是进行了B掺杂的非晶硅层。
14.根据权利要求8所述的MEMS桥梁柱结构,其特征在于:所述的钛/氮化钛层的复合层,或者是仅为氮化钛层。
15.根据权利要求8所述的MEMS桥梁柱结构,其特征在于:所述的钛/氮化钛层,其成膜方法为PVD方法成膜,薄膜厚度为100~200Å。
16.根据权利要求8所述的MEMS桥梁柱结构,其特征在于:所述的ONO层,其成膜方法为CVD,其ONO层各层成膜厚度分别为100~400Å/300~600Å/100~400Å。
CN201911125309.2A 2019-11-18 2019-11-18 Mems桥梁柱结构及形成方法 Active CN111017862B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911125309.2A CN111017862B (zh) 2019-11-18 2019-11-18 Mems桥梁柱结构及形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911125309.2A CN111017862B (zh) 2019-11-18 2019-11-18 Mems桥梁柱结构及形成方法

Publications (2)

Publication Number Publication Date
CN111017862A true CN111017862A (zh) 2020-04-17
CN111017862B CN111017862B (zh) 2023-08-22

Family

ID=70200313

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911125309.2A Active CN111017862B (zh) 2019-11-18 2019-11-18 Mems桥梁柱结构及形成方法

Country Status (1)

Country Link
CN (1) CN111017862B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111847372A (zh) * 2020-07-31 2020-10-30 上海华虹宏力半导体制造有限公司 红外mems桥梁柱结构及工艺方法
CN111874860A (zh) * 2020-06-17 2020-11-03 上海集成电路研发中心有限公司 一种红外探测器及其制作方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070170528A1 (en) * 2006-01-20 2007-07-26 Aaron Partridge Wafer encapsulated microelectromechanical structure and method of manufacturing same
CN101774531A (zh) * 2010-01-05 2010-07-14 上海集成电路研发中心有限公司 一种mems微桥结构接触孔制备方法
CN101780944A (zh) * 2010-01-05 2010-07-21 上海集成电路研发中心有限公司 一种mems微桥结构的制备方法
CN102001616A (zh) * 2009-08-31 2011-04-06 上海丽恒光微电子科技有限公司 装配和封装微型机电系统装置的方法
CN102086016A (zh) * 2010-12-30 2011-06-08 上海集成电路研发中心有限公司 Mems微桥结构及其制造方法
CN102683475A (zh) * 2011-03-18 2012-09-19 浙江大立科技股份有限公司 一种基于临时释放保护层的红外探测器制作方法
US20130140950A1 (en) * 2011-11-18 2013-06-06 Texas Micropower, Inc. Mems-based cantilever energy harvester
CN107117578A (zh) * 2017-05-11 2017-09-01 烟台睿创微纳技术股份有限公司 一种非制冷双色红外探测器mems芯片及其制造方法
CN109928357A (zh) * 2019-02-27 2019-06-25 上海华虹宏力半导体制造有限公司 一种mems桥梁结构及其形成方法
CN110127592A (zh) * 2019-04-15 2019-08-16 上海华虹宏力半导体制造有限公司 Mems感知器结构及其制造方法
GB201913839D0 (en) * 2019-09-25 2019-11-06 X Fab Semiconductor Foundries Through silicon via and redistribution layer

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070170528A1 (en) * 2006-01-20 2007-07-26 Aaron Partridge Wafer encapsulated microelectromechanical structure and method of manufacturing same
CN102001616A (zh) * 2009-08-31 2011-04-06 上海丽恒光微电子科技有限公司 装配和封装微型机电系统装置的方法
CN101774531A (zh) * 2010-01-05 2010-07-14 上海集成电路研发中心有限公司 一种mems微桥结构接触孔制备方法
CN101780944A (zh) * 2010-01-05 2010-07-21 上海集成电路研发中心有限公司 一种mems微桥结构的制备方法
CN102086016A (zh) * 2010-12-30 2011-06-08 上海集成电路研发中心有限公司 Mems微桥结构及其制造方法
CN102683475A (zh) * 2011-03-18 2012-09-19 浙江大立科技股份有限公司 一种基于临时释放保护层的红外探测器制作方法
US20130140950A1 (en) * 2011-11-18 2013-06-06 Texas Micropower, Inc. Mems-based cantilever energy harvester
CN107117578A (zh) * 2017-05-11 2017-09-01 烟台睿创微纳技术股份有限公司 一种非制冷双色红外探测器mems芯片及其制造方法
CN109928357A (zh) * 2019-02-27 2019-06-25 上海华虹宏力半导体制造有限公司 一种mems桥梁结构及其形成方法
CN110127592A (zh) * 2019-04-15 2019-08-16 上海华虹宏力半导体制造有限公司 Mems感知器结构及其制造方法
GB201913839D0 (en) * 2019-09-25 2019-11-06 X Fab Semiconductor Foundries Through silicon via and redistribution layer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111874860A (zh) * 2020-06-17 2020-11-03 上海集成电路研发中心有限公司 一种红外探测器及其制作方法
CN111874860B (zh) * 2020-06-17 2024-05-28 上海集成电路研发中心有限公司 一种红外探测器及其制作方法
CN111847372A (zh) * 2020-07-31 2020-10-30 上海华虹宏力半导体制造有限公司 红外mems桥梁柱结构及工艺方法

Also Published As

Publication number Publication date
CN111017862B (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
US7928522B2 (en) Arrangements for and fabrication of mechanical suspension of a movable structure
Elwenspoek et al. Mechanical microsensors
US20090065429A9 (en) Stiffened surface micromachined structures and process for fabricating the same
EP1898196A2 (en) Method for fabricating capacitive pressure sensor and capacitive pressure sensor fabricated thereby
CN101657728A (zh) 集成电路mems平台上具有支承结构的检验质量块及其制法
TWI234819B (en) Selective etch method for side wall protection and structure formed using the method
CN112033526B (zh) 振动传感器及其制造方法
CN111017862A (zh) Mems桥梁柱结构及形成方法
Fedder MEMS fabrication
US9181086B1 (en) Hinged MEMS diaphragm and method of manufacture therof
Tang et al. Process development of an all-silicon capacitive accelerometer with a highly symmetrical spring-mass structure etched in TMAH+ Triton-X-100
Yao et al. BrF3 dry release technology for large freestanding parylene microstructures and electrostatic actuators
TWI398887B (zh) 可變平行電容板之製造方法
Mastropaolo et al. Control of stress in tantalum thin films for the fabrication of 3D MEMS structures
CN111847372A (zh) 红外mems桥梁柱结构及工艺方法
EP1438256A2 (en) Stiffened surface micromachined structures and process for fabricating the same
Lin et al. Sensitivity improvement for CMOS-MEMS capacitive pressure sensor using double deformarle diaphragms with trenches
CN111847373B (zh) 红外mems的支撑孔结构及形成方法
CN112047294B (zh) 红外mems桥梁柱结构及工艺方法
Ke et al. A wafer-scale encapsulated RF MEMS switch with a stress-reduced corrugated diaphragm
Liu et al. Elimination of initial stress-induced curvature in a micromachined bi-material composite-layered cantilever
Singh et al. A novel electrostatic microactuator for large deflections in MEMS applications
Qu et al. One-mask procedure for the fabrication of movable high-aspect-ratio 3D microstructures
Niimi et al. Polymer micromachining based on Cu On Polyimide substrate and its application to flexible MEMS sensor
RU2403647C1 (ru) Способ формирования электрически изолированных областей кремния в объеме кремниевой пластины

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant