CN111013550B - 一种磁性壳聚糖半互穿热膨胀水凝胶的制备及其应用于Cr(VI)吸附 - Google Patents

一种磁性壳聚糖半互穿热膨胀水凝胶的制备及其应用于Cr(VI)吸附 Download PDF

Info

Publication number
CN111013550B
CN111013550B CN201911276169.9A CN201911276169A CN111013550B CN 111013550 B CN111013550 B CN 111013550B CN 201911276169 A CN201911276169 A CN 201911276169A CN 111013550 B CN111013550 B CN 111013550B
Authority
CN
China
Prior art keywords
hydrogel
interpenetrating
thermal expansion
semi
chitosan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911276169.9A
Other languages
English (en)
Other versions
CN111013550A (zh
Inventor
王毓
赵君
任俊鹏
夏卉芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou Education University
Original Assignee
Guizhou Education University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou Education University filed Critical Guizhou Education University
Priority to CN201911276169.9A priority Critical patent/CN111013550B/zh
Publication of CN111013550A publication Critical patent/CN111013550A/zh
Application granted granted Critical
Publication of CN111013550B publication Critical patent/CN111013550B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/286Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/10Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of amides or imides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/46Materials comprising a mixture of inorganic and organic materials
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种磁性壳聚糖半互穿热膨胀水凝胶的制备方法及其应用于对Cr(VI)的吸附,本发明的制备方法是利用水凝胶的热膨胀性能和壳聚糖富含‑OH和‑NH2等活性基团提高凝胶对Cr(VI)的吸附效率、吸附容量;通过半互穿网络技术提高水凝胶的机械强度;利用水凝胶具有较好的磁性,可以在外加磁场条件下与水分离,达到固液分离效果。将本发明应用于对Cr(VI)的吸附,温敏水凝胶的热膨胀性能和穿插链壳聚糖含有大量‑OH和‑NH2等活性基团,能够提高水凝胶对Cr(VI)的吸附效率、吸附容量。

Description

一种磁性壳聚糖半互穿热膨胀水凝胶的制备及其应用于Cr (VI)吸附
技术领域
本发明属于废水处理和材料合成研究领域,具体涉及一种磁性壳聚糖半互穿热膨胀水凝胶的制备及其应用于对Cr(VI)的吸附。
背景技术
随着全球工业化进程的快速发展,重金属污染对人类健康及环境造成严重威胁。其中,Cr(VI)被国际癌症研究机构认为是致癌物质,因为它具有诱变性和致畸性。Cr(VI)是电镀、染料、皮革、纺织等行业废水中大量存在的重金属离子,具有强的毒性和致癌性,且难以生物降解,严重危害生态环境和人类健康。
目前去除Cr(VI)的方法有化学沉淀法、电化学法、离子交换法、反渗透法、光催化法、生物化学法、吸附法等。吸附法具有简单方便、成本低、选择性强、处理效果好等优点,尤其对适用于去除低浓度重金属离子,已广泛用于处理含Cr(VI)废水。
温敏水凝胶是一种新型功能高分子材料,其吸水倍率随环境温度变化而变化的一种具有三维网络结构的高分子材料,通常含有亲水性基团和疏水性残基,温度的变化可以影响这些基团的疏水相互作用以及氢键作用,从而使凝胶的网络结构变化,导致水凝胶发生相转变,
从而表现出温敏性,按其溶胀机理可以分为热收缩型温敏水凝胶和热膨胀型温敏水凝胶。温敏水凝胶去除废水中的重金属离子,主要依赖于凝胶网络中含有的功能基团。当凝胶网络在水中溶胀时,网络尺寸增大,水分子和重金属离子从废水溶液中进入凝胶网络内部,与凝胶网络、功能基团发生物理、化学吸附,凝胶中重金属离子富集,由于温敏水凝胶具备温度敏感性,所以可以通过改变温度调控凝胶吸附重金属离子的过程,利用相转变现象达到水质净化、浓缩重金属离子以及提供选择性等目的。目前研究较多亦较成熟的是基于N-异丙基丙烯酰胺热缩型温敏水凝胶,其显著可逆的非连续体积相转变赋予了水凝胶广阔的应用前景,但因其本身存在着成本较高、热缩型响应速率慢、吸附容量低、机械强度不足等缺陷,多数情况下无法满足实际应用需要。因此,现有技术有待于完善和发展。
发明内容
本发明所解决的技术问题是针对现有技术而提出一种磁性壳聚糖半互穿热膨胀水凝胶的制备方法及其应用于对Cr(VI)的吸附,利用水凝胶的热膨胀性能和壳聚糖富含-OH和-NH2等活性基团提高凝胶对Cr(VI)的吸附效率、吸附容量;通过半互穿网络技术提高水凝胶的机械强度;利用水凝胶具有较好的磁性,可以在外加磁场条件下与水分离,达到固液分离效果。
本发明提供的一种磁性壳聚糖半互穿热膨胀水凝胶的制备方法及其应用于对Cr(VI)的吸附,包括以下步骤:
第1步:选取原料:按重量份数计,温敏大分子单体(TM)10~40份、壳聚糖1~5份、非离子单体10~20份、阴离子单体25~40份、交联剂0.5~5份、光引发剂0.1~10份、醋酸2~10份,以上各组分总量为100,选取原材料;
第2步:将所述醋酸和壳聚糖溶于蒸馏水中,在搅拌作用下,加非离子单体搅拌完全溶解,并在强烈搅拌作用下缓慢加入温敏大分子单体溶解完全后,通入氮气30min后,再依次加入交联剂和光引发剂,继续通氮气30~60 min,密封,以波长为200~400 nm的紫外光引发原位自由基聚合,得到透明弹性水凝胶。
第3步:将步骤2中得到的透明弹性水凝胶切块,低温冷冻干燥,得到壳聚糖半互穿热膨胀水凝胶。
第4步:将步骤3中得到壳聚糖半互穿热膨胀水凝胶置于含有Fe2+和Fe3+的盐水溶液中(Fe2+和Fe3+的摩尔比为1:2,溶液的浓度为1mol/L)浸泡5~7d,将溶胀的水凝胶转移至0.5mol/L的NaOH溶液中浸泡2~3d,所得黑色溶胀水凝胶用蒸馏水反复洗涤,然后用蒸馏水浸泡7d(每天更换一次),除去残留在产物中的碱,烘干,粉碎,得到黑色颗粒状磁性壳聚糖半互穿热膨胀水凝胶。
按上述方案,所述温敏大分子单体结构如下:(专利CN 104892846 A)。
Figure DEST_PATH_IMAGE002
按上述方案,所述非离子单体为丙烯酰胺、甲基丙烯酰胺、N-甲基丙烯酰胺和N,N-二甲基丙烯酰胺中的一种或几种。
按上述方案,所述光引发剂为2-酮戊二酸。
按上述方案,所述交联剂为N,N-亚甲基双丙烯酰胺、N-羟甲基丙烯酰胺、乙二醇双丙烯酰酯、三羟甲基丙烷三烯丙烯酸酯中的一种。
第5步:将上述步骤4中得到黑色颗粒状磁性壳聚糖半互穿热膨胀水凝胶应用于对Cr(VI)的吸附:将磁性壳聚糖半互穿热膨胀水凝胶在持续搅拌的条件下,对Cr(VI)进行吸附,吸附完毕后,磁性分离,抽滤。滤液采用二苯基碳酰二肼分光光度法检测其平衡浓度。
上述应用的最佳条件是:在50℃和150 r/min的条件下,吸附时间7 h~8h,吸附树脂最佳用量为25~40 g/L。
相对与现有技术,本发明具有以下优点:
(1)本发明提供的温敏水凝胶采用半互穿网络技术制备,原材料易得,成本低,制备的水凝胶具有热膨胀性能和较好的磁性,可通过温度调控水凝胶相转变,进而控制重金属离子吸附过程,并且可在外加磁场条件下与水分离,达到固液分离效果。
(2)利用本发明提供的温敏水凝胶的热膨胀性能(即随着温度的增加水凝胶的宏观体积增加,整个网状结构的空隙变大)和穿插链壳聚糖含有大量-OH和-NH2等活性基团,达到提高水凝胶对Cr(VI)的吸附效率、吸附容量。
附图说明
图1 磁性壳聚糖半互穿热膨胀水凝胶在蒸馏水中的热膨胀性能。
图2 磁性分离示意图。
具体实施方式
下面结合具体实施例对本发明作进一步详述。
一、磁性壳聚糖半互穿热膨胀水凝胶的制备
实施例1
一种磁性壳聚糖半互穿热膨胀水凝胶的制备方法,包括以下步骤:
(1)在室温下称取3.2g醋酸和1.4g壳聚糖溶于60.0g蒸馏水中,在搅拌作用下,加18.0g丙烯酰胺单体搅拌完全溶解,并在强烈搅拌作用下缓慢加入16.0g温敏大分子单体溶解完全后,通入氮气30min后,再依次加入0.2g N,N-亚甲基双丙烯酰胺和0.1g 2-酮戊二酸,继续通氮气30min,密封,以波长为365 nm的紫外光照射6 h引发原位自由基聚合,得到透明弹性水凝胶。
(2)将上述得到的透明弹性水凝胶切块,低温冷冻干燥,得到壳聚糖半互穿热膨胀水凝胶。
(3)将得到壳聚糖半互穿热膨胀水凝胶置于含有Fe2+和Fe3+的盐水溶液中(Fe2+和Fe3+的摩尔比为1:2,溶液的浓度为1mol/L)浸泡7d,将溶胀的水凝胶转移至0.5mol/L的NaOH溶液中浸泡3d,所得黑色溶胀水凝胶用蒸馏水反复洗涤,然后用蒸馏水浸泡7d(每天更换一次),除去残留在产物中的碱,烘干,粉碎,得到黑色颗粒状磁性壳聚糖半互穿热膨胀水凝胶。
实施例2
一种磁性壳聚糖半互穿热膨胀水凝胶的制备方法,包括以下步骤:
(1)在室温下称取3.2g醋酸和2.8g壳聚糖溶于60g蒸馏水中,在搅拌作用下,加18.0g丙烯酰胺单体搅拌完全溶解,并在强烈搅拌作用下缓慢加入16.0g温敏大分子单体溶解完全后,通入氮气30min后,再依次加入0.2g N,N-亚甲基双丙烯酰胺和0.1g 2-酮戊二酸,继续通氮气30 min,密封,以波长为365 nm的紫外光照射6 h引发原位自由基聚合,得到透明弹性水凝胶。
(2)将上述得到的透明弹性水凝胶切块,低温冷冻干燥,得到壳聚糖半互穿热膨胀水凝胶。
(3)将得到壳聚糖半互穿热膨胀水凝胶置于含有Fe2+和Fe3+的盐水溶液中(Fe2+和Fe3+的摩尔比为1:2,溶液的浓度为1mol/L)浸泡7d,将溶胀的水凝胶转移至0.5mol/L的NaOH溶液中浸泡3d,所得黑色溶胀水凝胶用蒸馏水反复洗涤,然后用蒸馏水浸泡7d(每天更换一次),除去残留在产物中的碱,烘干,粉碎,得到黑色颗粒状磁性壳聚糖半互穿热膨胀水凝胶。
实施例3
一种磁性壳聚糖半互穿热膨胀水凝胶的制备方法,包括以下步骤:
(1)在室温下称取3.2g醋酸和1.4g壳聚糖溶于60g蒸馏水中,在搅拌作用下,加16.0g丙烯酰胺单体搅拌完全溶解,并在强烈搅拌作用下缓慢加入34g温敏大分子单体溶解完全后,通入氮气30min后,再依次加入0.2g N,N-亚甲基双丙烯酰胺和0.1g 2-酮戊二酸,继续通氮气30 min,密封,以波长为365 nm的紫外光照射6 h引发原位自由基聚合,得到透明弹性水凝胶。
(2)将上述得到的透明弹性水凝胶切块,低温冷冻干燥,得到壳聚糖半互穿热膨胀水凝胶。
(3)将得到壳聚糖半互穿热膨胀水凝胶置于含有Fe2+和Fe3+的盐水溶液中(Fe2+和Fe3+的摩尔比为1:2,溶液的浓度为1mol/L)浸泡7d,将溶胀的水凝胶转移至0.5mol/L的NaOH溶液中浸泡3d,所得黑色溶胀水凝胶用蒸馏水反复洗涤,然后用蒸馏水浸泡7d(每天更换一次),除去残留在产物中的碱,烘干,粉碎,得到黑色颗粒状磁性壳聚糖半互穿热膨胀水凝胶。
实施例4
一种磁性壳聚糖半互穿热膨胀水凝胶的制备方法,包括以下步骤:
(1)在室温下称取3.2g醋酸和2.8g壳聚糖溶于60g蒸馏水中,在搅拌作用下,加16.0g丙烯酰胺单体搅拌完全溶解,并在强烈搅拌作用下缓慢加入34.0g温敏大分子单体溶解完全后,通入氮气30min后,再依次加入0.2g N,N-亚甲基双丙烯酰胺和0.1g 2-酮戊二酸,继续通氮气30 min,密封,以波长为365 nm的紫外光照射6 h引发原位自由基聚合,得到透明弹性水凝胶。
(2)将上述得到的透明弹性水凝胶切块,低温冷冻干燥,得到壳聚糖半互穿热膨胀水凝胶。
(3)将得到壳聚糖半互穿热膨胀水凝胶置于含有Fe2+和Fe3+的盐水溶液中(Fe2+和Fe3+的摩尔比为1:2,溶液的浓度为1mol/L)浸泡7d,将溶胀的水凝胶转移至0.5mol/L的NaOH溶液中浸泡3d,所得黑色溶胀水凝胶用蒸馏水反复洗涤,然后用蒸馏水浸泡7d(每天更换一次),除去残留在产物中的碱,烘干,粉碎,得到黑色颗粒状磁性壳聚糖半互穿热膨胀水凝胶。
二、磁性壳聚糖半互穿热膨胀水凝胶去除水中Cr(VI)的实施例
实施例5
取50mL重铬酸钾溶液(pH=2,10mg/L),置于100mL具塞锥形瓶中,加入上述实施例2中制备的磁性壳聚糖半互穿热膨胀水凝胶,在150 r/min和不同温度的条件下振荡8 h,静置0.5 h,磁分离后测定上层清液中Cr(VI)剩余浓度,计算结果列表于表1。
表1 吸附温度对Cr(VI)吸附性能的影响
吸附温度(<sup>o</sup>C) 水凝胶用量(g/L) 去除率(%)
20 6.0 22.4
25 6.0 23.2
30 6.0 24.0
35 6.0 27.2
40 6.0 28.8
45 6.0 32.0
50 6.0 36.8
55 6.0 40.8
60 6.0 48.0
65 6.0 54.4
70 6.0 59.3
由表1可知,随着温度的增加,本发明提供的磁性壳聚糖半互穿热膨胀水凝胶对水中Cr(VI)的去除率呈递增趋势。
实施例6
取50mL重铬酸钾溶液(pH=2,10mg/L),置于100mL具塞锥形瓶中,加入上述实施例1中制备的磁性壳聚糖半互穿热膨胀水凝胶,在20℃和150 r/min的条件下振荡一定时间,静置0.5 h,磁分离后测定上层清液中Cr(VI)剩余浓度,计算结果列表于表2。
表2吸附时间对Cr(VI)吸附性能的影响
吸附时间(h) 水凝胶用量(g/L) 去除率(%)
0.5 6.0 4.1
1 6.0 5.6
2 6.0 6.8
3 6.0 7.4
5 6.0 8.7
6 6.0 10.4
7 6.0 12.0
8 6.0 12.0
20 6.0 12.0
由表2可知,随着吸附时间的延长,本发明提供的磁性壳聚糖半互穿热膨胀水凝胶对Cr(VI)去除率呈增加趋势,在吸附7 h后基本能达到平衡。
实施例7
取50mL重铬酸钾溶液(pH=2,10mg/L),置于100mL具塞锥形瓶中,加入上述实施例3中制备的吸附树脂,在50℃和150 r/min的条件下振荡8 h,静置0.5 h,磁分离后测定上层清液中Cr(VI)剩余浓度,计算结果列表于表3。
表3水凝胶的用量对Cr(VI)吸附性能的影响
水凝胶用量(g/L) 去除率(%)
3.0 37.6
6.0 40.8
10.0 71.3
20.0 84.9
26.0 88.1
由表3可知,随着本发明提供的磁性壳聚糖半互穿热膨胀水凝胶用量的增加,Cr(VI)去除率明显增加。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,任何未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (5)

1.一种用于对Cr(VI)吸附的磁性壳聚糖半互穿热膨胀水凝胶的制备方法,其特征在于,包括以下步骤:
(1)在室温下称取3.2g醋酸和1.4g壳聚糖溶于60.0g蒸馏水中,在搅拌作用下,加18.0g丙烯酰胺单体搅拌完全溶解,并在强烈搅拌作用下缓慢加入16.0g温敏大分子单体溶解完全后,通入氮气30min后,再依次加入0.2g N,N-亚甲基双丙烯酰胺和0.1g 2-酮戊二酸,继续通氮气30min,密封,以波长为365 nm的紫外光照射6 h引发原位自由基聚合,得到透明弹性水凝胶;
(2)将得到的透明弹性水凝胶切块,低温冷冻干燥,得到壳聚糖半互穿热膨胀水凝胶;
(3)将得到的壳聚糖半互穿热膨胀水凝胶置于含有Fe2+和Fe3+的盐水溶液中浸泡7天,其中Fe2+和Fe3+的摩尔比为1:2,溶液的浓度为1mol/L;将溶胀的水凝胶转移至0.5mol/L的NaOH溶液中浸泡3天,所得黑色溶胀水凝胶用蒸馏水反复洗涤,然后用蒸馏水浸泡7天,每天更换一次,除去残留在产物中的碱,烘干,粉碎,得到黑色颗粒状磁性壳聚糖半互穿热膨胀水凝胶;
所述温敏大分子单体结构如下:
Figure DEST_PATH_IMAGE001
2.一种用于对Cr(VI)吸附的磁性壳聚糖半互穿热膨胀水凝胶的制备方法,其特征在于,包括以下步骤:
(1)在室温下称取3.2g醋酸和2.8g壳聚糖溶于60g蒸馏水中,在搅拌作用下,加18.0g丙烯酰胺单体搅拌完全溶解,并在强烈搅拌作用下缓慢加入16.0g温敏大分子单体溶解完全后,通入氮气30min后,再依次加入0.2g N,N-亚甲基双丙烯酰胺和0.1g 2-酮戊二酸,继续通氮气30 min,密封,以波长为365 nm的紫外光照射6 h引发原位自由基聚合,得到透明弹性水凝胶;
(2)将得到的透明弹性水凝胶切块,低温冷冻干燥,得到壳聚糖半互穿热膨胀水凝胶;
(3)将得到的壳聚糖半互穿热膨胀水凝胶置于含有Fe2+和Fe3+的盐水溶液中浸泡7天,其中Fe2+和Fe3+的摩尔比为1:2,溶液的浓度为1mol/L;将溶胀的水凝胶转移至0.5mol/L的NaOH溶液中浸泡3天,所得黑色溶胀水凝胶用蒸馏水反复洗涤,然后用蒸馏水浸泡7天,每天更换一次,除去残留在产物中的碱,烘干,粉碎,得到黑色颗粒状磁性壳聚糖半互穿热膨胀水凝胶;
所述温敏大分子单体结构如下:
Figure 40646DEST_PATH_IMAGE002
3.一种用于对Cr(VI)吸附的磁性壳聚糖半互穿热膨胀水凝胶的制备方法,其特征在于,包括以下步骤:
(1)在室温下称取3.2g醋酸和1.4g壳聚糖溶于60g蒸馏水中,在搅拌作用下,加16.0g丙烯酰胺单体搅拌完全溶解,并在强烈搅拌作用下缓慢加入34g温敏大分子单体溶解完全后,通入氮气30min后,再依次加入0.2g N,N-亚甲基双丙烯酰胺和0.1g 2-酮戊二酸,继续通氮气30 min,密封,以波长为365 nm的紫外光照射6 h引发原位自由基聚合,得到透明弹性水凝胶;
(2)将上述得到的透明弹性水凝胶切块,低温冷冻干燥,得到壳聚糖半互穿热膨胀水凝胶;
(3)将得到壳聚糖半互穿热膨胀水凝胶置于含有Fe2+和Fe3+的盐水溶液中浸泡7天,其中Fe2+和Fe3+的摩尔比为1:2,溶液的浓度为1mol/L;将溶胀的水凝胶转移至0.5mol/L的NaOH溶液中浸泡3天,所得黑色溶胀水凝胶用蒸馏水反复洗涤,然后用蒸馏水浸泡7天,每天更换一次,除去残留在产物中的碱,烘干,粉碎,得到黑色颗粒状磁性壳聚糖半互穿热膨胀水凝胶;
所述温敏大分子单体结构如下:
Figure DEST_PATH_IMAGE003
4.一种如权利要求1-3任一项所述制备方法制备得到的磁性壳聚糖半互穿热膨胀水凝胶的应用,其特征在于,将所述磁性壳聚糖半互穿热膨胀水凝胶用于对Cr(VI)的吸附:将磁性壳聚糖半互穿热膨胀水凝胶在持续搅拌的条件下,对Cr(VI)进行吸附,吸附完毕后,磁性分离,抽滤。
5.如权利要求4所述的应用,其特征在于,所述抽滤的滤液采用二苯基碳酰二肼分光光度法检测其平衡浓度。
CN201911276169.9A 2019-12-12 2019-12-12 一种磁性壳聚糖半互穿热膨胀水凝胶的制备及其应用于Cr(VI)吸附 Active CN111013550B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911276169.9A CN111013550B (zh) 2019-12-12 2019-12-12 一种磁性壳聚糖半互穿热膨胀水凝胶的制备及其应用于Cr(VI)吸附

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911276169.9A CN111013550B (zh) 2019-12-12 2019-12-12 一种磁性壳聚糖半互穿热膨胀水凝胶的制备及其应用于Cr(VI)吸附

Publications (2)

Publication Number Publication Date
CN111013550A CN111013550A (zh) 2020-04-17
CN111013550B true CN111013550B (zh) 2022-07-08

Family

ID=70206414

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911276169.9A Active CN111013550B (zh) 2019-12-12 2019-12-12 一种磁性壳聚糖半互穿热膨胀水凝胶的制备及其应用于Cr(VI)吸附

Country Status (1)

Country Link
CN (1) CN111013550B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1746199A (zh) * 2005-09-30 2006-03-15 清华大学 用紫外光辐射聚合直接合成温敏性水凝胶的方法
WO2010089763A2 (en) * 2008-06-30 2010-08-12 Reliance Life Sciences Pvt. Ltd. Poly(n-vinyl caprolactam-co-acrylamide) microparticles for controlled release applications
CN104592449A (zh) * 2015-01-06 2015-05-06 厦门大学 一种智能水凝胶及其制备方法与应用
CN104645946A (zh) * 2013-12-06 2015-05-27 东华理工大学 一种以大孔聚n-异丙基丙烯酰胺/壳聚糖半互穿网络温敏水凝胶吸附铀的方法
CN106732435A (zh) * 2017-02-06 2017-05-31 武汉理工大学 一种Fe3O4/壳聚糖共沉淀制备磁性壳聚糖吸附剂的方法
CN107216430A (zh) * 2017-07-21 2017-09-29 贵州铁建恒发新材料科技股份有限公司 一种温敏螯合性凝胶混凝土内养护剂的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1746199A (zh) * 2005-09-30 2006-03-15 清华大学 用紫外光辐射聚合直接合成温敏性水凝胶的方法
WO2010089763A2 (en) * 2008-06-30 2010-08-12 Reliance Life Sciences Pvt. Ltd. Poly(n-vinyl caprolactam-co-acrylamide) microparticles for controlled release applications
CN104645946A (zh) * 2013-12-06 2015-05-27 东华理工大学 一种以大孔聚n-异丙基丙烯酰胺/壳聚糖半互穿网络温敏水凝胶吸附铀的方法
CN104592449A (zh) * 2015-01-06 2015-05-06 厦门大学 一种智能水凝胶及其制备方法与应用
CN106732435A (zh) * 2017-02-06 2017-05-31 武汉理工大学 一种Fe3O4/壳聚糖共沉淀制备磁性壳聚糖吸附剂的方法
CN107216430A (zh) * 2017-07-21 2017-09-29 贵州铁建恒发新材料科技股份有限公司 一种温敏螯合性凝胶混凝土内养护剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Preparation and characterization of porous chitosan microspheres and adsorption performance for hexavalent chromium";Lili Ren et al.;《International Journal of Biological Macromolecules》;20190603;898-906 *

Also Published As

Publication number Publication date
CN111013550A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
Song et al. Superior amine-rich gel adsorbent from peach gum polysaccharide for highly efficient removal of anionic dyes
Sahebjamee et al. Removal of Cu2+, Cd2+ and Ni2+ ions from aqueous solution using a novel chitosan/polyvinyl alcohol adsorptive membrane
Boddu et al. Removal of hexavalent chromium from wastewater using a new composite chitosan biosorbent
Geetha et al. Biosorption of malachite green dye from aqueous solution by calcium alginate nanoparticles: equilibrium study
Kwak et al. Preparation of bead-type biosorbent from water-soluble Spirulina platensis extracts for chromium (VI) removal
Yang et al. Polyurethane foam membranes filled with humic acid-chitosan crosslinked gels for selective and simultaneous removal of dyes
Hajdu et al. Combined nano-membrane technology for removal of lead ions
Parshi et al. Fabrication of lightweight and reusable salicylaldehyde functionalized chitosan as adsorbent for dye removal and its mechanism
Phetphaisit et al. Polyacrylamido-2-methyl-1-propane sulfonic acid-grafted-natural rubber as bio-adsorbent for heavy metal removal from aqueous standard solution and industrial wastewater
Juchen et al. Biosorption of reactive blue BF-5G dye by malt bagasse: kinetic and equilibrium studies
Benamer et al. Radiation synthesis of chitosan beads grafted with acrylic acid for metal ions sorption
Zheng et al. Preparation and evaluation of adipic acid dihydrazide cross-linked carboxymethyl chitosan microspheres for copper ion adsorption
Wang et al. Straw-supported ion imprinted polymer sorbent prepared by surface imprinting technique combined with AGET ATRP for selective adsorption of La3+ ions
Ilgin et al. The efficient removal of anionic and cationic dyes from aqueous media using hydroxyethyl starch-based hydrogels
Yoon et al. A high-strength polyvinyl alcohol hydrogel membrane crosslinked by sulfosuccinic acid for strontium removal via filtration
Tang et al. UO22+-imprinted thermoresponsive hydrogel for accumulation of uranium from seawater
Gao et al. Efficient removal of Cr (VI) by modified sodium alginate via synergistic adsorption and photocatalytic reduction
Wang et al. Selective adsorption of thiocyanate anions using straw supported ion imprinted polymer prepared by surface imprinting technique combined with RAFT polymerization
Zhang et al. Adsorption of Ni (II) ion on Ni (II) ion-imprinted magnetic chitosan/poly (vinyl alcohol) composite
Liu et al. Removal of arsenic from Laminaria japonica Aresch juice using As (III)-imprinted chitosan resin
Xie et al. A hybrid adsorption/ultrafiltration process for perchlorate removal
Hu et al. Ion-imprinted sponge produced by ice template-assisted freeze drying of salecan and graphene oxide nanosheets for highly selective adsorption of mercury (II) ion
Rizzi et al. Applicative study (part I): the excellent conditions to remove in batch direct textile dyes (direct red, direct blue and direct yellow) from aqueous solutions by adsorption processes on low-cost chitosan films under different conditions
Diao et al. Synthesis and adsorption properties of superabsorbent hydrogel and peanut hull composite
Dulman et al. Batch and fixed bed column studies on removal of Orange G acid dye by a weak base functionalized polymer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant