CN111012358A - 一种人体踝关节运动轨迹测量方法及可穿戴式设备 - Google Patents

一种人体踝关节运动轨迹测量方法及可穿戴式设备 Download PDF

Info

Publication number
CN111012358A
CN111012358A CN201911368925.0A CN201911368925A CN111012358A CN 111012358 A CN111012358 A CN 111012358A CN 201911368925 A CN201911368925 A CN 201911368925A CN 111012358 A CN111012358 A CN 111012358A
Authority
CN
China
Prior art keywords
ankle joint
axis
shank
angular velocity
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911368925.0A
Other languages
English (en)
Other versions
CN111012358B (zh
Inventor
韩梅梅
王磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Welfare Medical Devices Co Ltd
Original Assignee
Zhejiang Welfare Medical Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Welfare Medical Devices Co Ltd filed Critical Zhejiang Welfare Medical Devices Co Ltd
Priority to CN201911368925.0A priority Critical patent/CN111012358B/zh
Publication of CN111012358A publication Critical patent/CN111012358A/zh
Application granted granted Critical
Publication of CN111012358B publication Critical patent/CN111012358B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/112Gait analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physiology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本发明公开了一种人体踝关节运动轨迹测量方法及可穿戴式设备,其中的方法包括以下步骤:通过可穿戴式设备测量用户行走过程中小腿的X、Y、Z三轴加速度和三轴角速度;通过测得的加速度、角速度数据测量用户步态事件;通过测得的加速度、角速度数据及步态事件识别踝关节的零速状态;在踝关节零速状态结束时重置小腿的姿态角度、速度和位移;通过对测得的加速度进行两次积分,计算步态周期内踝关节的三维位移曲线。本发明可以测量并输出用户在行走时的踝关节运动轨迹,用于评价用户步态,使用方便,不受场地限制,成本低廉,可以高精度对用户的踝关节运动进行测量,拥有较高的可靠性以及较好的推广前景。

Description

一种人体踝关节运动轨迹测量方法及可穿戴式设备
技术领域
本发明涉及一种人体踝关节运动轨迹测量方法及可穿戴式设备。
背景技术
人体踝关节在行走过程中的运动轨迹,可以从中提取出重要的步态参数,反映人类运动能力,拥有较大的应用价值,因此目前有许多研究者在研究踝关节运动轨迹测量。大型实验室测量步态参数的设备如光学式运动捕捉系统、测力台等等常常用于临床上的运动轨迹测量,但其存在价格昂贵,受空间限制,使用不便等缺点。可穿戴传感器作为包括惯性测量单元,超声波传感器,微型摄像头等等,相比于大型实验室测量步态参数的设备如光学式运动捕捉系统、测力台等等,以其小巧、廉价,不受时间、空间限制、易于推广等优点作为新兴技术被广泛应用于步态测量领域。目前有很多研究使用放置在人体下肢部位的可穿戴传感器测量下肢运动轨迹,但大多数研究方法较为简单,无法进行高精度的测量。
发明内容
本发明的目的在于解决现有技术中踝关节运动轨迹测量精度等缺陷,并提供一种人体踝关节运动轨迹测量方法及可穿戴式设备。
本发明为解决技术问题,所采用的具体技术方案如下:
一种人体踝关节运动轨迹测量方法,应用于可穿式设备,包括以下步骤:
S1.通过可穿戴式设备测量用户行走过程中小腿的X、Y、Z三轴加速度和三轴角速度;
S2.通过测得的加速度、角速度数据测量用户步态事件,包括脚落地、脚离地事件;
S3.通过测得的加速度、角速度数据及步态事件识别每个步态周期踝关节的零速状态;
S4.在所述踝关节零速状态结束时重置小腿的姿态角度、速度和位移;
S5.基于步骤S4,通过对可穿戴式设备测得的加速度进行两次积分,计算步态周期内踝关节的三维位移曲线。
通过采用上述技术方案,各步骤紧密联系,使得踝关节的三维位移曲线的测量高效而便利,其中步骤S2可得出步态周期,步态参数,步态事件,步骤S3根据步骤S2及步骤S1的参数判断零速状态,步骤S4重置小腿的姿态角度、速度和位移,为后续步骤S5中积分提供积分初始量,步骤简明,便捷高效,实用性强。
作为本发明的进一步改进,所述的踝关节零速状态识别包括以下步骤:
S31.计算ep值:
Figure BDA0002339158020000021
式中:ax、ay分别为小腿X轴、Y轴加速度,ωz为小腿Z轴角速度,θp为小腿Pitch角,l为所述传感器至踝关节的直线距离;ep为小腿Pitch角的差值;
Figure BDA0002339158020000022
表示对ωz的求导;
S32.对ep进行低通滤波;
S33.设置滑动窗,计算ep的标准差;
S34.将处于支撑期且所述ep标准差小于零速阈值的时段识别为踝关节零速状态。
作为本发明的进一步改进,步骤S32中,滤波器的截止频率为3Hz;步骤S33中,滑动窗设置为0.1秒长度;步骤S34中,零速阈值为0.01。
作为本发明的进一步改进,步骤S31之前,包括如下步骤:
S311.
af1≈ay·cosθp-ax·sinθp
式中:af1为F轴加速度,ax、ay分别为小腿X轴、Y轴加速度,θp为小腿Pitch角;
S312.假定踝关节处于零速状态,则
af2≈-d(ωz·l·cosθp)/dt
式中:af2为F轴加速度,ωz为小腿Z轴角速度,l为所述传感器至踝关节的直线距离;
S313.当踝关节处于零速状态时,满足af1=af2,由此可计算θp的值:
Figure BDA0002339158020000023
式中:θp′为根据所述af1=af2而计算的小腿Pitch角的值;则
Figure BDA0002339158020000031
作为本发明的进一步改进,步骤S4中,采用以下方法重置小腿姿态角度、速度、位移:
Figure BDA0002339158020000032
Figure BDA0002339158020000033
6y0=0
Figure BDA0002339158020000034
Figure BDA0002339158020000035
式中:θp0、θr0、θy0分别为重置的小腿Pitch角、Roll角、Yaw角,ax0、ay0、az0分别为重置时的小腿X轴加速度、Y轴加速度、Z轴加速度,ωy0、ωz0分别为重置时的小腿Y轴角速度、Z轴角速度,
Figure BDA0002339158020000036
分别为重置的小腿速度、位移矢量,
Figure BDA0002339158020000037
为重置时小腿X轴角速度、Y轴角速度和Z轴角速度的矢量和,
Figure BDA0002339158020000038
为重置时指向小腿X轴正方向的单位向量。
作为本发明的进一步改进,基于所述的重置的小腿姿态角度、速度、位移,通过角速度积分计算至下次重置时刻前的小腿姿态角度,通过加速度积分计算至下次重置时刻前的小腿速度,通过速度积分计算至下次重置时刻前的小腿位移;基于所述传感器与踝关节的空间位置关系计算踝关节位移矢量:
Figure BDA0002339158020000039
式中:
Figure BDA00023391580200000310
分别为踝关节位移矢量、小腿位移矢量,
Figure BDA00023391580200000311
为指向小腿X轴正方向的单位向量;基于踝关节位移矢量计算踝关节三维位移曲线。
一种可穿戴式设备,采用上述任一项方案所述的人体踝关节运动轨迹测量方法,所述可穿戴式设备包括可穿戴在用户小腿上的惯性传感器单元,所述惯性传感器单元包含惯性测量传感器模块和单片机,所述惯性测量传感器模块包括三维加速度计以及三维角速度计,所述单片机连接所述惯性测量传感器模块。
作为本发明的进一步改进,所述惯性测量传感器模块为基于MPU6050芯片的惯性测量传感器模块。
作为本发明的进一步改进,所述惯性测量传感器模块的采样频率不低于100Hz。
作为本发明的进一步改进,所述惯性传感器单元放置在用户的小腿外侧,距离踝关节5cm处。
本发明相对于现有技术而言,其有益效果至少有:
(1)使用本发明进行踝关节运动轨迹测量,不受场地限制,易于推广。
(2)通过检测踝关节零速状态的方式设置积分初始值,可以适应多种病态的步态,拥有较好的应用价值以及广泛的应用范围。
(3)通过可穿戴式设备进行测量,可以方便应用于临床。
为让本发明的上述和其他目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合附图,作详细说明如下。
附图说明
图1本发明中矢状面、铅垂线示意图;
图2本发明中传感器放置位置及小腿坐标系示意图;
图3本发明中小腿姿态角度示意图;
图4本发明中人体行走周期示意图;
图5本发明中踝关节三维运动轨迹示意图;
图中,1为放置在小腿上的惯性传感器单元;2为铅垂线;3为矢状面;4为小腿;5为踝关节轨迹;A为左腿脚落地事件,B为右腿脚离地事件,C为右腿脚落地事件,D为左腿脚离地事件。
具体实施方式
为更进一步阐述本发明为实现预定发明目的所采取的技术手段及功效,以下扣合附图及较佳实施例,对依据本发明的具体实施方式、结构、特征及其功效,详细说明如后。
本发明中所涉及的部分名词含义如下:
步态事件是指人在行走过程中的每个步态周期中的重要时刻,主要有脚落地、脚离地两个步态事件。
摆动期及支撑期为人走路步态周期的两个组成部分,人的走路步态周期如图4所示,以右腿为例,左腿支撑人体,右腿脚离地向前迈出至脚落地的这段时间为右腿的摆动期;右脚落地后,右腿开始支撑人体,左腿向前迈出并落地,至右脚离地的这段时间,为右腿的支撑期;右脚离地后,完成一个步态周期。步态事件可以根据小腿的角速度特征进行检测。
踝关节零速状态是指行走过程中支撑期时踝关节几乎静止的一段时间。
为方便描述,定义矢状面与铅垂线,如图1所示,矢状面3是垂直于水平面并将人体分为左右两部分的面,人在行走时,主要运动都发生在矢状面3内;铅垂线2是垂直于地面的线。
为方便描述,定义小腿的三维方向,如图2所示:X轴与该小腿平行;Y轴在矢状面内,与该小腿垂直;Z轴垂直于矢状面。放置在小腿上的传感器的坐标轴应该与该小腿保持一致,根据传感器测得的X轴、Y轴、Z轴角速度及加速度即为小腿相应轴的角速度及加速度。
为方便描述,定义全局坐标系,如图2所示:V轴与铅垂线平行,F轴在矢状面内与V轴垂直,L轴垂直于矢状面。
为方便描述,定义小腿的欧拉姿态角度Pitch(俯仰角)、Roll(翻滚角)、Yaw(偏航角),如图3所示:将全局坐标系依次绕V轴、F轴、L轴旋转Yaw角、Roll角、Pitch角即可与X轴、Y轴、Z轴重合。
踝关节三维位移曲线是指在一个步态周期内,踝关节在F轴、V轴、L轴上的运动轨迹。
本发明提供的一种人体踝关节运动轨迹测量方法,包括以下步骤:
S1.通过可穿戴式设备测量用户行走过程中小腿的X、Y、Z三轴加速度和三轴角速度;
S2.通过测得的加速度、角速度数据测量用户步态事件,包括脚落地、脚离地事件;
S3.通过测得的加速度、角速度数据及步态事件识别每个步态周期踝关节的零速状态;
S4.在所述踝关节零速状态结束时重置小腿的姿态角度、速度和位移;
S5.基于步骤S4,通过对可穿戴式设备测得的加速度进行两次积分,计算步态周期内踝关节的三维位移曲线。
以某一用户为例,本发明具体实施过程如下:
(1)准备工作:
本实施例中,目标用户穿戴该可穿戴设备。
矢状面与铅垂线,如图1所示,矢状面3是垂直于水平面并将人体分为左右两部分的面,人在行走时,主要运动都发生在矢状面3内;铅垂线2是垂直于地面的线。小腿坐标系如图2所示,其X轴与该小腿4平行,Y轴在矢状面3内与该小腿垂直,Z轴垂直于矢状面;全局坐标系V轴与铅垂线平行,F轴在矢状面内与V轴垂直,L轴垂直于矢状面。小腿姿态角定义如图3所示,将全局坐标系依次绕V轴、F轴、L轴旋转Yaw角、Roll角、Pitch角即可与X轴、Y轴、Z轴重合。整套设备结构如图2所示,一种可穿戴式设备,可穿戴式设备包括可穿戴在用户小腿上的惯性传感器单元,惯性传感器单元包含惯性测量传感器模块和单片机,惯性测量传感器模块包括三维加速度计以及三维角速度计(陀螺仪),单片机连接所述惯性测量传感器模块。本发明中各传感器及其他电子元件的具体型号,可以根据实际需要进行选型。惯性传感器单元包含一个基于MPU6050芯片的惯性测量传感器模块,用于采集使用者行走过程中的三维加速度以及三维角速度数据,采样频率为100Hz。本实施例拟测量目标用户右腿踝关节的运动轨迹,故传感器单元放置在目标用户的右小腿外侧,距离踝关节5cm处,如图2所示。传感器的坐标轴应该与该小腿保持一致,根据传感器测得的X轴、Y轴、Z轴角速度及加速度即为小腿相应轴的角速度及加速度。惯性传感器单元含有单片机,用于执行计算方法。
(2)步态事件测量:
以上各项准备工作完成后,可以开始测量用户的步态参数。用户在平坦的地面上行走,惯性传感器单元采集加速度、角速度数据,单片机首先会使用相应的算法利用这些数据进行步态事件的检测。人的走路步态周期如图4所示,一个周期中主要有左腿脚落地事件A、右腿脚离地事件B、右腿脚落地事件C、左腿脚离地事件D四个步态事件。右小腿的角速度周期性特征可以检测目标用户的右腿脚落地及脚离地事件。脚落地事件是走路过程中前脚后跟落地的时刻,发生在每个步态周期内小腿角速度的最高波峰后的第一个负值波谷处;脚离地事件是走路过程中后脚前掌完全离地的时刻,发生在每个步态周期内小腿角速度的最高波峰前的第一个负值波谷处。
(3)踝关节零速状态识别
单片机使用相应的算法利用加速度、角速度数据进行踝关节零速状态识别,具体步骤如下:
S311.由于行走过程中Roll角与Yaw角较小,F轴加速度可近似表示为:
af1≈ay·cosθp-ax·sinθp
式中:af1为F轴加速度,ax、ay分别为小腿X轴、Y轴加速度,θp为小腿Pitch角;
S312.假定踝关节处于零速状态,F轴加速度还可近似表示为:
af2≈-d(ωz·l·cosθp)/dt
式中:af2为F轴加速度,ωz为小腿Z轴角速度,l为所述传感器至踝关节的直线距离;
S313.当踝关节处于零速状态时,应满足af1=af2,由此等式可计算θp的值:
Figure BDA0002339158020000071
式中:θ′p为根据所述等式计算的θp的值;
Figure BDA0002339158020000072
表示对ωz的求导;
当踝关节处于零速状态时,θ′p应与小腿Pitch角的测量值θp近似相等,计算差值ep
Figure BDA0002339158020000073
即S31.得出ep值:
Figure BDA0002339158020000074
S32.对ep进行低通滤波,滤波器截止频率为3Hz;
S33.设置0.1秒长度的滑动窗,计算ep的标准差;
S34.将处于支撑期且所述ep标准差小于零速阈值0.01的时段识别为踝关节零速状态。
(4)踝关节运动轨迹测量
步骤S4中,在所述踝关节零速状态结束时重置小腿姿态角度、速度、位移:
Figure BDA0002339158020000081
Figure BDA0002339158020000082
6y0=0
Figure BDA0002339158020000083
Figure BDA0002339158020000084
式中:θp0、θr0、θy0分别为重置的小腿Pitch、Roll、Yaw角,ax0、ay0、az0分别为重置时的小腿X轴、Y轴、Z轴加速度,ωy0、ωz0分别为重置时的小腿Y轴、Z轴角速度,
Figure BDA0002339158020000085
分别为重置的小腿速度、位移矢量,
Figure BDA0002339158020000086
为重置时小腿X轴、Y轴、Z轴角速度的矢量和,
Figure BDA0002339158020000087
为重置时指向小腿X轴正方向的单位向量。
基于所述的重置的小腿姿态角度、速度、位移,通过角速度积分计算至下次重置时刻前的小腿姿态角度,通过加速度积分计算至下次重置时刻前的小腿速度(这个过程需要重置的小腿速度的作为初始量),通过速度积分计算至下次重置时刻前的小腿位移(这个过程需要重置的小腿位移作为初始量);基于所述传感器与踝关节的空间位置关系计算踝关节位移矢量:
Figure BDA0002339158020000088
式中:
Figure BDA0002339158020000089
分别为踝关节位移矢量、小腿位移矢量,
Figure BDA00023391580200000810
为指向小腿X轴正方向的单位向量;基于踝关节位移矢量计算踝关节三维位移曲线。
(5)踝关节运动轨迹测量效果:
本例中用户测量过程中小腿4行走了3步,为3个步态周期,小腿4为右小腿,其右侧踝关节运动轨迹如图5所示,由此可见,本发明的装置和方法相对于现有技术而言,可实现对用户的踝关节运动轨迹5的精确测量。
以上所述的实施例只是本发明的一些较佳的方案,然而其并非用以限制本发明。有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型。例如,上述实施例也可以使用其他算法或者使用其他传感器来实时计算所述轨迹测量,如使用毫米波雷达、红外传感器、激光雷达等传感器。上述可穿戴设备也可以同时使用两套,以达到同时测量左右两侧踝关节运动轨迹的目的。上述可穿戴设备也可以采用现有技术中的其他结构或方式进行改动,如使用别的惯性传感器芯片、采用更高的采样频率等等。上述踝关节零速状态识别过程中用到的低通滤波器、滑动窗、零速阈值也可以根据实际需求进行改动。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭示如上,然而并非用以限定本发明,任何本领域技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (10)

1.一种人体踝关节运动轨迹测量方法,应用于可穿式设备,其特征在于,包括以下步骤:
S1.通过可穿戴式设备测量用户行走过程中小腿的X、Y、Z三轴加速度和三轴角速度;
S2.通过测得的加速度、角速度数据测量用户步态事件,包括脚落地、脚离地事件;
S3.通过测得的加速度、角速度数据及步态事件识别每个步态周期踝关节的零速状态;
S4.在所述踝关节零速状态结束时重置小腿的姿态角度、速度和位移;
S5.通过对测得的加速度进行两次积分,计算步态周期内踝关节的三维位移曲线。
2.如权利要求1所述的人体踝关节运动轨迹测量方法,其特征在于,所述的踝关节零速状态识别包括以下步骤:
S31.计算ep值:
Figure FDA0002339158010000011
式中:ax、ay分别为小腿X轴、Y轴加速度,ωz为小腿Z轴角速度,θp为小腿Pitch角,l为所述传感器至踝关节的直线距离;ep为小腿Pitch角的差值;
S32.对ep进行低通滤波;
S33.设置滑动窗,计算ep的标准差;
S34.将处于支撑期且所述ep标准差小于零速阈值的时段识别为踝关节零速状态。
3.如权利要求2所述的人体踝关节运动轨迹测量方法,其特征在于,步骤S32中,滤波器的截止频率为3Hz;步骤S33中,滑动窗设置为0.1秒长度;步骤S34中,零速阈值为0.01。
4.如权利要求2所述的人体踝关节运动轨迹测量方法,其特征在于,步骤S31之前,包括如下步骤:
S311.
af1≈ay·cosθp-ax·sinθp
式中:af1为F轴加速度,ax、ay分别为小腿X轴、Y轴加速度,θp为小腿Pitch角;
S312.假定踝关节处于零速状态,则
af2≈-d(ωz·l·cosθp)/dt
式中:af2为F轴加速度,ωz为小腿Z轴角速度,l为所述传感器至踝关节的直线距离;
S313.当踝关节处于零速状态时,满足af1=af2,由此可计算θp的值:
Figure FDA0002339158010000021
式中:θ′p为根据所述af1=af2而计算的小腿Pitch角的值;则
Figure FDA0002339158010000022
5.如权利要求1-4任一项所述的人体踝关节运动轨迹测量方法,其特征在于,步骤S4中,采用以下方法重置小腿姿态角度、速度、位移:
Figure FDA0002339158010000023
Figure FDA0002339158010000024
θy0=0
Figure FDA0002339158010000025
Figure FDA0002339158010000026
式中:θp0、θr0、θy0分别为重置的小腿Pitch角、Roll角、Yaw角,ax0、ay0、az0分别为重置时的小腿X轴加速度、Y轴加速度、Z轴加速度,ωy0、ωz0分别为重置时的小腿Y轴角速度、Z轴角速度,
Figure FDA0002339158010000027
分别为重置的小腿速度、位移矢量,
Figure FDA0002339158010000028
为重置时小腿X轴角速度、Y轴角速度和Z轴角速度的矢量和,
Figure FDA0002339158010000029
为重置时指向小腿X轴正方向的单位向量。
6.如权利要求5所述的人体踝关节运动轨迹测量方法,其特征在于,基于重置的小腿姿态角度、速度、位移,通过角速度积分计算至下次重置时刻前的小腿姿态角度,通过加速度积分计算至下次重置时刻前的小腿速度,通过速度积分计算至下次重置时刻前的小腿位移;基于所述传感器与踝关节的空间位置关系计算踝关节位移矢量:
Figure FDA0002339158010000031
式中:
Figure FDA0002339158010000032
分别为踝关节位移矢量、小腿位移矢量,
Figure FDA0002339158010000033
为指向小腿X轴正方向的单位向量;基于踝关节位移矢量计算踝关节三维位移曲线。
7.一种可穿戴式设备,其特征在于,采用权利要求1-6任一项所述的人体踝关节运动轨迹测量方法,所述可穿戴式设备包括可穿戴在用户小腿上的惯性传感器单元,所述惯性传感器单元包含惯性测量传感器模块和单片机,所述惯性测量传感器模块包括三维加速度计以及三维角速度计,所述单片机连接所述惯性测量传感器模块。
8.如权利要求7所述的可穿戴式设备,其特征在于,所述惯性测量传感器模块为基于MPU6050芯片的惯性测量传感器模块。
9.如权利要求7所述的可穿戴式设备,其特征在于,所述惯性测量传感器模块的采样频率不低于100Hz。
10.如权利要求7所述的可穿戴式设备,其特征在于,所述惯性传感器单元放置在用户的小腿外侧,距离踝关节5cm处。
CN201911368925.0A 2019-12-26 2019-12-26 一种人体踝关节运动轨迹测量方法及可穿戴式设备 Active CN111012358B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911368925.0A CN111012358B (zh) 2019-12-26 2019-12-26 一种人体踝关节运动轨迹测量方法及可穿戴式设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911368925.0A CN111012358B (zh) 2019-12-26 2019-12-26 一种人体踝关节运动轨迹测量方法及可穿戴式设备

Publications (2)

Publication Number Publication Date
CN111012358A true CN111012358A (zh) 2020-04-17
CN111012358B CN111012358B (zh) 2023-02-10

Family

ID=70213980

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911368925.0A Active CN111012358B (zh) 2019-12-26 2019-12-26 一种人体踝关节运动轨迹测量方法及可穿戴式设备

Country Status (1)

Country Link
CN (1) CN111012358B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112704491A (zh) * 2020-12-28 2021-04-27 华南理工大学 基于姿态传感器和动捕模板数据的下肢步态预测方法
CN113116340A (zh) * 2021-04-02 2021-07-16 浙江大学 一种用于可穿戴式设备的人体髋关节位移测量方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102639085A (zh) * 2009-08-31 2012-08-15 Iwalk股份有限公司 使用下肢假体或矫形器来执行起立顺序
KR101250215B1 (ko) * 2012-05-31 2013-04-03 삼성탈레스 주식회사 칼만 필터와 보행 상태 추정 알고리즘을 이용한 보행자 관성항법 시스템 및 보행자 관성항법 시스템의 높이 추정 방법
US20130123665A1 (en) * 2010-07-14 2013-05-16 Ecole Polytechnique Federale De Lausanne (Epfl) System and method for 3d gait assessment
US20140066816A1 (en) * 2008-12-07 2014-03-06 Apdm, Inc Method, apparatus, and system for characterizing gait
KR20150049310A (ko) * 2013-10-30 2015-05-08 코디스페이스 주식회사 보행자 발의 영속도 상태 검지 장치 및 그 방법, 및 이를 이용한 보행자 관성항법시스템
CN104757976A (zh) * 2015-04-16 2015-07-08 大连理工大学 一种基于多传感器融合的人体步态分析方法和系统
CN105865450A (zh) * 2016-04-19 2016-08-17 武汉理工大学 一种基于步态的零速更新方法及系统
US20170042467A1 (en) * 2014-04-25 2017-02-16 Massachusetts Institute Of Technology Feedback Method And Wearable Device To Monitor And Modulate Knee Adduction Moment
CN106908021A (zh) * 2017-01-19 2017-06-30 浙江大学 一种用于可穿戴式设备的人体步长测量方法及其测量设备
CN108634960A (zh) * 2018-05-11 2018-10-12 浙江大学 一种用于外骨骼穿戴者的步态在线检测方法
CN108836346A (zh) * 2018-04-16 2018-11-20 大连理工大学 一种基于惯性传感器的人体步态分析方法和系统
US10182746B1 (en) * 2017-07-25 2019-01-22 Verily Life Sciences Llc Decoupling body movement features from sensor location
CN110021398A (zh) * 2017-08-23 2019-07-16 陆晓 一种步态分析、训练方法及系统

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140066816A1 (en) * 2008-12-07 2014-03-06 Apdm, Inc Method, apparatus, and system for characterizing gait
CN102639085A (zh) * 2009-08-31 2012-08-15 Iwalk股份有限公司 使用下肢假体或矫形器来执行起立顺序
US20130123665A1 (en) * 2010-07-14 2013-05-16 Ecole Polytechnique Federale De Lausanne (Epfl) System and method for 3d gait assessment
KR101250215B1 (ko) * 2012-05-31 2013-04-03 삼성탈레스 주식회사 칼만 필터와 보행 상태 추정 알고리즘을 이용한 보행자 관성항법 시스템 및 보행자 관성항법 시스템의 높이 추정 방법
KR20150049310A (ko) * 2013-10-30 2015-05-08 코디스페이스 주식회사 보행자 발의 영속도 상태 검지 장치 및 그 방법, 및 이를 이용한 보행자 관성항법시스템
US20170042467A1 (en) * 2014-04-25 2017-02-16 Massachusetts Institute Of Technology Feedback Method And Wearable Device To Monitor And Modulate Knee Adduction Moment
CN104757976A (zh) * 2015-04-16 2015-07-08 大连理工大学 一种基于多传感器融合的人体步态分析方法和系统
CN105865450A (zh) * 2016-04-19 2016-08-17 武汉理工大学 一种基于步态的零速更新方法及系统
CN106908021A (zh) * 2017-01-19 2017-06-30 浙江大学 一种用于可穿戴式设备的人体步长测量方法及其测量设备
US10182746B1 (en) * 2017-07-25 2019-01-22 Verily Life Sciences Llc Decoupling body movement features from sensor location
CN110021398A (zh) * 2017-08-23 2019-07-16 陆晓 一种步态分析、训练方法及系统
CN108836346A (zh) * 2018-04-16 2018-11-20 大连理工大学 一种基于惯性传感器的人体步态分析方法和系统
CN108634960A (zh) * 2018-05-11 2018-10-12 浙江大学 一种用于外骨骼穿戴者的步态在线检测方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
WENCHAO ZHANG等: "Novel Drift Reduction Methods in Foot-Mounted PDR System", 《SENSORS (BASEL)》 *
王云涛 等: "自适应零速修正辅助的微惯性定位系统研究", 《 南京师范大学学报(工程技术版)》 *
王磊 等: "大动态光纤陀螺及其应用", 《现代防御技术》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112704491A (zh) * 2020-12-28 2021-04-27 华南理工大学 基于姿态传感器和动捕模板数据的下肢步态预测方法
CN113116340A (zh) * 2021-04-02 2021-07-16 浙江大学 一种用于可穿戴式设备的人体髋关节位移测量方法
CN113116340B (zh) * 2021-04-02 2022-03-25 浙江大学 一种用于可穿戴式设备的人体髋关节位移测量方法

Also Published As

Publication number Publication date
CN111012358B (zh) 2023-02-10

Similar Documents

Publication Publication Date Title
CN104757976B (zh) 一种基于多传感器融合的人体步态分析方法和系统
US10679360B2 (en) Mixed motion capture system and method
CN108836346A (zh) 一种基于惯性传感器的人体步态分析方法和系统
Sabatini Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing
KR101751760B1 (ko) 하지 관절 각도를 이용한 보행 인자 추정 방법
WO2018132999A1 (zh) 一种用于可穿戴式设备的人体步长测量方法及其测量设备
CN106908021A (zh) 一种用于可穿戴式设备的人体步长测量方法及其测量设备
CN111012358B (zh) 一种人体踝关节运动轨迹测量方法及可穿戴式设备
CN109646009B (zh) 基于便携式步态分析系统的步态时空参数的计算方法
CN103120586A (zh) 人体步态运动学参数采集辅助装置和方法
Seifert et al. Pattern recognition in cyclic and discrete skills performance from inertial measurement units
Kyrarini et al. Comparison of vision-based and sensor-based systems for joint angle gait analysis
CN111895997B (zh) 一种无需标准矫正姿势的基于惯性传感器的人体动作采集方法
CN110680335A (zh) 步长测量方法及其设备、系统、非易失性计算机存储介质
Li et al. Wearable gait analysis system for ambulatory measurement of kinematics and kinetics
Qiu et al. Heterogeneous data fusion for three-dimensional gait analysis using wearable MARG sensors
CN105232053B (zh) 一种人体踝关节跖屈相位检测系统及方法
CN111197974B (zh) 一种基于Android惯性平台的无气压计高度测算方法
CN114469078B (zh) 一种基于光惯融合的人体运动检测方法
CN208876547U (zh) 一种基于imu惯性传感器的步态分析装置
Bennett et al. Motion based acceleration correction for improved sensor orientation estimates
KR102172362B1 (ko) 인체 무게 중심의 이동을 이용한 모션 캡쳐 장치 및 그 방법
CN210721061U (zh) 一种多路数据采集设备
Alonge et al. Use of accelerometers and gyros for hip and knee angle estimation
CN113017609A (zh) 一种用于可穿戴式设备的人体摆动期膝关节力矩测量方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 310052 room 228, 2 / F, building 1, no.1180 Bin'an Road, Binjiang District, Hangzhou City, Zhejiang Province

Applicant after: Zhejiang wellbeing Technology Co.,Ltd.

Address before: 310052 room 228, 2 / F, building 1, no.1180 Bin'an Road, Binjiang District, Hangzhou City, Zhejiang Province

Applicant before: Zhejiang Welfare Medical Devices Co.,Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant