CN111008939A - 一种基于可控特征空间的神经网络视频去模糊方法 - Google Patents
一种基于可控特征空间的神经网络视频去模糊方法 Download PDFInfo
- Publication number
- CN111008939A CN111008939A CN201911177488.4A CN201911177488A CN111008939A CN 111008939 A CN111008939 A CN 111008939A CN 201911177488 A CN201911177488 A CN 201911177488A CN 111008939 A CN111008939 A CN 111008939A
- Authority
- CN
- China
- Prior art keywords
- information
- term
- feature space
- neural network
- long
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 38
- 238000000034 method Methods 0.000 title claims abstract description 31
- 230000007774 longterm Effects 0.000 claims abstract description 25
- 238000011084 recovery Methods 0.000 claims abstract description 9
- 125000004122 cyclic group Chemical group 0.000 claims description 17
- 230000000306 recurrent effect Effects 0.000 claims description 7
- 230000004913 activation Effects 0.000 claims 1
- 238000012545 processing Methods 0.000 abstract description 15
- 238000013461 design Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000013527 convolutional neural network Methods 0.000 description 3
- 230000001537 neural effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000002123 temporal effect Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000013179 statistical model Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/73—Deblurring; Sharpening
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911177488.4A CN111008939B (zh) | 2019-11-27 | 2019-11-27 | 一种基于可控特征空间的神经网络视频去模糊方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911177488.4A CN111008939B (zh) | 2019-11-27 | 2019-11-27 | 一种基于可控特征空间的神经网络视频去模糊方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111008939A true CN111008939A (zh) | 2020-04-14 |
CN111008939B CN111008939B (zh) | 2022-04-05 |
Family
ID=70113382
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911177488.4A Active CN111008939B (zh) | 2019-11-27 | 2019-11-27 | 一种基于可控特征空间的神经网络视频去模糊方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111008939B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112351196A (zh) * | 2020-09-22 | 2021-02-09 | 北京迈格威科技有限公司 | 图像清晰度的确定方法、图像对焦方法及装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015083199A1 (en) * | 2013-12-04 | 2015-06-11 | J Tech Solutions, Inc. | Computer device and method executed by the computer device |
CN109447333A (zh) * | 2018-10-18 | 2019-03-08 | 山东师范大学 | 一种基于不定长模糊信息粒的时间序列预测方法和装置 |
CN110310242A (zh) * | 2019-06-27 | 2019-10-08 | 深圳市商汤科技有限公司 | 一种图像去模糊方法及装置、存储介质 |
CN110334718A (zh) * | 2019-07-09 | 2019-10-15 | 方玉明 | 一种基于长短期记忆的二维视频显著性检测方法 |
-
2019
- 2019-11-27 CN CN201911177488.4A patent/CN111008939B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015083199A1 (en) * | 2013-12-04 | 2015-06-11 | J Tech Solutions, Inc. | Computer device and method executed by the computer device |
CN109447333A (zh) * | 2018-10-18 | 2019-03-08 | 山东师范大学 | 一种基于不定长模糊信息粒的时间序列预测方法和装置 |
CN110310242A (zh) * | 2019-06-27 | 2019-10-08 | 深圳市商汤科技有限公司 | 一种图像去模糊方法及装置、存储介质 |
CN110334718A (zh) * | 2019-07-09 | 2019-10-15 | 方玉明 | 一种基于长短期记忆的二维视频显著性检测方法 |
Non-Patent Citations (2)
Title |
---|
JIAWEI ZHANG ET AL.: "Dynamic Scene Deblurring Using Spatially Variant Recurrent Neural Networks", 《2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION》 * |
KULDEEP PUROHIT ET AL.: "Bringing Alive Blurred Moments", 《ARXIV》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112351196A (zh) * | 2020-09-22 | 2021-02-09 | 北京迈格威科技有限公司 | 图像清晰度的确定方法、图像对焦方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN111008939B (zh) | 2022-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021208122A1 (zh) | 基于深度学习的视频盲去噪方法及装置 | |
CN111539884B (zh) | 一种基于多注意力机制融合的神经网络视频去模糊方法 | |
Li et al. | End-to-end united video dehazing and detection | |
Ye et al. | Unsupervised learning of dense optical flow, depth and egomotion with event-based sensors | |
CN103533214B (zh) | 一种基于卡尔曼滤波和双边滤波的视频实时去噪方法 | |
Jing et al. | Turning frequency to resolution: Video super-resolution via event cameras | |
CN113076685B (zh) | 图像重建模型的训练方法、图像重建方法及其装置 | |
Zhao et al. | High-speed motion scene reconstruction for spike camera via motion aligned filtering | |
CN104284059A (zh) | 用于稳定图像的设备和方法 | |
CN110580713A (zh) | 基于全卷积孪生网络和轨迹预测的卫星视频目标跟踪方法 | |
CN111028166B (zh) | 一种基于迭代神经网络的视频去模糊方法 | |
Xiang et al. | Learning super-resolution reconstruction for high temporal resolution spike stream | |
CN111798395B (zh) | 基于tv约束的事件相机图像重建方法及系统 | |
CN111798370A (zh) | 基于流形约束的事件相机图像重建方法及系统 | |
Zhang et al. | Every moment matters: Detail-aware networks to bring a blurry image alive | |
CN114694261A (zh) | 一种基于多级监督图卷积的视频三维人体姿态估计方法及系统 | |
CN114757862B (zh) | 用于红外光场设备的图像增强渐进式融合方法 | |
CN111008939B (zh) | 一种基于可控特征空间的神经网络视频去模糊方法 | |
Li et al. | A lightweight network to learn optical flow from event data | |
Liu et al. | Application of Ghost-DeblurGAN to fiducial marker detection | |
Liu et al. | Sensing diversity and sparsity models for event generation and video reconstruction from events | |
Shen et al. | Pseudo-retinex decomposition-based unsupervised underwater image enhancement and beyond | |
Shen et al. | Spatial temporal video enhancement using alternating exposures | |
CN117893409A (zh) | 基于光照条件约束扩散模型的人脸超分辨率重建方法及系统 | |
Liu et al. | Motion-oriented hybrid spiking neural networks for event-based motion deblurring |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20200414 Assignee: Wenzhou Sandi Technology Co.,Ltd. Assignor: Wenzhou University Contract record no.: X2022330000786 Denomination of invention: A neural network video deblurring method based on controllable feature space Granted publication date: 20220405 License type: Common License Record date: 20221216 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20200414 Assignee: Wenzhou Shuwanlian Information Technology Co.,Ltd. Assignor: Wenzhou University Contract record no.: X2023330000806 Denomination of invention: A neural network video deblurring method based on controllable feature space Granted publication date: 20220405 License type: Common License Record date: 20231030 |
|
EE01 | Entry into force of recordation of patent licensing contract |