CN111007631B - Image pickup optical lens - Google Patents

Image pickup optical lens Download PDF

Info

Publication number
CN111007631B
CN111007631B CN201911340707.6A CN201911340707A CN111007631B CN 111007631 B CN111007631 B CN 111007631B CN 201911340707 A CN201911340707 A CN 201911340707A CN 111007631 B CN111007631 B CN 111007631B
Authority
CN
China
Prior art keywords
lens
image
lens element
curvature
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911340707.6A
Other languages
Chinese (zh)
Other versions
CN111007631A (en
Inventor
孙雯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengrui Optics Changzhou Co Ltd
Original Assignee
Chengrui Optics Changzhou Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengrui Optics Changzhou Co Ltd filed Critical Chengrui Optics Changzhou Co Ltd
Priority to CN201911340707.6A priority Critical patent/CN111007631B/en
Publication of CN111007631A publication Critical patent/CN111007631A/en
Application granted granted Critical
Publication of CN111007631B publication Critical patent/CN111007631B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

The invention relates to the field of optical lenses, and discloses an image pickup optical lens, which sequentially comprises from an object side to an image side: a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element, a sixth lens element, a seventh lens element, and an eighth lens element; and satisfies the following relationships: f1/f is more than or equal to 1.05 and less than or equal to 1.90; f2 is less than or equal to 0; less than or equal to 15.00 (R5+ R6)/(R5-R6) less than or equal to 1.80; d3/d4 is more than or equal to 2.50 and less than or equal to 8.00. The imaging optical lens of the invention has good optical performance such as large aperture, wide angle, ultra-thin and the like.

Description

Image pickup optical lens
Technical Field
The present invention relates to the field of optical lenses, and more particularly, to an imaging optical lens suitable for portable terminal devices such as smart phones and digital cameras, and imaging apparatuses such as monitors and PC lenses.
Background
In recent years, with the rise of smart phones, the demand of miniaturized camera lenses is increasing, and the photosensitive devices of general camera lenses are not limited to two types, namely, a Charge Coupled Device (CCD) or a Complementary Metal-Oxide Semiconductor (CMOS) Device, and due to the refinement of Semiconductor manufacturing technology, the pixel size of the photosensitive devices is reduced, and in addition, the current electronic products are developed in a form of being excellent in function, light, thin, short and small, so that the miniaturized camera lenses with good imaging quality are the mainstream in the current market. In order to obtain better imaging quality, the lens mounted on the mobile phone camera conventionally adopts a three-piece or four-piece lens structure. Moreover, with the development of technology and the increase of diversified demands of users, under the condition that the pixel area of the photosensitive device is continuously reduced and the requirement of the system on the imaging quality is continuously improved, five-piece, six-piece, seven-piece and eight-piece lens structures gradually appear in the design of the lens. An ultra-thin wide-angle imaging optical lens having excellent optical characteristics is urgently required.
Disclosure of Invention
In view of the above problems, an object of the present invention is to provide an imaging optical lens that can satisfy the requirements of ultra-thinning and wide angle while achieving high imaging performance.
To solve the above-mentioned problems, an embodiment of the present invention provides an imaging optical lens, in order from an object side to an image side, comprising: a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element, a sixth lens element, a seventh lens element, and an eighth lens element;
the focal length of the imaging optical lens is f, the focal length of the first lens is f1, the focal length of the second lens is f2, the curvature radius of the object-side surface of the third lens is R5, the curvature radius of the image-side surface of the third lens is R6, the on-axis thickness of the second lens is d3, and the on-axis distance from the image-side surface of the second lens to the object-side surface of the third lens is d4, so that the following relational expression is satisfied:
1.05≤f1/f≤1.90;
f2≤0;
-15.00≤(R5+R6)/(R5-R6)≤-1.80;
2.50≤d3/d4≤8.00。
optionally, the focal length of the third lens is f3, and the following relation is satisfied:
1.00≤f3/f≤10.00。
optionally, a curvature radius of an object-side surface of the first lens element is R1, a curvature radius of an image-side surface of the first lens element is R2, an on-axis thickness of the first lens element is d1, and an optical total length of the image pickup optical lens system is TTL and satisfies the following relation:
-10.78≤(R1+R2)/(R1-R2)≤-1.85;
0.04≤d1/TTL≤0.16。
optionally, a focal length of the second lens element is f2, a curvature radius of an object-side surface of the second lens element is R3, a curvature radius of an image-side surface of the second lens element is R4, an on-axis thickness of the second lens element is d3, an optical total length of the image pickup optical lens is TTL, and the following relationships are satisfied:
-33.69≤f2/f≤-1.53;
2.11≤(R3+R4)/(R3-R4)≤34.46;
0.02≤d3/TTL≤0.06。
optionally, a focal length of the fourth lens element is f4, a radius of curvature of an object-side surface of the fourth lens element is R7, a radius of curvature of an image-side surface of the fourth lens element is R8, and a total optical length of the image pickup optical lens system is TTL and satisfies the following relation:
-53.95≤f4/f≤10.78;
-26.27≤(R7+R8)/(R7-R8)≤2.47;
0.02≤d7/TTL≤0.07。
optionally, a focal length of the fifth lens element is f5, a curvature radius of an object-side surface of the fifth lens element is R9, a curvature radius of an image-side surface of the fifth lens element is R10, an on-axis thickness of the fifth lens element is d9, an optical total length of the image pickup optical lens system is TTL, and the following relationships are satisfied:
-109.00≤f5/f≤41.48;
1.90≤(R9+R10)/(R9-R10)≤19.09;
0.02≤d9/TTL≤0.06。
optionally, a focal length of the sixth lens element is f6, a curvature radius of an object-side surface of the sixth lens element is R11, a curvature radius of an image-side surface of the sixth lens element is R12, an on-axis thickness of the sixth lens element is d11, an optical total length of the image pickup optical lens is TTL, and the following relationships are satisfied:
-307.64≤f6/f≤2.63;
-2.82≤(R11+R12)/(R11-R12)≤93.60;
0.03≤d11/TTL≤0.08。
optionally, a focal length of the seventh lens element is f7, a curvature radius of an object-side surface of the seventh lens element is R13, a curvature radius of an image-side surface of the seventh lens element is R14, an on-axis thickness of the seventh lens element is d13, an optical total length of the image pickup optical lens system is TTL, and the following relationships are satisfied:
-59.14≤f7/f≤2.42;
-7.31≤(R13+R14)/(R13-R14)≤26.20;
0.03≤d13/TTL≤0.09。
optionally, a focal length of the eighth lens element is f8, a curvature radius of an object-side surface of the eighth lens element is R15, a curvature radius of an image-side surface of the eighth lens element is R16, an on-axis thickness of the eighth lens element is d15, an optical total length of the image pickup optical lens system is TTL, and the following relationships are satisfied:
-1.52≤f8/f≤-0.49;
-2.35≤(R15+R16)/(R15-R16)≤-0.72;
0.03≤d15/TTL≤0.08。
optionally, the F number FNO of the imaging optical lens is less than or equal to 1.95.
The invention has the beneficial effects that: the pick-up optical lens according to the present invention has excellent optical characteristics, satisfies the requirements of large aperture, ultra-thinning and wide angle of view, and is particularly suitable for a mobile phone pick-up lens assembly and a WEB pick-up lens which are composed of pick-up elements such as high-pixel CCDs and CMOSs.
Drawings
Fig. 1 is a schematic configuration diagram of an imaging optical lens according to a first embodiment of the present invention;
FIG. 2 is a schematic axial aberration diagram of the imaging optical lens of FIG. 1;
fig. 3 is a schematic diagram of chromatic aberration of magnification of the imaging optical lens shown in fig. 1;
FIG. 4 is a schematic view of curvature of field and distortion of the imaging optical lens of FIG. 1;
fig. 5 is a schematic configuration diagram of an imaging optical lens according to a second embodiment of the present invention;
FIG. 6 is a schematic axial aberration diagram of the imaging optical lens of FIG. 5;
fig. 7 is a schematic diagram of chromatic aberration of magnification of the imaging optical lens shown in fig. 5;
FIG. 8 is a schematic view of curvature of field and distortion of the imaging optical lens of FIG. 5;
fig. 9 is a schematic configuration diagram of an imaging optical lens according to a third embodiment of the present invention;
fig. 10 is a schematic view of axial aberrations of the image pickup optical lens shown in fig. 9;
fig. 11 is a schematic diagram of chromatic aberration of magnification of the imaging optical lens shown in fig. 9;
fig. 12 is a schematic view of curvature of field and distortion of the imaging optical lens shown in fig. 9.
Detailed Description
In order to make the objects, technical solutions and advantages of the present invention more apparent, embodiments of the present invention will be described in detail below with reference to the accompanying drawings. However, it will be appreciated by those of ordinary skill in the art that numerous technical details are set forth in order to provide a better understanding of the present invention in its various embodiments. However, the technical solution claimed in the present invention can be implemented without these technical details and various changes and modifications based on the following embodiments.
(first embodiment)
Referring to the drawings, the present invention provides an image pickup optical lens 10. Fig. 1 shows an imaging optical lens 10 according to a first embodiment of the present invention, and the imaging optical lens 10 includes eight lenses. Specifically, the imaging optical lens 10, in order from an object side to an image side, includes: the stop S1, the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the sixth lens L6, the seventh lens L7, and the eighth lens L8. An optical element such as an optical filter (filter) GF may be disposed between the eighth lens L8 and the image plane Si.
Defining the focal length f of the whole shooting optical lens 10, the focal length f1 of the first lens L1, and f1/f which is more than or equal to 1.05 and less than or equal to 1.90, the ratio of the focal length L1 to the total focal length is specified, which is beneficial to reducing the total length of the system within a condition range. Preferably, 1.06. ltoreq. f 1/f. ltoreq.1.89 is satisfied.
The focal length of the second lens L2 is defined as f2, f2 is less than or equal to 0, and the focal length of the second lens L2 is defined, so that the system aberration correction is facilitated, and the imaging quality is improved.
The radius of curvature of the object-side surface of the third lens L3 is defined as R5, the radius of curvature of the image-side surface of the third lens L3 is defined as R6, -15.00 ≦ (R5+ R6)/(R5-R6) ≦ -1.80, and the shape of the third lens L3 is defined to help reduce the degree of ray deflection and reduce aberration. Preferably, it satisfies-14.87. ltoreq. (R5+ R6)/(R5-R6. ltoreq. -1.81.
The on-axis thickness of the second lens L2 is defined as d3, the on-axis distance from the image side surface of the second lens L2 to the object side surface of the third lens L3 is defined as d4, and 2.50 is not less than d3/d4 is not less than 8.00, so that lens processing and lens assembly are facilitated within the condition range. Preferably, 2.54. ltoreq. d3/d 4. ltoreq.7.97 is satisfied.
When the focal length of the image-capturing optical lens 10, the focal length of each lens element, the on-axis distance from the image-side surface of the relevant lens element to the object-side surface, and the on-axis thickness satisfy the above-mentioned relational expressions, the image-capturing optical lens 10 can have high performance and meet the design requirement of low TTL, which is the total optical length of the image-capturing optical lens 10, i.e., the on-axis distance from the object-side surface of the first lens element L1 to the image-side surface, and has a unit of mm.
The focal length of the third lens L3 is defined as f3, f3/f is not less than 1.00 and not more than 10.00, the ratio of the focal length of the third lens L3 to the total focal length is specified, aberration correction is facilitated within a condition range, and image quality of an image plane is improved.
The radius of curvature R1 of the object-side surface of the first lens L1 and the radius of curvature R2 of the image-side surface of the first lens L1 are defined to satisfy the following relations: 10.78 ≦ (R1+ R2)/(R1-R2) ≦ -1.85, and the shape of the first lens L1 is controlled appropriately so that the first lens L1 can correct the system spherical aberration effectively. Preferably, it satisfies-6.74 ≦ (R1+ R2)/(R1-R2). ltoreq.2.23.
The on-axis thickness of the first lens L1 is defined as d1, and satisfies the following relation: d1/TTL is more than or equal to 0.04 and less than or equal to 0.16, and ultra-thinning is facilitated. Preferably, 0.06. ltoreq. d 1/TTL. ltoreq.0.13 is satisfied.
The focal length of the second lens L2 is defined as f2, -33.69 < f2/f < 1.53, and the aberration of the optical system is favorably corrected by controlling the negative power of the second lens L2 in a reasonable range. Preferably, it satisfies-21.06. ltoreq. f 2/f. ltoreq-1.91.
The curvature radius of the object side surface of the second lens L2 is defined as R3, and the curvature radius of the image side surface of the second lens L2 is defined as R4, and 2.11 ≦ (R3+ R4)/(R3-R4) ≦ 34.46. The shape of the second lens L2 is defined so that the lens is in a range in which the lens is in a thin and wide angle range, and this is advantageous for correcting the problem of on-axis aberration. Preferably, 3.38 ≦ (R3+ R4)/(R3-R4) ≦ 27.57 is satisfied.
The on-axis thickness of the second lens L2 is defined as d3, and the following relation is satisfied: d3/TTL is more than or equal to 0.02 and less than or equal to 0.06, and ultra-thinning is facilitated. Preferably, 0.03. ltoreq. d 3/TTL. ltoreq.0.05 is satisfied.
The on-axis thickness of the third lens L3 is defined as d5, and the following relationship is satisfied: d5/TTL is more than or equal to 0.02 and less than or equal to 0.20, and ultra-thinning is facilitated. Preferably, 0.04. ltoreq. d 5/TTL. ltoreq.0.16 is satisfied.
Defining the focal length of the fourth lens L4 as f4, the following relation is satisfied: 53.95 ≦ f4/f ≦ 10.78, which allows better imaging quality and lower sensitivity of the system by a reasonable distribution of the powers. Preferably, it satisfies-33.72. ltoreq. f 4/f. ltoreq.8.62.
The curvature radius of the object side surface of the fourth lens L4 is defined as R7, the curvature radius of the image side surface of the fourth lens L4 is defined as R8, and the following relations are satisfied: 26.27 ≦ (R7+ R8)/(R7-R8) ≦ 2.47, and the shape of the fourth lens L4 is defined, and when the shape is within the range, it is advantageous to correct the aberration of the off-axis angle and the like with the development of an ultra-thin and wide-angle view. Preferably, it satisfies-16.42 ≦ (R7+ R8)/(R7-R8). ltoreq.1.98.
The on-axis thickness d7 of the fourth lens L4 also satisfies the following relationship: d7/TTL is more than or equal to 0.02 and less than or equal to 0.07, and ultra-thinning is facilitated. Preferably, 0.03. ltoreq. d 7/TTL. ltoreq.0.05 is satisfied.
Defining the focal length of the fifth lens L5 as f5, the following relation is satisfied: f5/f 41.48 is more than or equal to-109.00 and less than or equal to 41.48, and the definition of the fifth lens L5 can effectively make the light ray angle of the camera lens smooth and reduce the tolerance sensitivity. Preferably, it satisfies-68.12. ltoreq. f 5/f. ltoreq.33.18.
The radius of curvature R9 of the object-side surface of the fifth lens L5 and the radius of curvature R10 of the image-side surface of the fifth lens L5 are defined to satisfy the following relations: 1.90 is less than or equal to (R9+ R10)/(R9-R10) is less than or equal to 19.09, and in the condition range, the problems of aberration of off-axis picture angle and the like are favorably corrected along with the development of ultra-thin wide-angle. Preferably, 3.04 ≦ (R9+ R10)/(R9-R10) ≦ 15.27.
The on-axis thickness of the fifth lens L5 is defined as d9, and satisfies the following relationship: d9/TTL is more than or equal to 0.02 and less than or equal to 0.06, and ultra-thinning is facilitated. Preferably, 0.03. ltoreq. d 9/TTL. ltoreq.0.05 is satisfied.
Defining the focal length of the sixth lens L6 as f6, the following relation is satisfied: 307.64 ≦ f6/f ≦ 2.63, which allows better imaging quality and lower sensitivity of the system by a reasonable distribution of the powers. Preferably, it satisfies-192.27 ≦ f6/f ≦ 2.10.
The curvature radius R11 of the object-side surface of the sixth lens L6 and the curvature radius R12 of the image-side surface of the sixth lens L6 are defined to satisfy the following relations: the ratio of (R11+ R12)/(R11-R12) is not more than 2.82 and not more than 93.60, and when the ratio is within the condition range, the problem of aberration of off-axis picture angle is favorably corrected along with the development of ultra-thin wide-angle. Preferably, it satisfies-1.76 ≦ (R11+ R12)/(R11-R12). ltoreq.74.88.
The on-axis thickness of the sixth lens L6 is defined as d11, and satisfies the following relationship: d11/TTL is more than or equal to 0.03 and less than or equal to 0.08, and ultra-thinning is facilitated. Preferably, 0.04. ltoreq. d 11/TTL. ltoreq.0.06 is satisfied.
The focal length of the seventh lens L7 is defined as f7, and the following relation is satisfied: 59.14 ≦ f7/f ≦ 2.42, which allows better imaging quality and lower sensitivity of the system by a reasonable distribution of the powers. Preferably, it satisfies-36.96 ≦ f7/f ≦ 1.94.
The curvature radius R13 of the object-side surface of the seventh lens L7 and the curvature radius R14 of the image-side surface of the seventh lens L7 are defined to satisfy the following relations: 7.31 ≦ (R13+ R14)/(R13-R14) ≦ 26.20, and the shape of the seventh lens L7 is specified, and when the conditions are within the range, it is advantageous to correct the aberration of the off-axis view angle and the like as the ultra-thin wide angle is developed. Preferably, it satisfies-4.57 ≦ (R13+ R14)/(R13-R14). ltoreq.20.96.
The on-axis thickness of the seventh lens L7 is defined as d13, and the following relationship is satisfied: d13/TTL is more than or equal to 0.03 and less than or equal to 0.09, and ultra-thinning is facilitated. Preferably, 0.04. ltoreq. d 13/TTL. ltoreq.0.07 is satisfied.
Defining the focal length of the eighth lens L8 as f8, the following relation is satisfied: -1.52 ≦ f8/f ≦ -0.49, allowing better imaging quality and lower sensitivity of the system through reasonable distribution of optical power. Preferably, it satisfies-0.95. ltoreq. f 8/f. ltoreq-0.61.
The radius of curvature R15 of the object-side surface of the eighth lens element L8 and the radius of curvature R16 of the image-side surface of the eighth lens element L8 are defined to satisfy the following relationships: -2.35 ≦ (R15+ R16)/(R15-R16) ≦ -0.72, and the shape of the eighth lens L8 is specified, and when the conditions are within the range, it is advantageous to correct the aberration of the off-axis view angle and the like as the ultra-thin wide angle is developed. Preferably, it satisfies-1.47 ≦ (R15+ R16)/(R15-R16). ltoreq.0.90.
The on-axis thickness of the eighth lens L8 is defined as d15, and satisfies the following relationship: d15/TTL is more than or equal to 0.03 and less than or equal to 0.08, and ultra-thinning is facilitated. Preferably, 0.04. ltoreq. d 15/TTL. ltoreq.0.06 is satisfied.
In the present embodiment: TTL/IH is less than or equal to 1.22, FOV is more than or equal to 83.00 degrees, and FNO is less than or equal to 1.95 degrees, wherein IH is the image height of the photographic optical lens 10, FOV is the field angle in the diagonal direction, and FNO is the aperture F number, namely the ratio of the effective focal length to the entrance pupil aperture. In this way, the imaging optical lens 10 can satisfy design requirements of a large aperture, a wide angle, and an ultra-thin structure while having good optical imaging performance.
The image pickup optical lens 10 of the present invention will be explained below by way of example. The symbols described in the respective examples are as follows. The unit of focal length, on-axis distance, curvature radius, on-axis thickness, position of reverse curvature and position of stagnation point is mm.
Preferably, the object side surface and/or the image side surface of the lens may be further provided with an inflection point and/or a stagnation point to meet the requirement of high-quality imaging, and specific embodiments are described below.
Tables 1 and 2 show design data of the imaging optical lens 10 according to the first embodiment of the present invention.
[ TABLE 1 ]
Figure BDA0002332182310000101
Wherein each symbol has the following meaning.
S1: an aperture;
r: the radius of curvature of the optical surface and the radius of curvature of the lens as the center;
r1: the radius of curvature of the object-side surface of the first lens L1;
r2: the radius of curvature of the image-side surface of the first lens L1;
r3: the radius of curvature of the object-side surface of the second lens L2;
r4: the radius of curvature of the image-side surface of the second lens L2;
r5: the radius of curvature of the object-side surface of the third lens L3;
r6: the radius of curvature of the image-side surface of the third lens L3;
r7: the radius of curvature of the object-side surface of the fourth lens L4;
r8: the radius of curvature of the image-side surface of the fourth lens L4;
r9: a radius of curvature of the object side surface of the fifth lens L5;
r10: a radius of curvature of the image-side surface of the fifth lens L5;
r11: a radius of curvature of the object side surface of the sixth lens L6;
r12: a radius of curvature of the image-side surface of the sixth lens L6;
r13: a radius of curvature of the object side surface of the seventh lens L7;
r14: a radius of curvature of the image-side surface of the seventh lens L7;
r15: a radius of curvature of the object side surface of the eighth lens L8;
r16: a radius of curvature of the image-side surface of the eighth lens L8;
r17: radius of curvature of the object side of the optical filter GF;
r18: the radius of curvature of the image-side surface of the optical filter GF;
d: an on-axis thickness of the lenses and an on-axis distance between the lenses;
d 0: the on-axis distance of the stop S1 to the object-side surface of the first lens L1;
d 1: the on-axis thickness of the first lens L1;
d 2: the on-axis distance from the image-side surface of the first lens L1 to the object-side surface of the second lens L2;
d 3: the on-axis thickness of the second lens L2;
d 4: the on-axis distance from the image-side surface of the second lens L2 to the object-side surface of the third lens L3;
d 5: the on-axis thickness of the third lens L3;
d 6: the on-axis distance from the image-side surface of the third lens L3 to the object-side surface of the fourth lens L4;
d 7: the on-axis thickness of the fourth lens L4;
d 8: an on-axis distance from an image-side surface of the fourth lens L4 to an object-side surface of the fifth lens L5;
d 9: the on-axis thickness of the fifth lens L5;
d 10: an on-axis distance from an image-side surface of the fifth lens L5 to an object-side surface of the sixth lens L6;
d 11: the on-axis thickness of the sixth lens L6;
d 12: an on-axis distance from the image-side surface of the sixth lens L6 to the object-side surface of the seventh lens L7;
d 13: the on-axis thickness of the seventh lens L7;
d 14: an on-axis distance from the image-side surface of the seventh lens L7 to the object-side surface of the eighth lens L8;
d 15: the on-axis thickness of the eighth lens L8;
d 16: the on-axis distance from the image-side surface of the eighth lens L8 to the object-side surface of the optical filter GF;
d 17: on-axis thickness of the optical filter GF;
d 18: the on-axis distance from the image side surface of the optical filter GF to the image surface;
nd: the refractive index of the d-line;
nd 1: the refractive index of the d-line of the first lens L1;
nd 2: the refractive index of the d-line of the second lens L2;
nd 3: the refractive index of the d-line of the third lens L3;
nd 4: the refractive index of the d-line of the fourth lens L4;
nd 5: the refractive index of the d-line of the fifth lens L5;
nd 6: the refractive index of the d-line of the sixth lens L6;
nd 7: the refractive index of the d-line of the seventh lens L7;
nd 8: the refractive index of the d-line of the eighth lens L8;
ndg: the refractive index of the d-line of the optical filter GF;
vd: an Abbe number;
v 1: abbe number of the first lens L1;
v 2: abbe number of the second lens L2;
v 3: abbe number of the third lens L3;
v 4: abbe number of the fourth lens L4;
v 5: abbe number of the fifth lens L5;
v 6: abbe number of the sixth lens L6;
v 7: abbe number of the seventh lens L7;
v 8: abbe number of the eighth lens L8;
vg: abbe number of the optical filter GF.
Table 2 shows aspherical surface data of each lens in the imaging optical lens 10 according to the first embodiment of the present invention.
[ TABLE 2 ]
Figure BDA0002332182310000131
Figure BDA0002332182310000141
Wherein k is a conic coefficient, and A4, A6, A8, A10, A12, A14, A16, A18, A20 are aspheric coefficients.
y=(x2/R)/[1+{1-(k+1)(x2/R2)}1/2]+A4x4+A6x6+A8x8+A10x10+A12x12+A14x14+A16x16+A18x18+A20x20 (1)
For convenience, the aspherical surface of each lens surface uses the aspherical surface shown in the above formula (1). However, the present invention is not limited to the aspherical polynomial form expressed by this formula (1).
Tables 3 and 4 show the inflection point and stagnation point design data of each lens in the imaging optical lens 10 according to the first embodiment of the present invention. Wherein P1R1 and P1R2 represent the object-side surface and the image-side surface of the first lens L1, P2R1 and P2R2 represent the object-side surface and the image-side surface of the second lens L2, P3R1 and P3R2 represent the object-side surface and the image-side surface of the third lens L3, P4R1 and P4R2 represent the object-side surface and the image-side surface of the fourth lens L4, P5R1 and P5R2 represent the object-side surface and the image-side surface of the fifth lens L5, P6R1 and P6R2 represent the object-side surface and the image-side surface of the sixth lens L6, P7R1 and P7R2 represent the object-side surface and the image-side surface of the seventh lens L7, and P8R1 and P8R2 represent the object-side surface and the image-side surface of the eighth lens L8, respectively. The "inflection point position" field correspondence data is a vertical distance from an inflection point set on each lens surface to the optical axis of the image pickup optical lens 10. The "stagnation point position" field corresponding data is the vertical distance from the stagnation point set on each lens surface to the optical axis of the imaging optical lens 10.
[ TABLE 3 ]
Figure BDA0002332182310000142
Figure BDA0002332182310000151
[ TABLE 4 ]
Number of stagnation points Location of stagnation 1
P1R1
P1R2
P2R1
P2R2
P3R1
P3R2
P4R1 1 0.215
P4R2 1 0.425
P5R1 1 0.575
P5R2 1 0.635
P6R1 1 1.025
P6R2 1 0.795
P7R1 1 2.285
P7R2 1 2.495
P8R1 1 5.695
P8R2
Fig. 2 and 3 are schematic diagrams showing axial aberrations and chromatic aberration of magnification of light having wavelengths of 656nm, 587nm, 546nm, 486nm, and 436nm passing through the imaging optical lens 10 according to the first embodiment. Fig. 4 is a schematic view showing curvature of field and distortion of light having a wavelength of 555nm after passing through the imaging optical lens 10 according to the first embodiment, where S is curvature of field in the sagittal direction and T is curvature of field in the tangential direction in fig. 4.
Table 13 shown later shows values of various numerical values in examples 1, 2, and 3 corresponding to the parameters specified in the conditional expressions.
As shown in table 13, the first embodiment satisfies each conditional expression.
In the present embodiment, the imaging optical lens has an entrance pupil diameter of 4.663mm, a full field height of 8.150mm, a diagonal field angle of 83.00 °, a wide angle, and a high profile, and has excellent optical characteristics with on-axis and off-axis chromatic aberration sufficiently corrected.
(second embodiment)
The second embodiment is basically the same as the first embodiment, the same reference numerals as in the first embodiment, and only different points will be described below.
Table 5 shows design data of the imaging optical lens 20 according to the second embodiment of the present invention.
[ TABLE 5 ]
Figure BDA0002332182310000161
Table 6 shows aspherical surface data of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
[ TABLE 6 ]
Figure BDA0002332182310000162
Figure BDA0002332182310000171
Table 7 shows the inflection point and stagnation point design data of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
[ TABLE 7 ]
Number of points of inflection Position of reverse curvature 1 Position of reverse curvature 2
P1R1 1 2.265
P1R2 1 2.095
P2R1 1 2.215
P2R2
P3R1
P3R2
P4R1 2 0.915 1.965
P4R2 2 0.955 1.995
P5R1
P5R2 1 2.355
P6R1 2 0.845 2.885
P6R2 1 0.745
P7R1 2 1.395 3.715
P7R2 2 1.555 4.125
P8R1 2 2.555 5.975
P8R2 2 5.285 6.215
[ TABLE 8 ]
Figure BDA0002332182310000172
Figure BDA0002332182310000181
Fig. 6 and 7 are schematic diagrams showing axial aberrations and chromatic aberration of magnification of light having wavelengths of 656nm, 587nm, 546nm, 486nm, and 436nm passing through the imaging optical lens 20 according to the second embodiment. Fig. 8 is a schematic view showing curvature of field and distortion of light having a wavelength of 546nm after passing through the imaging optical lens 20 according to the second embodiment.
As shown in table 13, the second embodiment satisfies each conditional expression.
In the present embodiment, the imaging optical lens has an entrance pupil diameter of 4.662mm, a full field height of 8.150mm, a diagonal field angle of 83.00 °, a wide angle, and a high profile, and has excellent optical characteristics with on-axis and off-axis chromatic aberration sufficiently corrected.
(third embodiment)
The third embodiment is basically the same as the first embodiment, the same reference numerals as in the first embodiment, and only different points will be described below.
Table 9 shows design data of the imaging optical lens 30 according to the third embodiment of the present invention.
[ TABLE 9 ]
Figure BDA0002332182310000182
Figure BDA0002332182310000191
Table 10 shows aspherical surface data of each lens in the imaging optical lens 30 according to the third embodiment of the present invention.
[ TABLE 10 ]
Figure BDA0002332182310000192
Table 11 shows the inflection point and stagnation point design data of each lens in the imaging optical lens 30 according to the third embodiment of the present invention.
[ TABLE 11 ]
Number of points of inflection Position of reverse curvature 1 Position of reverse curvature 2 Position of reverse curvature 3 Position of reverse curve 4
P1R1 1 2.265
P1R2 1 2.135
P2R1 1 2.135
P2R2 1 2.025
P3R1
P3R2
P4R1
P4R2 1 2.145
P5R1 2 0.475 2.535
P5R2 3 0.495 2.655 2.915
P6R1 2 0.945 3.125
P6R2 2 0.985 3.785
P7R1 4 0.885 3.235 3.525 3.765
P7R2 2 0.795 4.275
P8R1 2 2.525 5.815
P8R2 2 5.045 6.035
[ TABLE 12 ]
Number of stagnation points Location of stagnation 1 Location of stagnation 2
P1R1
P1R2
P2R1
P2R2
P3R1
P3R2
P4R1
P4R2
P5R1 1 0.885
P5R2 1 0.905
P6R1 1 1.535
P6R2 1 1.445
P7R1 1 1.375
P7R2 1 1.415
P8R1 2 5.585 6.035
P8R2
Fig. 10 and 11 are schematic diagrams showing axial aberrations and chromatic aberration of magnification of light having wavelengths of 656nm, 587nm, 546nm, 486nm, and 436nm passing through the imaging optical lens 30 according to the third embodiment. Fig. 12 is a schematic view showing curvature of field and distortion of light having a wavelength of 546nm after passing through the imaging optical lens 30 according to the third embodiment.
Table 13 below shows the numerical values corresponding to the respective conditional expressions in the present embodiment, in accordance with the conditional expressions described above. Obviously, the imaging optical system of the present embodiment satisfies the above conditional expressions.
In the present embodiment, the imaging optical lens has an entrance pupil diameter of 4.662mm, a full field height of 8.150mm, a diagonal field angle of 83.00 °, a wide angle, and a high profile, and has excellent optical characteristics with on-axis and off-axis chromatic aberration sufficiently corrected.
[ TABLE 13 ]
Parameter and condition formula Example 1 Example 2 Example 3
f1/f 1.06 1.42 1.88
f2 -20.65 -151.58 -47.77
(R5+R6)/(R5-R6) -4.21 -14.73 -1.82
d3/d4 7.94 6.40 2.57
f 9.000 8.998 8.998
f1 9.572 12.777 16.888
f3 23.627 83.940 12.538
f4 -242.780 64.642 -150.748
f5 -490.486 248.827 -68.137
f6 -1384.370 -45.267 15.747
f7 14.516 12.750 -266.051
f8 -6.579 -6.709 -6.848
f12 15.074 13.529 22.994
FNO 1.93 1.93 1.93
In table 13, f12 is the combined focal length of the first lens L1 and the second lens L2.
It will be understood by those of ordinary skill in the art that the foregoing embodiments are specific embodiments for practicing the invention, and that various changes in form and details may be made therein without departing from the spirit and scope of the invention in practice.

Claims (10)

1. An imaging optical lens, comprising eight lens elements in total, in order from an object side to an image side: a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element, a sixth lens element, a seventh lens element, and an eighth lens element;
the first lens element with positive refractive power, the third lens element with positive refractive power, and the eighth lens element with negative refractive power;
the focal length of the imaging optical lens is f, the focal length of the first lens is f1, the focal length of the second lens is f2, the curvature radius of the object-side surface of the third lens is R5, the curvature radius of the image-side surface of the third lens is R6, the curvature radius of the object-side surface of the eighth lens is R15, the curvature radius of the image-side surface of the eighth lens is R16, the on-axis thickness of the second lens is d3, and the on-axis distance from the image-side surface of the second lens to the object-side surface of the third lens is d4, so that the following relational expression is satisfied:
1.05≤f1/f≤1.90;
f2<0;
-15.00≤(R5+R6)/(R5-R6)≤-1.80;
2.50≤d3/d4≤8.00;
-2.35≤(R15+R16)/(R15-R16)≤-0.72。
2. the imaging optical lens according to claim 1, wherein the third lens has a focal length f3 and satisfies the following relationship:
1.00≤f3/f≤10.00。
3. the image-capturing optical lens unit according to claim 1, wherein the radius of curvature of the object-side surface of the first lens element is R1, the radius of curvature of the image-side surface of the first lens element is R2, the on-axis thickness of the first lens element is d1, the total optical length of the image-capturing optical lens unit is TTL, and the following relationships are satisfied:
-10.78≤(R1+R2)/(R1-R2)≤-1.85;
0.04≤d1/TTL≤0.16。
4. the imaging optical lens of claim 1, wherein the second lens has a focal length of f2, a radius of curvature of an object-side surface of the second lens is R3, a radius of curvature of an image-side surface of the second lens is R4, an on-axis thickness of the second lens is d3, and an optical total length of the imaging optical lens is TTL and satisfies the following relationship:
-33.69≤f2/f≤-1.53;
2.11≤(R3+R4)/(R3-R4)≤34.46;
0.02≤d3/TTL≤0.06。
5. the image-capturing optical lens unit according to claim 1, wherein the fourth lens element has a focal length f4, a radius of curvature of the object-side surface of the fourth lens element is R7, a radius of curvature of the image-side surface of the fourth lens element is R8, and the image-capturing optical lens unit has a total optical length TTL satisfying the following relationships:
-53.95≤f4/f≤10.78;
-26.27≤(R7+R8)/(R7-R8)≤2.47;
0.02≤d7/TTL≤0.07。
6. the image-capturing optical lens unit according to claim 1, wherein the fifth lens element has a focal length f5, a radius of curvature of an object-side surface of the fifth lens element is R9, a radius of curvature of an image-side surface of the fifth lens element is R10, an on-axis thickness of the fifth lens element is d9, an optical total length of the image-capturing optical lens unit is TTL, and the following relationship is satisfied:
-109.00≤f5/f≤41.48;
1.90≤(R9+R10)/(R9-R10)≤19.09;
0.02≤d9/TTL≤0.06。
7. the image-capturing optical lens unit according to claim 1, wherein the sixth lens element has a focal length f6, a radius of curvature of an object-side surface of the sixth lens element is R11, a radius of curvature of an image-side surface of the sixth lens element is R12, an on-axis thickness of the sixth lens element is d11, an optical total length of the image-capturing optical lens unit is TTL, and the following relationship is satisfied:
-307.64≤f6/f≤2.63;
-2.82≤(R11+R12)/(R11-R12)≤93.60;
0.03≤d11/TTL≤0.08。
8. the image-taking optical lens according to claim 1, wherein the seventh lens element has a focal length f7, a radius of curvature of an object-side surface of the seventh lens element is R13, a radius of curvature of an image-side surface of the seventh lens element is R14, an on-axis thickness of the seventh lens element is d13, an optical total length of the image-taking optical lens is TTL, and the following relationship is satisfied:
-59.14≤f7/f≤2.42;
-7.31≤(R13+R14)/(R13-R14)≤26.20;
0.03≤d13/TTL≤0.09。
9. the image-capturing optical lens of claim 1, wherein the focal length of the eighth lens element is f8, the on-axis thickness of the eighth lens element is d15, the total optical length of the image-capturing optical lens is TTL, and the following relationship is satisfied:
-1.52≤f8/f≤-0.49;
0.03≤d15/TTL≤0.08。
10. the imaging optical lens according to claim 1, wherein the F-number of the aperture of the imaging optical lens is FNO, and FNO ≤ 1.95 is satisfied.
CN201911340707.6A 2019-12-23 2019-12-23 Image pickup optical lens Active CN111007631B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911340707.6A CN111007631B (en) 2019-12-23 2019-12-23 Image pickup optical lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911340707.6A CN111007631B (en) 2019-12-23 2019-12-23 Image pickup optical lens

Publications (2)

Publication Number Publication Date
CN111007631A CN111007631A (en) 2020-04-14
CN111007631B true CN111007631B (en) 2021-09-24

Family

ID=70117487

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911340707.6A Active CN111007631B (en) 2019-12-23 2019-12-23 Image pickup optical lens

Country Status (1)

Country Link
CN (1) CN111007631B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021127859A1 (en) * 2019-12-23 2021-07-01 诚瑞光学(常州)股份有限公司 Image-capture optical lens
CN111929856B (en) * 2020-10-13 2020-12-18 常州市瑞泰光电有限公司 Image pickup optical lens
CN114326044B (en) * 2022-01-25 2023-09-29 浙江舜宇光学有限公司 imaging system
CN114721128B (en) * 2022-04-28 2024-04-19 浙江舜宇光学有限公司 Optical imaging lens

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3522520B2 (en) * 1997-01-30 2004-04-26 松下電器産業株式会社 Projection lens device
JPH11231209A (en) * 1998-02-18 1999-08-27 Minolta Co Ltd Photographic lens system
CN108107545B (en) * 2017-09-29 2020-02-04 玉晶光电(厦门)有限公司 Optical imaging lens
CN113985584B (en) * 2017-11-22 2024-03-29 浙江舜宇光学有限公司 Optical imaging lens
CN107831588B (en) * 2017-11-29 2019-11-26 浙江舜宇光学有限公司 Optical imaging lens
CN108227145A (en) * 2017-12-29 2018-06-29 玉晶光电(厦门)有限公司 Optical imaging lens
CN108121053B (en) * 2017-12-29 2024-05-17 玉晶光电(厦门)有限公司 Optical imaging lens
CN108445610B (en) * 2018-06-05 2023-05-26 浙江舜宇光学有限公司 Optical imaging lens group
CN109343203A (en) * 2018-11-27 2019-02-15 浙江舜宇光学有限公司 Optical imaging lens group
CN109765679B (en) * 2019-03-29 2021-06-18 广东旭业光电科技股份有限公司 Optical imaging lens and electronic device
CN110554482B (en) * 2019-10-14 2024-06-07 浙江舜宇光学有限公司 Optical imaging lens

Also Published As

Publication number Publication date
CN111007631A (en) 2020-04-14

Similar Documents

Publication Publication Date Title
CN111025533B (en) Image pickup optical lens
CN111007631B (en) Image pickup optical lens
CN110967814B (en) Image pickup optical lens
CN110955025B (en) Image pickup optical lens
CN111077649B (en) Image pickup optical lens
CN110927928B (en) Image pickup optical lens
CN110908081B (en) Image pickup optical lens
CN110908091B (en) Image pickup optical lens
CN111025578B (en) Image pickup optical lens
CN111025592B (en) Image pickup optical lens
CN110927935B (en) Image pickup optical lens
CN111142229B (en) Image pickup optical lens
CN109839727B (en) Image pickup optical lens
CN111007634B (en) Image pickup optical lens
CN111025588B (en) Image pickup optical lens
CN110908083B (en) Image pickup optical lens
CN111025559B (en) Image pickup optical lens
CN111077656B (en) Image pickup optical lens
CN110908085B (en) Image pickup optical lens
CN111025560B (en) Image pickup optical lens
CN111025590B (en) Image pickup optical lens
CN111025566B (en) Image pickup optical lens
CN110908090A (en) Image pickup optical lens
CN111007633B (en) Image pickup optical lens
CN111142228B (en) Image pickup optical lens

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 213000 Xinwei 1st Road, Changzhou Comprehensive Bonded Zone, Jiangsu Province

Applicant after: Chengrui optics (Changzhou) Co., Ltd

Address before: 213000 Xinwei Road, Changzhou Export Processing Zone, Jiangsu Province

Applicant before: Ruisheng Communication Technology (Changzhou) Co.,Ltd.

GR01 Patent grant
GR01 Patent grant