CN110999495A - 用于随机接入规程中的消息内容和传输的不同配置 - Google Patents

用于随机接入规程中的消息内容和传输的不同配置 Download PDF

Info

Publication number
CN110999495A
CN110999495A CN201880051449.7A CN201880051449A CN110999495A CN 110999495 A CN110999495 A CN 110999495A CN 201880051449 A CN201880051449 A CN 201880051449A CN 110999495 A CN110999495 A CN 110999495A
Authority
CN
China
Prior art keywords
rach
message
base station
transmission
random access
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880051449.7A
Other languages
English (en)
Other versions
CN110999495B (zh
Inventor
M·N·伊斯兰
N·阿贝迪尼
B·萨迪格
J·李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN110999495A publication Critical patent/CN110999495A/zh
Application granted granted Critical
Publication of CN110999495B publication Critical patent/CN110999495B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0066Transmission or use of information for re-establishing the radio link of control information between different types of networks in order to establish a new radio link in the target network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/281TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission taking into account user or data type priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/04Scheduled or contention-free access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0866Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a dedicated channel for access

Abstract

描述了用于无线通信的方法、系统和设备。在一些无线系统中,基站可将用户装备(UE)配置成在例如切换过程期间在专用随机接入(RACH)资源中进行RACH消息传输。无争用随机接入(CFRA)资源可允许UE以比基于争用的随机接入(CBRA)资源更高的发射功率来传送RACH消息。基站可向UE指示与用于CBRA的参数不同的用于CFRA的RACH传输参数。这些参数可包括配置信息、频分复用信息、RACH重传参数、目标收到功率、响应窗口长度等。UE可使用所指示的RACH传输参数来向基站传送RACH消息。基站可用RACH响应消息来进行响应,并且基站和UE可在RACH规程完成之际进行同步。

Description

用于随机接入规程中的消息内容和传输的不同配置
交叉引用
本专利申请要求由Islam等人于2018年8月9日提交的题为“DifferentConfigurations for Message Content and Transmission in a Random AccessProcedure(用于随机接入规程中的消息内容和传输的不同配置)”的美国专利申请No.16/059,946;由Islam等人于2018年2月14日提交的题为“Different Configurations forMessage Content and Transmission in a Random Access Procedure(用于随机接入规程中的消息内容和传输的不同配置)”的美国临时专利申请No.62/630,610;由Islam等人于2017年8月25日提交的题为“Different Configurations for Message Content andTransmission in a Random Access Procedure(用于随机接入规程中的消息内容和传输的不同配置)”的美国临时专利申请No.62/550,561;以及由Islam等人于2017年8月11日提交的题为“Different Configurations for a Dedicated Time/Frequency DomainRandom Access Channel(用于专用时域/频域随机接入信道的不同配置)”的美国临时专利申请No.62/544,756的权益,其中每一件申请均被转让给本申请受让人。
背景
以下一般涉及无线通信,尤其涉及用于随机接入规程中的消息内容和传输的不同配置。
无线通信系统被广泛部署以提供各种类型的通信内容,诸如语音、视频、分组数据、消息接发、广播等等。这些系统可以能够通过共享可用的系统资源(例如,时间、频率和功率)来支持与多个用户的通信。此类多址系统的示例包括第四代(4G)系统(诸如长期演进(LTE)系统或高级LTE(LTE-A)系统、以及可被称为新无线电(NR)系统的第五代(5G)系统。这些系统可采用各种技术,诸如码分多址(CDMA)、时分多址(TDMA)、频分多址(FDMA)、正交频分多址(OFDMA)、或离散傅立叶变换扩展OFDM(DFT-S-OFDM)。无线多址通信系统可包括数个基站或网络接入节点,每个基站或网络接入节点同时支持多个通信设备的通信,这些通信设备可另外被称为用户装备(UE)。
两个无线节点之间(例如,基站与UE之间)的无线通信可以将波束或经波束成形信号用于传输和/或接收。基站可在下行链路同步波束上传送经波束成形同步信号。UE可在这些下行链路同步波束中的一者或多者上接收同步信号,并且因此使得该UE能够发起与基站的随机接入信道(RACH)规程。在一些实例中,UE可选择随机接入前置码序列集中的一个前置码序列并作为RACH规程的一部分向基站发送所选前置码序列。UE可使用上行链路传输波束来发送前置码序列,并且基站可使用上行链路接收波束来接收传输。在一些情形中,另一UE可选择并传送相同的前置码序列,从而潜在地导致冲突。常规RACH规程将UE限制为仅传送随机接入前置码序列集中的一个前置码序列以发起RACH规程。常规RACH规程可能会经历冲突,并且使用仅提供有限信息量的随机接入前置码序列,从而延长与基站建立连通性所需的时间量。
概述
所描述的技术涉及支持用于随机接入规程中的消息内容和传输的不同配置的改进的方法、系统、设备、或装置。一般而言,所描述的技术提供了将用户装备(UE)配置成传送用于无争用随机接入(CFRA)规程和用于基于争用的随机接入(CBRA)规程的随机接入信道(RACH)消息的不同配置。例如,基站可(例如,在配置消息中)向UE指示用于CFRA规程的一个或多个RACH传输参数,其不同于用于CBRA的一个或多个RACH传输参数(例如,用于CFRA的传输参数的值可不同于用于CBRA的传输参数的值)。这些传输参数可包括物理RACH(PRACH)配置索引、可在单个时间实例中进行频分复用的RACH传输机会的数目、最低RACH传输时机的频率偏移、零相关区划配置、RACH收到目标功率、最大RACH前置码重传次数、用于RACH前置码重传的功率斜升步长、随机接入响应窗口或者这些或其他类似参数的某种组合。在一些情形中,传输参数可基于比CBRA规程经历干扰的可能性更低的CFRA规程而有所不同。
附加地或替换地,与共用RACH资源相比,传输参数对于专用RACH资源可以是不同的,或者对于不同的同步信号块(SSB)或信道状态信息参考信号(CSI-RS)可以是不同的。UE可基于从基站接收到的配置消息来生成RACH消息,并且可基于所指示的(诸)传输参数来向基站传送该RACH消息。基站可接收RACH消息,并且可向UE传送RACH响应。基于该RACH响应,UE可建立与基站(例如,用于服务蜂窝小区)的连接。有益地,本文所描述的技术可减少RACH规程中的等待时间。
在一些情形中,基站可为各UE配置关于专用资源而不是无争用资源的不同的RACH消息配置(例如,不同的RACH传输参数或RACH消息参数)。UE可更加快速地建立与基站的连通性,因为UE可利用专用资源在初始RACH消息中提供附加信息,并且可使用不同的传输技术,从而使所传送的RACH更易于被基站接收。在一示例中,基站可向UE指派专用RACH资源,并且可将该UE配置成用于该专用RACH资源中的RACH消息传输。例如,该规程可发生在UE从服务蜂窝小区到邻居蜂窝小区的切换过程期间。因为UE被分配了专用RACH资源,所以该UE可以以比该UE可用于基于争用的RACH资源的功率更高的功率传送RACH消息。基站可在配置消息(例如,切换命令)中指示一个或多个传输参数。
描述了一种由UE进行无线通信的方法。该方法可包括:从基站接收与用于CBRA规程的第二RACH传输参数不同的用于CFRA规程的第一RACH传输参数;生成用于CFRA规程的RACH消息;以及至少部分地基于第一RACH传输参数来在该CFRA规程中传送该RACH消息。
描述了一种由UE进行无线通信的设备。该设备可包括:用于从基站接收与用于CBRA规程的第二RACH传输参数不同的用于CFRA规程的第一RACH传输参数的装置;用于生成用于CFRA规程的RACH消息的装置;以及用于至少部分地基于第一RACH传输参数来在该CFRA规程中传送该RACH消息的装置。
描述了另一种由UE进行无线通信的装置。该装置可包括处理器、与该处理器处于电子通信的存储器、以及存储在该存储器中的指令。这些指令可操作用于使该处理器:从基站接收与用于CBRA规程的第二RACH传输参数不同的用于CFRA规程的第一RACH传输参数;生成用于CFRA规程的RACH消息;以及至少部分地基于第一RACH传输参数来在该CFRA规程中传送该RACH消息。
描述了一种由UE进行无线通信的非瞬态计算机可读介质。该非瞬态计算机可读介质可包括可操作用于使处理器执行以下操作的指令:从基站接收与用于CBRA规程的第二RACH传输参数不同的用于CFRA规程的第一RACH传输参数;生成用于CFRA规程的RACH消息;以及至少部分地基于第一RACH传输参数来在该CFRA规程中传送该RACH消息。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,在CFRA规程中传送RACH消息包括在专用时间和频率资源内传送RACH消息。在上述方法、设备和非瞬态计算机可读介质的一些示例中,在CFRA规程中传送RACH消息进一步包括在定向传输中传送RACH消息。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,第一RACH传输参数指示在专用时间和频率资源内为RACH消息传输所指派的频调间隔,其中传送RACH消息包括使用所指派的频调间隔来传送RACH消息。在上述方法、设备和非瞬态计算机可读介质的一些示例中,所指派的频调间隔可不同于在共用时间和频率资源内用于RACH消息传输的第二所指派的频调间隔。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,第一RACH传输参数可指示根序列、或零相关区划配置、或随机接入响应搜索空间、或随机接入响应控制资源集(CORESET)、或随机接入响应窗口、或最大前置码重传次数、或功率斜升步长、或RACH收到目标功率、或受限集配置、或用于RACH消息的副载波间隔、或用于选择SSB的参考信号收到功率(RSRP)阈值、或用于选择CSI-RS的RSRP阈值、或其任何组合。
即,具体而言,在上述方法、设备和非瞬态计算机可读介质的一些示例中,第一RACH传输参数指示PRACH配置索引。在上述方法、设备和非瞬态计算机可读介质的一些示例中,第一RACH传输参数指示可用于在单个时间实例中进行频分复用的RACH传输机会的数目。附加地或替换地,在上述方法、设备和非瞬态计算机可读介质的一些示例中,第一RACH传输参数指示最低RACH传输时机的频率偏移。在一些情形中,在上述方法、设备和非瞬态计算机可读介质中,第一RACH传输参数指示零相关区划配置。
此外,在上述方法、设备和非瞬态计算机可读介质的一些示例中,第一RACH传输参数指示RACH收到目标功率。在上述方法、设备和非瞬态计算机可读介质的一些示例中,第一RACH传输参数指示最大RACH前置码重传次数。附加地或替换地,第一RACH传输参数指示用于RACH前置码重传的功率斜升步长。在一些情形中,在上述方法、设备和非瞬态计算机可读介质中,第一RACH传输参数指示随机接入响应窗口长度。在一些情形中,在上述方法、设备和非瞬态计算机可读介质中,第一RACH传输参数指示上述参数的某种组合。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,接收第一RACH传输参数包括:从基站接收用于RACH消息的配置消息,其中该配置消息指示第一RACH传输参数。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,配置消息可以是切换消息。在上述方法、设备和非瞬态计算机可读介质的一些示例中,传送RACH消息包括在至少一个附加的定向传输中传送RACH消息。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,生成RACH消息可至少部分地基于配置消息。生成RACH消息可进一步包括:处理配置消息以标识用于CFRA规程的第一RACH前置码子集;以及从第一RACH前置码子集中为RACH消息选择RACH前置码,其中第一RACH前置码子集不同于用于CBRA规程的第二RACH前置码子集。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,用于CFRA规程的第一RACH传输参数可对应于专用时间和频率资源内的专用RACH前置码。在上述方法、设备和非瞬态计算机可读介质的一些示例中,第一RACH传输参数可不同于用于CFRA规程的第三RACH传输参数,该第三RACH传输参数可对应于共用时间和频率资源内的专用RACH前置码。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,第一RACH传输参数可对应于专用时间和频率资源内与第一SSB相关联的专用RACH前置码。在上述方法、设备和非瞬态计算机可读介质的一些示例中,第二RACH传输参数可对应于共用时间和频率资源内与第二SSB相关联的专用RACH前置码。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,第一RACH传输参数可对应于专用时间和频率资源内与第一CSI-RS相关联的专用RACH前置码。在上述方法、设备和非瞬态计算机可读介质的一些示例中,第二传输参数可对应于共用时间和频率资源内与第二CSI-RS相关联的专用RACH前置码。
上述方法、设备和非瞬态计算机可读介质的一些示例可进一步包括用于以下操作的过程、特征、装置或指令:至少部分地基于交织模式来在随机接入响应窗口中监视随机接入响应。在上述方法、设备和非瞬态计算机可读介质的一些示例中,监视随机接入响应进一步涉及使用随机接入响应窗口的第一部分中的第一接收波束以及随机接入响应窗口的第二部分中的第二接收波束来监视随机接入响应。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,第一RACH传输参数可由不同于该基站的目标基站来生成。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,RACH消息可以是RACHMsg1或RACH前置码的示例。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,传送RACH消息涉及使用由第一RACH传输参数指示的发射功率来传送RACH消息。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,可至少部分地基于UE的一个或多个先前报告来推导出发射功率,该一个或多个先前报告指示与目标基站相关联的蜂窝小区质量。在上述方法、设备和非瞬态计算机可读介质的一些示例中,该一个或多个先前报告包括针对目标基站的不同波束的集合的波束质量测量,其中蜂窝小区质量可至少部分地基于波束质量测量。
上述方法、设备和非瞬态计算机可读介质的一些示例可进一步包括用于以下操作的过程、特征、装置或指令:从索引集中选择至少一个索引,其中该内容包括要将该至少一个索引包括在RACH消息的有效载荷中的指令。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,该至少一个索引是来自基站波束索引集的至少一个波束索引的示例,并且其中传送RACH消息涉及在传输时间传送RACH消息以传达该至少一个波束索引或隐式地标识与该至少一个索引不同的第二波束索引。
上述方法、设备和非瞬态计算机可读介质的一些示例可进一步包括用于以下操作的过程、特征、装置或指令:经由对应于该至少一个波束索引或第二波束索引的下行链路发射波束来接收随机接入响应。
上述方法、设备和非瞬态计算机可读介质的一些示例可进一步包括用于以下操作的过程、特征、装置或指令:至少部分地基于所选的至少一个索引来从前置码集中为RACH消息选择前置码。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,选择该至少一个索引包括至少部分地基于针对从基站接收到的参考信号集的参考信号收到功率测量的排序来选择该至少一个索引。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,该至少一个索引可以是SSB索引、或CSI-RS块索引、或波束索引之一。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,选择该至少一个索引涉及至少部分地基于定向传输功率限制来选择该至少一个索引。
上述方法、设备和非瞬态计算机可读介质的一些示例可进一步包括用于以下操作的过程、特征、装置或指令:处理主信息块(MIB)、或系统信息块(SIB)、或剩余最小系统信息(RMSI)、或切换消息、或其任何组合中的至少一者,以标识随机接入响应窗口的交织模式。
上述方法、设备和非瞬态计算机可读介质的一些示例可进一步包括用于以下操作的过程、特征、装置或指令:至少部分地基于所选的至少一个索引来从前置码集中为RACH消息选择前置码。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,选择该至少一个索引涉及至少部分地基于针对从基站接收到的参考信号集的参考信号收到功率测量的排序来选择该至少一个索引。在上述方法、设备和非瞬态计算机可读介质的一些示例中,该至少一个索引可以是同步信号块索引、或CSI-RS块索引、或波束索引之一。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,该内容指示不同参考信号类型的集合中的参考信号类型,其中传送RACH消息包括传送具有所指示的参考信号类型的参考信号。在上述方法、设备和非瞬态计算机可读介质的一些示例中,所指示的参考信号类型可以是Zadoff-Chu序列、或最大长度序列、或伪随机二进制序列、或正交相移键控序列之一。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,第一RACH传输参数指示不同调制方案的集合中的调制方案,其中传送RACH消息包括使用所指示的调制方案来传送RACH消息。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,第一RACH传输参数指示要在定向传输中使用的波形数,其中传送RACH消息包括使用所指示的波形数来传送RACH消息。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,该内容指示RACH消息中的比特数,其中生成RACH消息涉及至少部分地基于所指示的比特数来生成RACH消息。在上述方法、设备和非瞬态计算机可读介质的一些示例中,比特数可至少部分地基于UE的链路增益。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,该内容指定要在RACH消息中包括质量报告,其中生成RACH消息涉及生成包括质量报告的RACH消息。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,质量报告可以是波束质量报告或蜂窝小区质量报告。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,质量报告可以是波束质量报告,并且波束质量报告可包括针对一个或多个波束的RSRP、或参考信号收到质量(RSRQ)、或参考信号强度指示符(RSSI)、或信道质量指示符(CQI)、或信噪比(SNR)、或信号与干扰和噪声比(SINR)或其任何组合中的至少一者。
上述方法、设备和非瞬态计算机可读介质的一些示例可进一步包括用于以下操作的过程、特征、装置或指令:处理包括对应于质量报告的上行链路消息参数的随机接入响应消息。上述方法、设备和非瞬态计算机可读介质的一些示例可进一步包括用于以下操作的过程、特征、装置或指令:至少部分地基于上行链路消息参数来传送上行链路消息。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,上行链路消息参数可以是用于上行链路消息的调度、或用于上行链路消息的调制和编码方案、或用于上行链路消息的功率控制参数、或其任何组合中的至少一者。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,传送RACH消息涉及至少部分地基于对参考信号和有效载荷进行时分复用来生成信号。上述方法、设备和非瞬态计算机可读介质的一些示例可进一步包括用于传送信号的过程、特征、装置或指令。附加地或替换地,在上述方法、设备和非瞬态计算机可读介质的一些示例中,传送RACH消息涉及至少部分地基于对参考信号和有效载荷进行频分复用来生成信号。上述方法、设备和非瞬态计算机可读介质的一些示例可进一步包括用于传送信号的过程、特征、装置或指令。
上述方法、设备和非瞬态计算机可读介质的一些示例可进一步包括用于接收对RACH消息的随机接入响应的过程、特征、装置或指令。上述方法、设备和非瞬态计算机可读介质的一些示例可进一步包括用于以下操作的过程、特征、装置或指令:至少部分地基于随机接入响应来建立与基站的连接。
描述了一种由基站进行无线通信的方法。该方法可包括:向UE传送与用于CBRA规程的第二RACH传输参数不同的用于CFRA规程的第一RACH传输参数。该方法可进一步包括:至少部分地基于第一RACH传输参数来在该CFRA规程中接收RACH消息;以及至少部分地基于该RACH消息来传送随机接入响应。
描述了一种用于由基站进行无线通信的设备。该设备可包括:用于向UE传送与用于CBRA规程的第二RACH传输参数不同的用于CFRA规程的第一RACH传输参数的装置。该设备可进一步包括:用于至少部分地基于第一RACH传输参数来在该CFRA规程中接收RACH消息的装置;以及用于至少部分地基于该RACH消息来传送随机接入响应的装置。
描述了另一种用于由基站进行无线通信的装置。该装置可包括处理器、与该处理器处于电子通信的存储器、以及存储在该存储器中的指令。这些指令可操作用于使该处理器:向UE传送与用于CBRA规程的第二RACH传输参数不同的用于CFRA规程的第一RACH传输参数。这些指令可进一步操作用于使该处理器:至少部分地基于第一RACH传输参数来在该CFRA规程中接收RACH消息;以及至少部分地基于该RACH消息来传送随机接入响应。
描述了一种用于由基站进行无线通信的非瞬态计算机可读介质。该非瞬态计算机可读介质可包括可操作用于使处理器执行以下操作的指令:向UE传送与用于CBRA规程的第二RACH传输参数不同的用于CFRA规程的第一RACH传输参数。该非瞬态计算机可读介质可包括可操作用于使处理器执行以下操作的进一步指令:至少部分地基于第一RACH传输参数来在该CFRA规程中接收RACH消息;以及至少部分地基于该RACH消息来传送随机接入响应。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,接收RACH消息涉及在专用时间和频率资源内接收RACH消息。在上述方法、设备和非瞬态计算机可读介质的一些示例中,接收RACH消息涉及在定向传输中接收RACH消息。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,第一RACH传输参数指示在专用时间和频率资源内为RACH消息传输所指派的频调间隔,其中接收RACH消息包括使用所指派的频调间隔来接收RACH消息。在上述方法、设备和非瞬态计算机可读介质的一些示例中,所指派的频调间隔可不同于在共用时间和频率资源内用于RACH消息传输的第二所指派的频调间隔。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,第一传输参数可指示根序列、或零相关区划配置、或随机接入响应搜索空间、或随机接入响应CORESET、或随机接入响应窗口、或最大前置码重传次数、或功率斜升步长、或RACH收到目标功率、或受限集配置、或用于RACH消息的副载波间隔、或用于选择SSB的RSRP阈值、或用于选择CSI-RS的RSRP阈值、或其任何组合。
即,具体而言,在上述方法、设备和非瞬态计算机可读介质的一些示例中,第一RACH传输参数指示PRACH配置索引。在上述方法、设备和非瞬态计算机可读介质的一些示例中,第一RACH传输参数指示可用于在单个时间实例中进行频分复用的RACH传输机会的数目。附加地或替换地,在上述方法、设备和非瞬态计算机可读介质的一些示例中,第一RACH传输参数指示最低RACH传输时机的频率偏移。在一些情形中,在上述方法、设备和非瞬态计算机可读介质的一些示例中,第一RACH传输参数指示零相关区划配置。
此外,在上述方法、设备和非瞬态计算机可读介质的一些示例中,第一RACH传输参数指示RACH收到目标功率。在上述方法、设备和非瞬态计算机可读介质的一些示例中,第一RACH传输参数指示最大RACH前置码重传次数。附加地或替换地,第一RACH传输参数指示用于RACH前置码重传的功率斜升步长。在一些情形中,在上述方法、设备和非瞬态计算机可读介质中,第一RACH传输参数指示随机接入响应窗口长度。在一些情形中,在上述方法、设备和非瞬态计算机可读介质中,第一RACH传输参数指示上述参数的某种组合。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,传送第一RACH传输参数涉及:向UE传送用于RACH消息的配置消息,其中该配置消息指示第一RACH传输参数。在上述方法、设备和非瞬态计算机可读介质的一些示例中,配置消息可以是切换消息。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,配置消息可标识与用于CBRA规程的第二RACH前置码子集不同的用于CFRA规程的第一RACH前置码子集。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,用于CFRA规程的第一RACH传输参数可对应于专用时间和频率资源内的专用RACH前置码。在上述方法、设备和非瞬态计算机可读介质的一些示例中,第一RACH传输参数可不同于用于CFRA规程的第三RACH传输参数,该第三RACH传输参数可对应于共用时间和频率资源内的专用RACH前置码。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,第一RACH传输参数可对应于专用时间和频率资源内与第一SSB相关联的专用RACH前置码。在上述方法、设备和非瞬态计算机可读介质的一些示例中,第二RACH传输参数可对应于共用时间和频率资源内与第二SSB相关联的专用RACH前置码。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,第一RACH传输参数可对应于专用时间和频率资源内与第一CSI-RS相关联的专用RACH前置码。在上述方法、设备和非瞬态计算机可读介质的一些示例中,第二RACH传输参数可对应于共用时间和频率资源内与第二CSI-RS相关联的专用RACH前置码。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,RACH消息可以是RACHMsg1或RACH前置码的示例。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,配置UE涉及向该UE的服务基站传送对内容和第一RACH传输参数的指示以用于向该UE传送对内容和第一RACH传输参数的指示。上述方法、设备和非瞬态计算机可读介质的一些示例可进一步包括用于从服务基站接收对切换决策的指示的过程、特征、装置或指令,其中传送对内容和第一RACH传输参数的指示可至少部分地基于切换决策。
上述方法、设备和非瞬态计算机可读介质的一些示例可进一步包括用于接收针对UE的一个或多个蜂窝小区质量报告的过程、特征、装置或指令。上述方法、设备和非瞬态计算机可读介质的一些示例可进一步包括用于以下操作的过程、特征、装置或指令:至少部分地基于该一个或多个蜂窝小区质量报告来确定传输参数。在上述方法、设备和非瞬态计算机可读介质的一些示例中,该一个或多个蜂窝小区质量报告包括针对基站的不同波束的集合的波束质量测量。
上述方法、设备和非瞬态计算机可读介质的一些示例可进一步包括用于以下操作的过程、特征、装置或指令:至少部分地基于该一个或多个蜂窝小区质量报告来推导出发射功率。上述方法、设备和非瞬态计算机可读介质的一些示例可进一步包括用于以下操作的过程、特征、装置或指令:选择对应于所推导出的发射功率的传输参数。
上述方法、设备和非瞬态计算机可读介质的一些示例可进一步包括用于以下操作的过程、特征、装置或指令:至少部分地基于该至少一个索引来从不同下行链路定向传输的集合中选择下行链路定向传输,其中传送随机接入响应涉及使用所选的下行链路定向传输来传送随机接入响应。
上述方法、设备和非瞬态计算机可读介质的一些示例可进一步包括用于以下操作的过程、特征、装置或指令:至少部分地基于被包括在RACH消息中的波束质量报告来确定与随机接入响应相关联的至少一个参数。
上述方法、设备和非瞬态计算机可读介质的一些示例可进一步包括用于以下操作的过程、特征、装置或指令:至少部分地基于被包括在RACH消息中的波束索引来确定与随机接入响应相关联的至少一个参数。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,选择下行链路传输波束包括至少部分地基于所定义的规则来选择下行链路传输波束。
上述方法、设备和非瞬态计算机可读介质的一些示例可进一步包括用于以下操作的过程、特征、装置或指令:至少部分地基于被包括在RACH消息中的第一波束索引或对应于在其中传送RACH消息的传输时间区间(TTI)的第二波束索引之一来确定随机接入响应窗口的交织模式,其中传送随机接入响应可涉及至少部分地基于该交织模式来在随机接入响应窗口内传送随机接入响应。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,配置UE包括:传送MIB、或SIB、或RMSI、或切换消息、或其任何组合中的至少一者,以指示随机接入响应窗口的交织模式以用于将UE配置有该交织模式。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,传送随机接入响应涉及在随机接入响应窗口的第一部分内、或在随机接入窗口的第二部分内、或在随机接入窗口的第一和第二部分两者内传送随机接入响应。
上述方法、设备和非瞬态计算机可读介质的一些示例可进一步包括用于确定用于不同定向传输的集合的负载参数的过程、特征、装置或指令,其中该传输参数指示用于至少部分地基于该负载参数来传送RACH消息的发射功率。
上述方法、设备和非瞬态计算机可读介质的一些示例可进一步包括用于确定UE的链路增益的过程、特征、装置或指令。上述方法、设备和非瞬态计算机可读介质的一些示例可进一步包括用于以下操作的过程、特征、装置或指令:至少部分地基于链路增益来选择RACH消息的比特数,其中该内容标识RACH消息的比特数。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,该内容指定要在RACH消息中包括质量报告,其中接收RACH消息包括处理该RACH消息以标识质量报告。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,质量报告可以是波束质量报告或蜂窝小区质量报告。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,波束质量报告包括针对一个或多个波束的RSRP、或RSRQ、或RSSI、或CQI、或SNR、或SINR、或其任何组合中的至少一者。
上述方法、设备和非瞬态计算机可读介质的一些示例可进一步包括用于以下操作的过程、特征、装置或指令:根据上行链路消息参数来接收上行链路消息。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,上行链路消息参数可以是用于上行链路消息的调度、或用于上行链路消息的调制和编码方案、或用于上行链路消息的功率控制参数、或其任何组合中的至少一者。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,配置UE进一步包括将UE配置有CFRA资源。
描述了一种由基站进行无线通信的进一步方法。该方法可包括:确定要将UE从该基站切换到目标基站;从该目标基站接收对RACH消息的内容和传输参数的指示;以及向该UE传送指示该RACH消息的内容和传输参数的配置消息。
描述了一种用于由基站进行无线通信的设备。该设备可包括:用于确定要将UE从该基站切换到目标基站的装置;用于从该目标基站接收对RACH消息的内容和传输参数的指示的装置;以及用于向该UE传送指示该RACH消息的内容和传输参数的配置消息的装置。
描述了另一种用于由基站进行无线通信的装置。该装置可包括处理器、与该处理器处于电子通信的存储器、以及存储在该存储器中的指令。这些指令可操作用于使该处理器:确定要将UE从该基站切换到目标基站;从该目标基站接收对RACH消息的内容和传输参数的指示;以及向该UE传送指示该RACH消息的内容和传输参数的配置消息。
描述了一种用于由基站进行无线通信的非瞬态计算机可读介质。该非瞬态计算机可读介质可包括可操作用于使处理器执行以下操作的指令:确定要将UE从该基站切换到目标基站;从该目标基站接收对RACH消息的内容和传输参数的指示;以及向该UE传送指示该RACH消息的内容和传输参数的配置消息。
上述方法、设备和非瞬态计算机可读介质的一些示例可进一步包括用于向目标基站传送对切换决策的指示的过程、特征、装置或指令,其中接收对RACH消息的内容和传输参数的指示可至少部分地基于对切换决策的指示。
上述方法、设备和非瞬态计算机可读介质的一些示例可进一步包括用于以下操作的过程、特征、装置或指令:从UE接收对关于基站的第一蜂窝小区质量的第一指示以及对关于目标基站的第二蜂窝小区质量的第二指示,其中确定要切换该UE可至少部分地基于第一蜂窝小区质量和第二蜂窝小区质量。
在上述方法、设备和非瞬态计算机可读介质的一些示例中,配置消息是切换命令消息的示例。
附图简述
图1解说了根据本公开的各方面的支持用于随机接入规程中的消息内容和传输的不同配置的无线通信系统的示例。
图2解说了根据本公开的各方面的无线通信系统的示例。
图3解说了根据本公开的各方面的随机接入信道(RACH)消息接发配置的示例。
图4至6解说了根据本公开的各方面的支持用于随机接入规程中的消息内容和传输的不同配置的过程流的示例。
图7至9示出了根据本公开的各方面的设备的框图。
图10解说了根据本公开的各方面的包括用户装备(UE)的系统的框图。
图11至13示出了根据本公开的各方面的设备的框图。
图14解说了根据本公开的各方面的包括基站的系统的框图。
图15至20解说了根据本公开的各方面的用于配置用于不同随机接入规程的RACH传输参数的方法。
详细描述
所描述的技术涉及支持用于不同类型的随机接入信道(RACH)规程的传输和消息内容的不同配置的改进的方法、系统、设备或装置。一般而言,所描述的技术提供了将用户装备(UE)配置有用于无争用随机接入(CFRA)规程和基于争用的随机接入(CBRA)规程的不同传输参数。即,生成和传送用于CFRA规程的RACH消息的UE可使用与生成和传送用于CBRA规程的RACH消息的UE不同的一个或多个RACH传输参数的值。在一些情形中,基站可将UE配置成附加地或替换地在专用、无争用时域/频域资源中而不是在基于争用的资源中传送RACH消息的不同配置。UE可更加快速地建立与基站的连通性,因为UE可利用专用资源在初始RACH消息中提供附加信息,并且可使用不同的传输技术和传输参数,以使所传送的RACH更易于被基站接收。
在一些无线系统中,UE和基站可将波束或经波束成形的信号用于传输和/或接收。UE可通过向基站传送消息来发起接入规程,诸如RACH规程。该消息可以是RACH消息的示例,其还可被称为RACH前置码消息、RACH请求或RACH消息1(Msg1)。基站可为UE分配资源以传送RACH消息。例如,基站可为UE分配专用RACH资源以执行无争用RACH规程。在一些情形中,当使用无争用RACH资源而不是基于争用的RACH资源时,UE可使用不同的传输参数来传送RACH消息。例如,UE可由于专用于无争用RACH规程的资源中的干扰的较低概率而使用较高发射功率来进行传送。
UE可使用RACH规程来同步到无线网络或目标蜂窝小区。例如,UE可在从服务蜂窝小区到目标邻居蜂窝小区的切换规程之前或期间传送RACH消息。在一些情形中,基站可向UE发送配置消息(例如,切换命令),以便为UE配置高效的RACH消息接发。在配置消息中,基站可指示内容、用于RACH消息接发的传输参数或两者。例如,基站可传送用于CFRA规程的一个或多个传输参数。这些传输参数可不同于用于CBRA规程的传输参数,因为CFRA规程可具有经历干扰的较低可能性(例如,因为CFRA资源不被用于CBRA规程,包括针对UE的初始接入规程)。
附加地或替换地,与共用RACH资源相比,用于CFRA规程的传输参数对于专用RACH资源可以是不同的,或者对于不同的同步信号块(SSB)或信道状态信息(CSI)参考信号(CSI-RS)可以是不同的。例如,传输参数可指示发射功率、调制方案、波形数、或者这些或其他参数的某种组合。UE可基于配置消息来生成RACH消息,并且可基于(诸)RACH传输参数来在专用RACH资源中向该基站或不同基站(例如,目标基站)传送RACH消息。基站或目标基站可基于接收到的RACH消息来确定用于与UE通信的上行链路波束、下行链路波束或两者。为了完成RACH规程,基站可将RACH响应消息传送回UE,并且UE和基站可基于该RACH规程来进行同步。通过实现用于CFRA或专用RACH消息接发的所配置内容和RACH传输参数,UE可减少RACH规程的等待时间,因为UE可在单个RACH消息中向基站传送更多信息。
本公开的各方面最初在无线通信系统的上下文中进行描述。关于RACH消息接发配置和数个过程流描述了附加方面。本公开的各方面通过并且参照与用于随机接入规程中的消息内容和传输的不同配置相关的装置示图、系统示图、以及流程图来进一步解说和描述。
图1解说了根据本公开的各方面的支持用于随机接入规程中的消息内容和传输的不同配置的无线通信系统100的示例。无线通信系统100包括基站105、UE 115和核心网130。在一些示例中,无线通信系统100可以是长期演进(LTE)网络、高级LTE(LTE-A)网络、或新无线电(NR)网络。在一些情形中,无线通信系统100可支持增强型宽带通信、超可靠(例如,关键任务)通信、低等待时间通信、或与低成本和低复杂度设备的通信。基站105可将UE 115配置成使用不同配置来传送RACH消息,诸如RACH前置码消息。
基站105可经由一个或多个基站天线与UE 115进行无线通信。本文所描述的基站105可包括或可被本领域技术人员称为基收发机站、无线电基站、接入点、无线电收发机、B节点、演进型B节点(eNB)、下一代B节点或千兆B节点(其中任何一者都可被称为gNB)、家用B节点、家用演进型B节点、或其他某个合适的术语。无线通信系统100可包括不同类型的基站105(例如,宏基站或小型蜂窝小区基站)。本文中描述的UE 115可以能够与各种类型的基站105和网络装备(包括宏eNB、小型蜂窝小区eNB、gNB、中继基站等)进行通信。
每个基站105可与特定地理覆盖区域110相关联,在该特定地理覆盖区域110中支持与各种UE 115的通信。每个基站105可经由通信链路125为相应的地理覆盖区域110提供通信覆盖,并且基站105与UE 115之间的通信链路125可利用一个或多个载波。无线通信系统100中示出的通信链路125可包括从UE 115到基站105的上行链路传输、或从基站105到UE115的下行链路传输。下行链路传输也可被称为前向链路传输,而上行链路传输也可被称为反向链路传输。
基站105的地理覆盖区域110可被划分成仅构成该地理覆盖区域110的一部分的扇区,而每个扇区可与一蜂窝小区相关联。例如,每个基站105可提供对宏蜂窝小区、小型蜂窝小区、热点、或其他类型的蜂窝小区、或其各种组合的通信覆盖。在一些示例中,基站105可以是可移动的,并且因此提供对移动的地理覆盖区域110的通信覆盖。在一些示例中,与不同技术相关联的不同地理覆盖区域110可交叠,并且与不同技术相关联的交叠地理覆盖区域110可由相同基站105或不同基站105支持。无线通信系统100可包括例如异构LTE/LTE-A、或NR网络,其中不同类型的基站105提供对各种地理覆盖区域110的覆盖。
术语“蜂窝小区”指用于与基站105(例如,在载波上)进行通信的逻辑通信实体,并且可以与标识符相关联以区分经由相同或不同载波操作的相邻蜂窝小区(例如,物理蜂窝小区标识符(PCID)、虚拟蜂窝小区标识符(VCID))。在一些示例中,载波可支持多个蜂窝小区,并且可根据可为不同类型的设备提供接入的不同协议类型(例如,机器类型通信(MTC)、窄带物联网(NB-IoT)、增强型移动宽带(eMBB)或其他)来配置不同蜂窝小区。在一些情形中,术语“蜂窝小区”可指逻辑实体在其上操作的地理覆盖区域110的一部分(例如,扇区)。
各UE 115可分散遍及无线通信系统100,并且每个UE 115可以是驻定的或移动的。UE 115还可被称为移动设备、无线设备、远程设备、手持设备、或订户设备、或者某个其他合适的术语,其中“设备”也可被称为单元、站、终端或客户端。UE 115还可以是个人电子设备,诸如蜂窝电话、个人数字助理(PDA)、平板计算机、膝上型计算机或个人计算机。在一些示例中,UE 115还可指无线本地环路(WLL)站、物联网(IoT)设备、万物联网(IoE)设备、或MTC设备等,其可以实现在诸如电器、交通工具、仪表等各种物品中。
一些UE 115(诸如MTC或IoT设备)可以是低成本或低复杂度设备,并且可提供机器之间的自动化通信(例如,经由机器到机器(M2M)通信)。M2M通信或MTC可指允许设备彼此通信或者设备与基站105进行通信而无需人类干预的数据通信技术。在一些示例中,M2M通信或MTC可包括来自集成有传感器或计量仪以测量或捕捉信息并且将该信息中继到中央服务器或应用程序的设备的通信,该中央服务器或应用程序可利用该信息或者将该信息呈现给与该程序或应用交互的人。一些UE 115可被设计成收集信息或实现机器的自动化行为。用于MTC设备的应用的示例包括:智能计量、库存监视、水位监视、装备监视、健康护理监视、野外生存监视、天气和地理事件监视、队列管理和跟踪、远程安全感测、物理接入控制和基于交易的商业收费。
一些UE 115可被配置成采用降低功耗的操作模式,诸如半双工通信(例如,支持经由传输或接收的单向通信但不同时传输和接收的模式)。在一些示例中,可以用降低的峰值速率执行半双工通信。用于UE 115的其他功率节省技术包括在不参与活跃通信时进入功率节省“深度睡眠”模式,或者在有限带宽上操作(例如,根据窄带通信)。在一些情形中,UE115可被设计成支持关键功能(例如,关键任务功能),并且无线通信系统100可被配置成为这些功能提供超可靠通信。
在一些情形中,UE 115还可以能够直接与其他UE 115通信(例如,使用对等(P2P)或设备到设备(D2D)协议)。利用D2D通信的一群UE 115中的一个或多个UE可在基站105的地理覆盖区域110内。此类群中的其他UE 115可在基站105的物理覆盖区域110之外,或者因其他原因不能够接收来自基站105的传输。在一些情形中,经由D2D通信进行通信的各群UE115可以利用一对多(1:M)系统,其中每个UE 115向该群中的每个其它UE 115进行传送。在一些情形中,基站105促成对用于D2D通信的资源的调度。在其他情形中,D2D通信在UE 115之间执行而不涉及基站105。
各基站105可与核心网130进行通信并且彼此通信。例如,基站105可通过回程链路132(例如,经由S1或其他接口)与核心网130对接。基站105可直接(例如,直接在基站105之间)或间接地(例如,经由核心网130)在回程链路134(例如,经由X2或其他接口)上彼此通信。
核心网130可提供用户认证、接入授权、跟踪、网际协议(IP)连通性,以及其他接入、路由、或移动性功能。核心网130可以是演进型分组核心(EPC),EPC可包括至少一个移动性管理实体(MME)、至少一个服务网关(S-GW)、以及至少一个分组数据网络(PDN)网关(P-GW)。MME可管理非接入阶层(例如,控制面)功能,诸如由与EPC相关联的基站105服务的UE115的移动性、认证和承载管理。用户IP分组可通过S-GW来传递,S-GW自身可连接到P-GW。P-GW可提供IP地址分配以及其他功能。P-GW可连接到网络运营商IP服务。运营商IP服务可包括对因特网、(诸)内联网、IP多媒体子系统(IMS)、或分组交换(PS)流送服务的接入。
至少一些网络设备(诸如基站105)可包括子组件,诸如接入网实体,其可以是接入节点控制器(ANC)的示例。每个接入网实体可通过数个其他接入网传输实体与各UE 115进行通信,该其他接入网传输实体可被称为无线电头端、智能无线电头端、或传送/接收点(TRP)。在一些配置中,每个接入网实体或基站105的各种功能可跨各种网络设备(例如,无线电头端和接入网控制器)分布或者被合并到单个网络设备(例如,基站105)中。
无线通信系统100可使用一个或多个频带来操作,通常在300MHz到300GHz的范围内。一般而言,300MHz至3GHz的区域被称为超高频(UHF)区域或分米频带,这是因为波长在从约1分米到1米长的范围内。UHF波可被建筑物和环境特征阻挡或重定向。然而,该波对于宏蜂窝小区可充分穿透各种结构以向位于室内的UE 115提供服务。与使用频谱中低于300MHz的高频(HF)或甚高频(VHF)部分的较小频率和较长波的传输相比,UHF波的传输可与较小天线和较短射程(例如,小于100km)相关联。
无线通信系统100还可使用从3GHz至30GHz的频带(也被称为厘米频带)在特高频(SHF)区域中操作。SHF区域包括可由能够容忍来自其他用户的干扰的设备伺机使用的频带(诸如,5GHz工业、科学和医学(ISM)频带)。
无线通信系统100还可在频谱的极高频(EHF)区域(例如,从30GHz到300GHz)中操作,该区域也被称为毫米频带。在一些示例中,无线通信系统100可支持UE 115和基站105之间的毫米波(mmW)通信,并且相应设备的EHF天线可甚至比UHF天线更小并且间隔得更紧密。在一些情形中,这可促成在UE 115内使用天线阵列。然而,EHF传输的传播可能经受比SHF或UHF传输甚至更大的大气衰减和更短的射程。本文中所公开的技术可跨使用一个或多个不同频率区域的传输来采用,并且跨这些频率区域所指定的频带使用可因国家或管理机构而不同。
在一些情形中,无线通信系统100可利用有执照和无执照射频谱带两者。例如,无线通信系统100可在无执照频带(诸如,5GHz ISM频带)中采用执照辅助接入(LAA)、LTE无执照(LTE-U)无线电接入技术、或NR技术。当在无执照射频谱带中操作时,无线设备(诸如基站105和UE 115)可采用先听后讲(LBT)规程以在传送数据之前确保频率信道是畅通的。在一些情形中,无执照频带中的操作可以与在有执照频带(例如,LAA)中操作的分量载波(CC)相协同地基于载波聚集(CA)配置。无执照频谱中的操作可包括下行链路传输、上行链路传输、对等传输、或这些的组合。无执照频谱中的双工可基于频分双工(FDD)、时分双工(TDD)、或这两者的组合。
在一些示例中,基站105或UE 115可装备有多个天线,其可用于采用诸如发射分集、接收分集、多输入多输出(MIMO)通信、或波束成形等技术。例如,无线通信系统可在传送方设备(例如,基站105)与接收方设备(例如,UE 115)之间使用传输方案,其中传送方设备装备有多个天线,并且接收方设备装备有一个或多个天线。MIMO通信可采用多径信号传播以通过经由不同空间层传送或接收多个信号来增加频谱效率,这可被称为空间复用。例如,传送方设备可经由不同的天线或不同的天线组合来传送多个信号。同样,接收方设备可经由不同的天线或不同的天线组合来接收多个信号。这多个信号中的每一个信号可被称为单独空间流,并且可携带与相同数据流(例如,相同码字)或不同数据流相关联的比特。不同空间层可与用于信道测量和报告的不同天线端口相关联。MIMO技术包括单用户MIMO(SU-MIMO),其中多个空间层被传送至相同的接收方设备;以及多用户MIMO(MU-MIMO),其中多个空间层被传送至多个设备。
波束成形(也可被称为空间滤波、定向传输或定向接收)是可在传送方设备或接收方设备(例如,基站105或UE 115)处使用的信号处理技术,以沿着传送方设备与接收方设备之间的空间路径对天线波束(例如,发射波束或接收波束)进行成形或引导。可通过组合经由天线阵列的天线振子传达的信号来实现波束成形,使得在相对于天线阵列的特定取向上传播的信号经历相长干涉,而其他信号经历相消干涉。对经由天线振子传达的信号的调整可包括传送方设备或接收方设备向经由与该设备相关联的每个天线振子所携带的信号应用特定振幅和相移。与每个天线振子相关联的调整可由与特定取向(例如,相对于传送方设备或接收方设备的天线阵列、或者相对于某个其他取向)相关联的波束成形权重集来定义。
在一个示例中,基站105可使用多个天线或天线阵列来进行波束成形操作,以用于与UE 115进行定向通信。例如,一些信号(例如,同步信号、参考信号、波束选择信号、或其他控制信号)可由基站105在不同方向上传送多次,这些信号可包括根据与不同传输方向相关联的不同波束成形权重集传送的信号。在不同波束方向上的传输可用于(例如,由基站105或接收方设备,诸如UE 115)标识由基站105用于后续传输和/或接收的波束方向。一些信号(诸如与特定接收方设备相关联的数据信号)可由基站105在单个波束方向(例如,与接收方设备(诸如UE 115)相关联的方向)上传送。在一些示例中,可至少部分地基于在不同波束方向上传送的信号来确定与沿单个波束方向的传输相关联的波束方向。例如,UE 115可接收由基站105在不同方向上传送的一个或多个信号,并且UE 115可向基站105报告对其以最高信号质量或其他可接受的信号质量接收的信号的指示。尽管参照由基站105在一个或多个方向上传送的信号来描述这些技术,但是UE 115可将类似的技术用于在不同方向上多次传送信号(例如,用于标识由UE 115用于后续传输或接收的波束方向)或用于在单个方向上传送信号(例如,用于向接收方设备传送数据)。
接收方设备(例如UE 115,其可以是mmW接收方设备的示例)可在从基站105接收各种信号(诸如,同步信号、参考信号、波束选择信号、或其他控制信号)时尝试多个接收波束。例如,接收方设备可通过以下操作来尝试多个接收方向:经由不同天线子阵列进行接收,根据不同天线子阵列来处理所接收的信号,根据应用于在天线阵列的多个天线振子处接收的信号的不同接收波束成形权重集进行接收,或根据应用于在天线阵列的多个天线振子处接收的信号的不同接收波束成形权重集来处理所接收的信号,其中任一者可被称为根据不同接收波束或接收方向进行“监听”。在一些示例中,接收方设备可使用单个接收波束来沿单个波束方向进行接收(例如,当接收到数据信号时)。单个接收波束可在至少部分地基于根据不同接收波束方向进行监听而确定的波束方向(例如,至少部分地基于根据多个波束方向进行监听而被确定为具有最高信号强度、最高信噪比、或其他可接受信号质量的波束方向)上对准。
在一些情形中,基站105或UE 115的天线可位于可支持MIMO操作或者发射或接收波束成形的一个或多个天线阵列内。例如,一个或多个基站天线或天线阵列可共处于天线组装件(诸如天线塔)处。在一些情形中,与基站105相关联的天线或天线阵列可位于不同的地理位置。基站105可具有天线阵列,该天线阵列具有基站105可用于支持与UE 115的通信的波束成形的数个行和列的天线端口。同样,UE 115可具有可支持各种MIMO或波束成形操作的一个或多个天线阵列。
LTE或NR中的时间区间可用基本时间单位(其可例如指采样周期Ts=1/30,720,000秒)的倍数来表达。通信资源的时间区间可根据各自具有10毫秒(ms)历时的无线电帧来组织,其中帧周期可被表达为Tf=307,200Ts。无线电帧可由范围从0到1023的系统帧号(SFN)来标识。每个帧可包括编号从0到9的10个子帧,并且每个子帧可具有1ms的历时。子帧可进一步被划分成两个各自具有0.5ms历时的时隙,并且每个时隙可包含6或7个调制码元周期(例如,取决于每个码元周期前添加的循环前缀的长度)。排除循环前缀,每个码元周期可包含2048个采样周期。在一些情形中,子帧可以是无线通信系统100的最小调度单位,并且可被称为传输时间区间(TTI)。在其他情形中,无线通信系统100的最小调度单位可短于子帧或者可被动态地选择的(例如,在经缩短TTI(sTTI)的突发中或者在使用sTTI的所选分量载波中)。
在一些无线通信系统中,时隙可被进一步划分成包含一个或多个码元的多个迷你时隙。在一些实例中,迷你时隙的码元或迷你时隙可以是最小调度单位。例如,每个码元在历时上可取决于副载波间隔或操作频带而变化。进一步地,一些无线通信系统可实现时隙聚集,其中多个时隙或迷你时隙被聚集在一起并用于UE 115和基站105之间的通信。
术语“载波”是指射频频谱资源集,其具有用于支持通信链路125上的通信的所定义物理层结构。例如,通信链路125的载波可包括根据用于给定无线电接入技术的物理层信道来操作的射频谱带的一部分。每个物理层信道可携带用户数据、控制信息、或其他信令。载波可以与预定义的频率信道(例如,演进型通用地面无线电接入(E-UTRA)绝对射频信道号(EARFCN))相关联,并且可根据信道栅格来定位以供UE 115发现。载波可以是下行链路或上行链路(例如,在FDD模式中),或者可被配置成携带下行链路通信和上行链路通信(例如,在TDD模式中)。在一些示例中,在载波上传送的信号波形可包括多个副载波(例如,使用多载波调制(MCM)技术,诸如正交频分复用(OFDM)或离散傅立叶变换扩展OFDM(DFT-s-OFDM))。
对于不同的无线电接入技术(例如,LTE、LTE-A、NR等),载波的组织结构可以是不同的。例如,载波上的通信可根据TTI或时隙来组织,该TTI或时隙中的每一者可包括用户数据以及支持解码用户数据的控制信息或信令。载波还可包括专用捕获信令(例如,同步信号或系统信息等)和协调载波操作的控制信令。在一些示例中(例如,在载波聚集配置中),载波还可具有协调其他载波的操作的捕获信令或控制信令。
可根据各种技术在载波上复用物理信道。物理控制信道和物理数据信道可例如使用时分复用(TDM)技术、频分复用(FDM)技术、或者混合TDM-FDM技术在下行链路载波上被复用。在一些示例中,在物理控制信道中传送的控制信息可按级联方式分布在不同控制区域之间(例如,在共用控制区域或共用搜索空间与一个或多个因UE而异的控制区域或因UE而异的搜索空间之间)。
在采用MCM技术的系统中,资源元素可包括一个码元周期(例如,一个调制码元的历时)和一个副载波,其中码元周期和副载波间隔是逆相关的。由每个资源元素携带的比特数目可取决于调制方案(例如,调制方案的阶数)。由此,UE 115接收的资源元素越多并且调制方案的阶数越高,则UE 115的数据率就可以越高。在MIMO系统中,无线通信资源可以是指射频频谱资源、时间资源和空间资源(例如,空间层)的组合,并且使用多个空间层可进一步提高与UE 115的通信的数据率。
无线通信系统100的设备(例如,基站105或UE 115)可具有支持特定载波带宽上的通信的硬件配置,或者可以是可配置的以支持在载波带宽集中的一个载波带宽上的通信。在一些示例中,无线通信系统100可包括可支持经由与不止一个不同载波带宽相关联的载波的同时通信的基站105和/或UE 115。
无线通信系统100可支持在多个蜂窝小区或载波上与UE 115的通信,这是可被称为CA或多载波操作的特征。UE 115可根据载波聚集配置而配置有多个下行链路CC以及一个或多个上行链路CC。CA可与FDD和TDD分量载波两者联用。
在初始接入规程(也被称为RACH规程)期间,UE 115可向基站105传送RACH消息(例如,RACH前置码消息或RACH Msg1)。例如,RACH前置码可以从包括64个预定序列的集合中随机选择。这可使得基站105能够在同时尝试接入系统的多个UE 115之间进行区分。基站105可以用提供上行链路资源准予、定时提前和/或临时蜂窝小区无线电网络临时身份(C-RNTI)的随机接入响应或RACH消息2来进行响应。UE 115可随后传送无线电资源控制(RRC)连接请求或RACH消息3,连同临时移动订户身份(TMSI)(例如,在UE 115先前已经连接到同一无线网络的情况下)或随机标识符。RRC连接请求还可指示UE 115连接到网络的原因(例如,紧急情况、信令、数据交换等)。基站105可以用被定址到UE 115的争用解决消息或RACH消息4来响应连接请求,该争用解决消息或RACH消息4可提供新C-RNTI。如果UE 115接收到具有正确标识的争用解决消息,则UE 115可继续RRC设立。如果UE 115未接收到争用解决消息(例如,在存在与另一UE 115的冲突的情况下),则UE 115可通过传送新RACH前置码来重复RACH过程。
UE 115可使用RACH规程来同步到无线网络或蜂窝小区。例如,UE 115可在从服务蜂窝小区到目标蜂窝小区的切换规程期间执行RACH规程。在一些无线系统(例如,LTE系统)中,网络配置共用时间和频率资源以用于RACH消息的传输。这些资源中的一些资源可例如基于第一前置码集而供多个UE 115用于传送RACH消息。任何UE 115都可将这些资源用于CBRA规程。共用时间和频率资源中的其他资源可例如基于专用前置码索引而被指派给特定UE115。这些资源可由所指派的UE 115用于CFRA规程。
然而,其他无线系统(例如,NR系统)可实现与共用RACH资源分开的专用时间或频率资源。例如,如果基站105和UE 115被同步或先前被同步,则基站105可为UE 115分配专用RACH资源以用于RACH规程。基站105可通过RRC信令来向UE 115分配专用RACH资源。在一个方面,基站105可利用即将期满或最近期满的上行链路同步来向UE 115分配专用RACH资源。在第二方面,基站105可向UE 115分配专用RACH资源,以便执行UE 115从一个蜂窝小区到另一蜂窝小区的切换过程。在每种情形中,UE 115可在所指派的专用RACH资源中而不是在共用RACH资源中(或在除了共用RACH资源之外的所指派的专用RACH资源中)传送RACH消息,这可导致RACH规程的减少的等待时间。
在一些情形中,基站105可将UE 115配置成用于RACH传输。例如,基于基站105和UE115的同步,基站105可确定关于UE 115的RACH消息的传输内容和/或参数。基站105可向UE115指示该配置,并且UE 115可基于该配置来生成RACH消息。在一些情形中,基站105可基于供UE 115执行的RACH规程的类型来将UE 115配置有传输参数(例如,RACH传输参数)。例如,基站105可基于UE 115正在执行CFRA还是CBRA规程来向UE 115传送对不同RACH传输参数的指示。UE配置可改进可靠性或增加RACH消息的有效载荷,这可相应地减少RACH规程的等待时间。
图2解说了根据本公开的各个方面的无线通信系统200的示例。无线通信系统200可包括基站105-a和UE 115-a,它们可以是参照图1所描述的基站105和UE 115的示例。基站105-a可为地理区域110-a提供网络覆盖。基站105-a和UE 115-a可使用经波束成形传输或定向传输来进行通信。例如,在下行链路情形中,基站105-a可向UE 115-a发送下行链路传输205,并且在上行链路情形中,UE 115-a可向基站105-a发送上行链路传输210。无线通信系统200可支持供UE 115-a在一个或多个定向传输中向基站105-a传送RACH消息220以发起同步过程的不同配置。
在一些无线系统(例如,NR系统)中,UE 115(诸如UE 115-a)可传送消息,以便与网络或蜂窝小区同步。例如,UE 115-a可向基站105-a传送RACH消息220(其可被称为Msg1、RACH前置码消息、或RACH请求),以连接到网络或目标蜂窝小区。RACH消息220的这一传输可初始化UE 115-a与基站105-a之间的RACH规程。在一些情形中,当上行链路同步丢失时或者在UE 115可与基站105同步的任何其他场景中,UE 115-a可在切换规程期间传送RACH消息220,以(例如,从RRC空闲状态)获得对无线网络的初始接入,以重新建立至网络的连接。UE115-a可基于由基站105-a传达的配置(例如,在配置消息215中)来传送RACH消息。
在一个实施例中,UE 115-a可在切换过程期间执行RACH规程。切换过程可以是一般切换规程的示例。在一些情形中,基站105-a可对应于服务或源蜂窝小区以及邻居或目标蜂窝小区。在其他情形中,基站105-a可对应于服务蜂窝小区,而另一基站105(未示出)可对应于目标蜂窝小区。在这些情形中,基站105-a仍然可以向UE 115-a传送配置消息215,但是UE 115-a可基于配置消息215来向该另一基站105传送RACH消息220。UE 115-a可基于接收到与邻居蜂窝小区相关联的同步信号(SS)来检测该邻居蜂窝小区。例如,UE 115-a可通过邻居蜂窝小区的(诸)SS块来检测该邻居蜂窝小区。UE 115-a可通过从服务蜂窝小区和邻居蜂窝小区两者接收SS(例如,主同步信号(PSS)或副同步信号(SSS))或CSI-RS来跟踪服务蜂窝小区和邻居蜂窝小区两者。UE 115-a可基于接收到的信号来确定和比较与两个蜂窝小区相关联的信道质量、干扰水平或蜂窝小区质量。在一些情形中,UE 115-a可在上行链路传输210中向基站105-a和服务蜂窝小区报告蜂窝小区或信道质量。在某些实施例中,UE 115-a可跟踪和报告多个邻居蜂窝小区的蜂窝小区质量。蜂窝小区质量报告可包括针对服务和/或邻居基站和/或蜂窝小区的一个或多个不同波束的集合的一个或多个波束质量测量。
基站105-a或无线网络可基于所报告的蜂窝小区或信道质量来确定是否将UE115-a切换到邻居蜂窝小区。如果基站105-a或无线网络确定要执行切换规程(例如,基于源蜂窝小区的蜂窝小区质量低于某个阈值,邻居蜂窝小区的蜂窝小区质量高于某个阈值,邻居蜂窝小区与源蜂窝小区之间的蜂窝小区质量的差异高于某个阈值等),则邻居蜂窝小区可向服务蜂窝小区指示RACH配置,以减少对应RACH规程的等待时间。
基站105-a可向UE 115-a指示针对邻居蜂窝小区的这一RACH配置。例如,基站105-a可在配置消息215中指示RACH配置,该配置消息215可包括切换命令消息或者可以是切换命令消息的示例。在切换命令消息中,基站105-a可指示RACH资源与因UE而异的CSI-RS配置之间的关联、RACH资源与SS块之间的关联、专用RACH资源集(例如,通过指示时间资源、频率资源、序列或这些的某种组合)、或与RACH消息220生成或传输相关的任何其他参数。在一些示例中,CSI-RS配置可以是因UE而异的。
配置消息215可为UE 115-a分配专用RACH资源以执行CFRA。这些CFRA资源可在时间、频率或两者上与共用CBRA资源分开。在专用时域CFRA资源中传送RACH消息220可支持与在共用CBRA资源中传送RACH消息220不同的配置。
在一些情形中,由基站105-a(例如,在配置消息215中)指示的一个或多个传输参数可取决于资源区域或所执行的RACH规程的类型。例如,专用时域和频域RACH区域中的专用时间和频率资源可被用于CFRA(例如,在切换规程中),但是可不被用于CBRA(例如,在初始接入或切换规程中)。因此,专用时间和频率资源中的干扰概率可低于共用时间和频率资源中的干扰概率,因为在这些专用资源中的RACH规程是无争用的,并且不被用于初始接入。为了高效地利用这些专用RACH时间和频率资源,在这些专用资源中传送的用于RACH消息的传输参数可不同于用于共用资源的传输参数。例如,与用于共用资源的一个或多个RACH传输参数相比,UE 115-a可在具有更少干扰机会的情况下使用更大发射功率、更短退避时段、更大的最大前置码重传次数等等或其任何组合来在专用资源中传送RACH消息220。
基站105-a可向UE 115-a传送RACH传输参数(例如,对RACH传输参数的值的指示)。用于CFRA规程的RACH传输参数可不同于用于CBRA规程的RACH传输参数。附加地或替换地,与专用时间和频率资源中的专用RACH前置码相对应的用于CFRA规程的传输参数可不同于与共用时间和频率资源中的专用RACH前置码相对应的用于CFRA规程的传输参数。在一些情形中,传输参数可基于相关联的SSB或CSI-RS。例如,它可取决于与关联于SSB或CSI-RS的专用RACH前置码相对应的资源。UE 115-a可在用于SSB或CSI-RS的资源是专用时间和频率资源的情况下实现用于CFRA规程的第一传输参数,并且可在这些资源是共用时间和频率资源的情况下实现用于CFRA规程的第二传输参数。在以上情形中的每种情形中,基站105-a或UE115-a可在使用该规程或这些资源时基于较低的干扰概率来选择用于CFRA或专用资源的传输参数。
基站105-a可在切换消息中发信号通知RACH前置码参数。在一些情形中,配置消息215可指示RACH前置码子集以用于执行CFRA规程。UE 115-a可从RACH前置码子集中选择用于RACH消息220的RACH前置码,以便执行CFRA规程。替换地或附加地,UE 115-a可从与所指示的RACH前置码子集不相交的RACH前置码子集中选择用于RACH消息220的RACH前置码,以便执行CBRA规程。例如,在一种特定情形中,64个RACH前置码的集合中的16个RACH前置码可被用于CFRA规程,并且相应地可指示当前RACH规程是CFRA规程,而剩余48个RACH前置码可对应于CBRA规程。
在一些情形中,用于CBRA的RACH资源(例如,时间资源、频率资源等)可由物理随机接入信道(PRACH)-ConfigurationIndex(配置索引)来定义。PRACH-ConfigurationIndex(配置索引)可指示用于PRACH的时机。基站105-a或UE 115-a可将这些资源用于初始接入或切换。附加地,用于CFRA的RACH资源可由PRACH-ConfigurationIndexDedicated(专用配置索引)来定义,其可被用于实现CFRA的UE 115的切换。在一些情形中,特定的其他RRC过程可利用这些专用RACH资源。在一些示例中,CBRA和CFRA都可利用PRACH-ConfigurationIndex(配置索引)。
从基站105-a发送到UE 115-a的传输参数可指示供UE 115-a在传送RACH消息220时利用的一个或多个参数、配置或值。RACH传输参数可指示如上所述的PRACH-ConfigurationIndex(配置索引)或PRACH-ConfigurationIndexDedicated(专用配置索引)。附加地或替换地,RACH传输参数可指示:争用解决定时器;根序列或根序列索引,其可包括值的范围;零相关区划配置;RACH Msg1副载波间隔;RACH Msg1频分复用(FDM)值,其可指示可在单个时间实例中进行频分复用的RACH传输机会(例如,时机)的数目;频率起始值,其可对应于频域中最低RACH传输时机的偏移(例如,相对于物理资源块(PRB)0);限制集的配置;RACH前置码收到目标功率(例如,网络接收机侧的目标功率电平);随机接入响应搜索空间;随机接入响应控制资源集(CORESET);随机接入响应窗口(例如,窗口长度的TTI、sTTI或时隙的数目);最大前置码重传次数(例如,在声明RACH传输失败之前);功率斜升步长(例如,对于每次RACH或PRACH重传);RACH消息的副载波间隔;用于选择SSB的参考信号收到功率(RSRP)阈值;用于选择CSI-RS的RSRP阈值;或者这些参数的任何组合,或者与传送RACH消息220相关的其他参数。UE 115-a可根据所指示的一个或多个传输参数来传送RACH消息220。
在UE切换的情形中,邻居蜂窝小区可标识与UE 115-a相关联的一个或多个上行链路接收波束。例如,如果基站105-a对应于服务蜂窝小区和邻居蜂窝小区两者,则基站105-a可具有先前选择的上行链路接收波束以用于与UE 115-a通信。附加地或替换地,基站105-a可确定针对基站105-a与UE 115-a之间的不同上行链路接收波束的信道质量,并且可基于这些信道质量来选择一个或多个上行链路接收波束。在一示例中,UE 115-a可在随机接入响应窗口期满之前扫掠经过多个上行链路传输波束并传送多个RACH消息220(例如,多次传送Msg1),并且基站105-a可基于多个所传送的RACH消息220来确定针对不同上行链路接收波束的信道质量。基站105-a可在配置消息215中向UE 115-a指示与所选上行链路接收波束相对应的专用CFRA资源。在一些情形中,UE 115-a可被配置成在单个随机接入响应窗口内在专用RACH资源中传送多个RACH消息220。UE 115-a可使用多个上行链路传输波束来传送相同(或相似)的RACH消息220,并且基站105-a可使用所选上行链路接收波束来接收RACH消息220。
然而,基站105-a可通过专用时域和/或频域CFRA来指示附加配置和信息。在第一方面,基站105-a可指示用于UE 115-a的发射功率。对于在共用CBRA资源中传送RACH消息220的UE 115,UE 115可能必须缩放发射功率以共享共用RACH资源。即,基站105可在共用RACH资源中从不同UE 115接收RACH消息220。为了使基站105处的收到功率保持相似(例如,相等或在某个阈值变化内),在CBRA资源中传送RACH消息220的每个UE 115可例如基于其在蜂窝小区中的位置来缩放发射功率。靠近蜂窝小区中心的UE 115可被要求以比靠近蜂窝小区边缘的UE 115低得多的功率来进行传送,以便使来自这两个UE 115的RACH消息220以相似的功率电平在基站105处被接收到。发射功率的这种缩放可管理或限制跨不同UE 115的RACH消息220传输的干扰。
在专用CFRA资源中进行传送的UE 115-a可能不需要遵循此种限制。所指派的专用RACH资源可被保留用于UE 115-a,并且其他UE 115可不在这些资源中进行传送。即,基站105-a可例如基于无线网络中的RACH负载来为UE 115-a调度至多达整个RACH资源集(例如,包括至多达前置码索引集中的所有前置码索引)。例如,如果网络中的RACH负载低于某个阈值,则基站105-a可将UE 115-a配置成以较高功率传送RACH消息220、传送具有更多信息的RACH消息220、或两者。附加地或替换地,网络可标识UE 115-a相对于相邻蜂窝小区的链路增益。例如,基站105-a可基于来自UE 115-a的先前报告来确定链路增益。因此,UE 115-a可在专用RACH资源中使用比在共用RACH资源中更高的发射功率或更大数目的比特来传送RACH消息220。在一些情形中,配置较高发射功率可支持较高调制方案(例如,在有效载荷被用于RACH消息220的情况下)、较高波形数、或两者以传达比可在共用RACH资源中在RACH消息220中传达的比特更多的比特。配置消息215中的传输参数可例如指示UE 115-a将用于传送RACH消息220的发射功率。在一些示例中,服务基站105-a或者作为切换目标的邻居基站可使用UE 115-a的一个或多个蜂窝小区质量报告来推导出发射功率,并且可选择与所推导出的发射功率相对应的传输参数。在一示例中,配置消息215中的传输参数可例如指示不同调制方案的集合中UE 115-s将用于传送RACH消息220的调制方案。在一示例中,配置消息215中的传输参数可例如指示UE 115-a将在用于传送RACH消息220的上行链路波束中使用的波形数。在一示例中,配置消息215中的传输参数可例如指示UE 115-a将在RACH消息220中使用的比特数,并且基站105-a可基于UE 115-a的链路增益来确定该比特数。在一些示例中,配置消息215中的传输参数可指示在专用时间和频率资源内为RACH消息220的传输所指派的频调间隔,并且UE 115-a可使用所指派的频调间隔来传送RACH消息220。在一些示例中,所指派的频调间隔可不同于在共用时间和频率资源内为RACH消息的传输所指派的频调间隔。
基站105-a可在可作为切换消息(例如,配置消息215)的一部分来进行传送的上行链路发射功率控制命令中向UE 115-a指示这一较高发射功率、较高调制方案、较大波形数、较大比特数、或者这些参数的某种组合。在一些情形中,基站105-a可确定用于不同上行链路接收或传输波束的不同RACH负载。在一些示例中,基站105-a可确定UE 115-a可用于传输的不同上行链路波束的集合的负载参数,并且配置消息215中的传输参数可基于该负载参数来指示用于使用上行链路波束来传送RACH消息220的发射功率。负载参数可以是例如功率净空测量。在一些情形中,基站105-a可向UE 115-a指示因波束而异的上行链路发射功率控制。UE 115-a可相应地取决于所使用的上行链路波束而使用不同的发射功率来传送RACH消息220。
在第二方面,基站105-a可将UE 115-a配置成在RACH消息220(例如,RACH Msg1)中传送一个或多个附加索引。如果UE 115在共用RACH资源中传送RACH消息220,则RACH消息220可例如由于如上所讨论的发射功率缩放而针对每个蜂窝小区支持64个前置码序列。在一些情形中,系统可能不允许更多的前置码序列以便支持蜂窝小区边缘UE 115。然而,在专用RACH资源中传送RACH消息220的UE 115-a可以用较高发射功率来进行传送(例如,UE115-a可以用全功率或至多达全功率来进行传送)。以这一较高功率来进行传送可允许UE115-a在RACH消息220中传送附加信息。在消息中传达附加信息可减少规程所需的传输次数,这可减少开销和等待时间两者。
在一些情形中,UE 115-a可通过RACH消息220来传达一个或多个附加SSB索引、CSI-RS块索引、波束索引、或者这些索引的某种组合。在一些情形中,选择这些索引中的一个或多个索引可减少RACH规程等待时间或维持最大准许辐射(MPE)规章。例如,配置消息215的内容可向UE 115-a配置要在RACH消息220中包括多少索引和/或哪种(哪些)类型的索引。在一些情形中,基站105-a或UE 115-a可为下行链路传输205和上行链路传输210选择不同的波束索引。例如,UE 115-a可由于定向传输功率限制(例如,由于MPE规章)而无法在某些方向上进行传送。
为了使UE 115-a能够选择至少一个索引,基站105-a可在N个码元中分配RACH资源(例如,Msg1资源)。在每个码元中,基站105-a可扫掠不同的上行链路波束,其可与基站105-a用于传送SS的一个或多个下行链路波束相同。在每个码元内,可存在限定数目个前置码(例如,2^6=64个前置码)。基站105-a或某个其他网络实体可在专用时域/频域RACH区域中向UE 115-a分配至多达全部限定数目个前置码(例如,至多达全部64个前置码)。例如,基站105-a可向所选UE 115集合分配专用资源(例如,在时域、频域或两者中)以供用于CFRA的PRACH传输,以减少那些UE 115的等待时间。以此方式,可一次向较小数目的(例如,少于64个)UE 115分配专用时间或频率资源以供PRACH传输。基站105-a可相应地将UE 115-a配置有多个前置码,以便通过RACH消息220来获得附加信息,只要所配置的前置码总数小于或等于所支持的前置码总数(例如,64)。例如,UE 115-a可传送对UE 115-a的链路增益的指示(例如,作为附加前置码中的附加信息)。以此方式,基站105-a可不必假设UE 115-a处于蜂窝小区边缘,并且可更好地标识UE 115-a相对于基站105-a的位置。基站105-a可随后基于链路增益来为UE 115-a配置发射功率,这可允许UE 115-a基于该发射功率来在稍后的消息中向基站105-a传送附加信息。
附加地或替换地,UE 115-a可选择合适的下行链路波束并找到对应的RACH资源。在一些示例中,UE 115-a可选择与基站105-a的最强下行链路发射波束相对应的前置码(例如,以向基站105-a传达该最强下行链路发射波束)。在一些示例中,UE 115-a可由于MPE限制而无法通过与最强下行链路波束相对应的资源来进行传送。
在一些方面,UE 115-a可基于从基站105-a接收到的SSB来选择PRACH资源。例如,UE 115-a可选择在UE 115-a处具有最高RSRP的SSB(例如,在Msg1传输期间选择最佳SSB)。在一些情形中,UE 115-a可在RACH消息220中向基站105-a指示所选SSB(例如,在基站105-a将UE 115-a配置成指示该信息的情况下)。基站105-a可基于所选SSB来确定要向UE 115-a传送CSI-RS的方向集。基于对SSB的选择,UE 115-a可减少RACH等待时间、维持MPE规章或两者。在一些情形中,UE 115-a在RACH资源选择期间选择SSB可以是有利的。类似地,在一些情形中,基站105-a可受益于在RACH规程期间接收SSB索引信息(例如,RACH消息220中的最强SSB索引)。例如,基站105-a可基于SSB索引信息来选择用于CRS的传输的方向集。附加地或替换地,基站105-a可在下行链路RACH规程传输中实现多波束下行链路控制(例如,对于CFRA场景中的RACH Msg2或CBRA场景中的RACH Msg4)。多波束下行链路控制可提高通信的稳健性。
对于CFRA,UE 115-a可通过专用时间或频率区域资源来在RACH Msg1中传送附加信息。UE 115-a可传送除了满足阈值(例如,RSRP阈值)的第一所选SSB索引之外的信息。例如,附加信息可包括附加的所选SSB索引、链路增益或所选SSB索引的层1(L1)RSRP、或与RACH规程相关的任何其他参数。UE 115-a可在CFRA期间使用专用时间或频率资源或共用时间或频率RACH资源中的专用前置码来报告该附加信息。对于CBRA,UE 115-a可在RACH Msg3传输中传送所选SSB索引信息(例如,最强SSB索引)和/或附加信息。
基站105-a可基于RACH消息220(例如,基于接收到的RACH消息220的信号质量)来确定上行链路接收波束。附加地,对于在专用RACH资源中传送的RACH消息220,基站105-a可将UE 115-a配置成在RACH消息220中包括对一个或多个所选下行链路传输波束的指示。UE115-a可基于从基站105-a接收到的信号的参考信号功率测量的排序(例如,通过基于RSRP测量来对波束进行排序)来选择下行链路传输波束,并且可在RACH消息220中包括与(诸)所选波束相对应的一个或多个索引。UE 115-a可基于从基站105-a接收到的先前下行链路定向传输的其他测量来选择该一个或多个索引,其他测量包括例如测得的信道质量测量、干扰测量、信号强度测量等。附加地或替换地,UE 115-a可通过选择特定的前置码来向基站105-a指示一个或多个下行链路传输波束。例如,网络可在专用时域和频域RACH资源中为UE115-a分配前置码集(例如64个前置码),并且UE 115-a可基于(诸)所选下行链路传输波束来选择该前置码集中的一个前置码。UE 115-a可修改RACH消息220以包括所选前置码。基于包括在RACH消息220中的与(诸)所选波束相对应的一个或多个索引或前置码,基站105-a可基于少至单个RACH消息220来选择一个或多个波束以供上行链路传输210和下行链路传输205。基站105-a可使用一个或多个所选下行链路定向传输来传送随机接入响应,或者可选择未对应于包括在RACH消息220中的任何索引的不同下行链路定向传输。基站105-a和UE115-a可使用包括在随机接入响应中的信息来建立连接。随机接入响应可例如向UE 115-a指派无线电网络临时标识符(RNTI),包括定时信息,包括向UE 115-a指派上行链路和/或下行链路资源的准予等等或其任何组合。
在一些情形中,将UE 115配置成在共用RACH资源消息中指示下行链路传输波束可能对于基站105而言太昂贵(例如,需要太多比特或太多发射功率)。附加地或替换地,基站105-a可将UE 115-a配置成例如基于配置消息215来在定向下行链路传输上在RACH消息220中传送其他附加信息。UE 115-a可被配置成在RACH消息220中报告一个或多个波束的RSRP,诸如L1 RSRP。
在第三方面,基站105-a可向UE 115-a指示不同的RACH格式(例如,在配置消息215中)。不同的RACH格式可对应于用于传送RACH消息220的不同序列。在一些情形中,常规RACH序列可以是波形的示例,诸如Zadoff-Chu序列。在共用CBRA资源中传送的RACH消息220可实现常规RACH序列,使得多个UE 115可在相同的时间和频率资源中传送RACH消息。
UE 115-a可在保留用于UE 115-a的专用时域和频域CFRA资源(例如,可被部分或完全保留用于UE 115-a的资源)中传送RACH消息220。在一些情形中,UE 115-a可能不需要使用特定序列来进行传送以匹配其他UE 115。相反,基站105-a可将UE 115-a配置成使用可与常规RACH序列不同或相同的特定序列来进行传送。例如,配置消息215的内容可将UE115-a配置成作为参考信号和有效载荷(例如,类似于物理上行链路控制信道(PUCCH)信号)来传送RACH消息220。配置消息215的内容可将UE 115-a配置成对参考信号和有效载荷进行时分复用或频分复用以供传输。在一些情形中,实现参考信号和有效载荷可允许UE 115-a在RACH消息220中传达更多比特的信息,从而减少RACH规程的等待时间。在一些示例中,配置消息215中的内容可指示UE 115-a要包括在RACH消息220中的不同参考信号类型的集合中的参考信号类型。参考信号类型的示例包括Zadoff-Chu序列、最大长度序列(例如,m序列)、伪随机二进制序列(例如,黄金序列)、或正交相移键控(QPSK)序列等等。基于配置消息215,UE 115-a可被配置成传送具有所指示的参考信号类型的RACH消息220。基站105-a可通过在因UE而异的切换消息(例如,配置消息215)中传送对RACH格式或序列的指示来配置用于UE 115-a的序列。
在某些实施例中,UE 115-a可在特定的传输时间或在特定的TTI中传送用于随机接入规程的RACH消息220,以便传达一个或多个波束索引。例如,UE 115-a和基站105-a可隐式地使用所选规则基于传输时间来确定波束索引(例如,第一时间区间对应于第一波束,第二时间区间对应于第二波束等)。在一些示例中,RACH消息220可指定可与对应于特定传输时间的波束索引不同的至少一个波束索引。基站105-a可从多个不同TTI中确定UE 115-a在其中传送RACH消息220的特定TTI,并且可确定与该特定TTI相对应的波束索引。基站105-a可基于对在RACH消息220中接收到的波束索引的指示和/或基于与特定TTI相对应的所确定的波束索引来选择用于随机接入响应消息的传输的下行链路波束。在一示例中,所选规则可以是基站105-a选择通过所选前置码传达的波束索引以在随机接入响应的Msg2期间用作下行链路传输波束,并且通过在特定传输时间中传送来使该波束索引优先于所报告的波束索引,反之亦然。在一些情形中,UE 115-a可经由与所传达的波束索引中的一者或多者相对应的一个或多个下行链路传输波束来从基站105-a接收随机接入响应消息。
在一些情形中,基站105-a可基于一个或多个波束索引或在其中传送RACH消息220的一个或多个TTI来确定用于随机接入响应窗口的交织模式。例如,如果RACH消息220传达两个基站传输波束的索引,则基站105-a可将随机接入响应窗口拆分成至少两个交织的部分。基站105-a可在随机接入响应窗口的第一部分中通过在RACH消息的第一波束索引中传达的下行链路传输波束来传送Msg2。在一些示例中,基站105-a可在随机接入响应窗口的第二部分中通过在RACH消息的第二波束索引中传达的下行链路传输波束来传送Msg2。
UE 115-a可针对来自基站105-a的随机接入响应传输(例如,响应于RACH消息220)来监视随机接入响应窗口。UE 115-a可基于交织模式来监视随机接入响应窗口。例如,UE115-a可使用第一下行链路接收波束来监视随机接入响应窗口的第一部分,并且可使用与第一下行链路接收波束不同的第二下行链路接收波束来监视随机接入响应窗口的第二部分。基站105-a可基于交织模式来传送随机接入响应消息。例如,基站105-a可(例如,使用不同的下行链路传输波束)在随机接入响应窗口的第一部分或第二部分中的任一者中传送随机接入响应消息,或者可例如在第一部分中使用用于第一随机接入响应消息的第一波束以及在第二部分中使用用于第二随机接入响应消息的第二波束来在随机接入响应窗口的两个部分中传送随机接入响应消息。在一些情形中,UE 115-a可从基站105-a接收对交织模式的指示或配置。例如,UE 115-a可基于接收到的主信息块(MIB)、系统信息块(SIB)、剩余最小系统信息(RMSI)、切换消息、或者这些信号或参数的某种组合来确定交织模式。
在一些情形中,基站105-a可使用配置消息215来将UE 115-a配置成在RACH消息220中包括质量报告。UE 115-a可生成包括质量报告的RACH消息220,该质量报告可以是波束质量报告或蜂窝小区质量报告的示例。对于波束质量报告,UE 115-a可包括关于一个或多个下行链路或上行链路波束的信息。例如,UE 115-a可包括针对任何数目的波束的RSRP、参考信号收到质量(RSRQ)、参考信号强度指示符(RSSI)、信道质量指示符(CQI)、信噪比(SNR)、信号与干扰和噪声比(SINR)、或者这些值的任何组合。在一些情形中,波束可包括在SSB中传送的SS、CSI-RS、移动性参考信号(MRS)、或者这些信号的某种组合。这些SS可包括PSS、SSS、物理广播信道(PBCH)信号、PBCH信号的解调参考信号(DMRS)、或者这些信号的任何组合。基站105-a可基于质量报告来选择上行链路参数,并且可(例如,在随机接入响应消息中)向UE 115-a传送对该上行链路参数的指示。例如,上行链路参数可以是用于上行链路消息的调度、用于上行链路消息的调制或编码方案、用于上行链路消息的功率控制参数、或者指示UE 115-a传送进一步上行链路消息的配置的某个类似参数的示例。UE 115-a可确定上行链路参数,并且可基于该上行链路参数来传送一个或多个进一步上行链路消息。
以上各方面可对应于无线通信系统200,其中基站105-a在切换过程中支持服务蜂窝小区和目标蜂窝小区两者。然而,所有这些方面可类似地应用于其中基站105-a支持服务蜂窝小区并且第二基站105支持目标蜂窝小区以供切换的情形。在此种情形中,基站105-a可确定要将UE 115-a切换到目标基站105。在一些情形中,基站105-a可向目标基站105传送对该切换过程的指示,并且目标基站105可以用对内容或传输参数(例如,RACH传输参数)的指示来进行响应以供UE 115-a用于发起RACH规程。基站105-a可在配置消息215中向UE115-a传送或转发该内容、传输参数或两者。以此方式,基站105-a可向UE 115-a提供上行链路发射功率控制信息,以及可为UE 115-a指派专用时域和频域资源以传送用于CFRA过程的RACH消息220。
UE 115-a可基于来自基站105-a的配置消息215来生成RACH消息220并将其传送到目标基站105。在一些情形中,RACH消息220可支持涉及附加索引(例如,与关联于信号集中的最强信号的一个或多个SSB相关的索引)的测量报告的波束管理规程。目标基站105可接收RACH消息215,并且可将RACH响应传送回UE 115-a以继续RACH切换过程。在一些情形中,目标基站105可基于在RACH消息220中接收到的索引来选择要使用上行链路接收或下行链路传输波束。在一些情形中,这可允许目标基站105选择与具有最高信道质量的信道相对应的波束。目标基站105可使用这一所选下行链路传输波束来发送RACH响应。
图3解说了根据本公开的各个方面的RACH消息接发配置300的示例。RACH消息接发配置300可包括UE 115-b在上行链路上向基站105-b传送RACH消息。UE 115-b和基站105-b可以是如参照图1和2描述的对应设备的示例。如所解说的,UE 115-b可使用两个上行链路传输波束305(例如,上行链路传输波束305-a和305-b)来传送RACH消息,并且基站105-b可使用五个上行链路接收波束310(例如,上行链路接收波束310-a、310-b、310-c、310-d和310-e)来接收RACH消息。然而,UE 115-b和基站105-b可使用任何数目的传输和接收波束来操作。这些上行链路接收波束310还可支持来自基站105-b的下行链路传输,诸如同步信号或RACH响应消息。UE 115-b可在随机接入响应窗口315期间传送多个RACH消息。
例如,在无争用的情形中,UE 115-b可在专用RACH资源320中传送多个RACH消息(例如,基于从基站105-b接收到的配置,在基站105-b、UE 115-b和无线网络支持多个专用RACH传输的情况下)。UE 115-b可在随机接入响应窗口315结束之前的时域中的不同传输时机中传送多个RACH消息。被指派为专用RACH资源320的时间资源可不同于为CBRA指派的时间资源(即,共用RACH资源330)。UE 115-b可使用相同或不同的上行链路传输波束305来传送多个RACH消息。附加地或替换地,UE 115-b可在随机接入响应窗口315期间在共用RACH资源330中传送RACH消息。
在RACH消息接发配置300中,基站105-b可为UE 115-b分配资源以传送RACH消息,诸如RACH前置码消息(即,RACH Msg1)。例如,基站105-b可生成或分配专用RACH资源320,其可包括针对每个上行链路接收波束的一个或多个TTI 335(例如,1、2、3、4、6或12个码元、一个或多个时隙、一个或多个子帧等)。专用RACH资源320可指示时域、频域或前置码域(例如,前置码序列域)中的RACH资源。在一些情形中,基站105-b可将UE 115-b配置成在专用RACH资源320中传送特定数目的RACH消息,并且可包括针对每个上行链路接收波束310的特定数目的TTI 335。附加地或替换地,基站105-b可在共用RACH资源330的池中分配周期性或非周期性的共用RACH资源集325。专用RACH资源320和共用RACH资源330在时域上可以是不同的。在一些情形中,每个共用RACH资源集325可每上行链路接收波束310包括一个TTI 335。与每上行链路接收波束310包括多个TTI 335相比,这可在RACH规程期间减少共用RACH资源330的开销。
基站105-b可向UE 115-b发送配置消息(诸如切换命令消息)以配置在专用RACH资源320中传送的RACH消息。该配置消息可指示发射功率、要包括在RACH消息中的附加信息、RACH格式或序列、或者这些或其他RACH传输参数的某种组合。附加地或替换地,配置消息可指定要用于RACH消息传输的上行链路传输和上行链路接收波束。例如,基站105-b可选择针对UE 115-b的上行链路接收波束310-c、310-d和310-e。在一些情形中,基站105-b可基于先前的传输、信道测量、从基站105-b到UE 115-b的方向、或波束排序来选择上行链路接收波束310。基站105-b还可配置供UE 115-b利用的上行链路传输波束305。例如,UE 115-b可被配置成使用第一上行链路传输波束305-a在资源340-a中传送RACH消息,并且使用第二上行链路传输波束305-b在资源340-b中传送附加RACH消息。附加地或替换地,UE 115-b可被配置成在资源340-a和340-b两者中使用相同的上行链路传输波束305(例如,第一上行链路传输波束305-a)来进行传送。该冗余传输可提高RACH消息传输的可靠性(例如,在信道中出现突发干扰的情形中)。
图4解说了根据本公开的各个方面的支持用于随机接入规程中的消息内容和传输的不同配置的过程流400。过程流400可包括基站105-c和UE 115-c,它们可以是如参照图1、2和3所描述的对应设备的示例。基站105-c可将UE 115-c配置成在例如切换过程期间生成因UE而异的或因波束而异的RACH消息(例如,RACH前置码消息、RACH Msg1等)。
在405,基站105-c可确定供UE 115-c执行RACH规程的配置。确定配置可涉及确定RACH传输参数。传输参数可取决于为RACH规程配置的RACH区域或RACH规程的类型。例如,用于CFRA规程的传输参数可不同于用于CBRA规程的传输参数。附加地或替换地,对应于专用时间和频率资源的RACH传输参数可不同于对应于共用时间和频率资源的传输参数。此外,传输参数可对于不同的SSB、CSI-RS或两者而言是不同的(例如,取决于与SSB或CSI-RS相关联的RACH规程的资源或类型,或者取决于与SSB或CSI-RS相关联的RACH前置码)。
在410,基站105-c可向UE 115-c传送RACH传输参数(例如,基于所确定的配置)。例如,基站105-c可向UE 115-c传送具有传输参数的配置消息(例如,切换消息)。在一些情形中,基站105-c可将UE 115-c配置有CFRA资源。
在415,UE 115-c可生成用于RACH规程的RACH消息(例如,基于接收到的配置消息)。例如,配置消息的内容可指令UE 115-c在RACH消息的有效载荷中包括至少一个索引,其中该索引是SSB索引、CSI-RS块索引、波束索引、或某个其他相关索引的示例。UE 115-c可基于针对从基站105-c接收到的参考信号集的参考信号收到功率测量的排序或者基于定向传输功率限制来选择索引。在一些情形中,所指示的内容可指定要包括在RACH消息中的比特数(例如,基于UE 115-c链路增益)。
在420,UE 115-c可在随机接入规程中向基站105-c传送RACH消息。例如,UE 115-c可在用于CFRA规程的专用时间和频率资源内在定向传输中传送RACH消息。UE 115-c可基于所配置的传输参数使用一个或多个上行链路传输波束来传送RACH消息。例如,传输参数可指示发射功率、参考信号类型、调制方案、波形数、或者这些参数的某种组合以供传输。传输参数对于CFRA规程与CBRA规程相比可以是不同的。在一些情形中,UE 115-c可对参考信号和RACH消息的有效载荷执行时分复用或频分复用,并且可传送对应的信号。
在425,基站105-c可响应于该RACH消息而将随机接入响应消息传送回UE 115-c。在一些示例中,基站105-c可基于RACH消息中的信息(例如,波束索引)来选择下行链路定向传输波束,并且可使用所选下行链路定向传输波束来传送随机接入响应。在430,UE 115-c可基于接收到随机接入响应消息来建立与基站105-c的连接。
在一些示例中,为了使一个UE的RACH传输不干扰一个或多个其他UE的RACH传输,在共用时间/频率RACH区域内通过共用RACH资源和专用前置码索引的RACH传输的发射功率可被缩放,使得不同UE的RACH传输以相似的功率电平到达基站105-c(例如,gNB)。
在专用时域RACH区域中,在例如RACH负载在网络中较低(例如,RACH负载低于阈值)的情况下,基站105-c可向一个UE 115调度一些且至多达整个RACH资源集(例如,一些或所有前置码索引)。因此,基站105-c可允许UE 115-c以较高发射功率在专用时域RACH区域中传送CFRA,并通过RACH消息(例如,RACH Msg1)来传达更多的信息。
在一些示例中,UE 115-c可选择合适的SS波束以在CBRA和CFRA两者中传送RACHMsg1,以减少RACH等待时间并维持MPE规章。然而,在通过专用时域RACH区域的CFRA期间,UE115-c可向基站105-c传达一个或多个附加SS/CSI-RS波束索引(例如,最强下行链路SS/CSI-RS波束索引),并且基站105-c可使用所指示的波束来向UE 115-c传送RACH响应(例如,RACH Msg2)。在参考图4的示例中,描述了在切换的通过专用时域/频域RACH区域的CFRA期间的波束报告和管理规程。在410,基站105-c可例如在可以是或可以不是配置消息的一部分的切换命令中向UE 115-c传送时间和/或频率资源集和前置码指派。在415,UE 115-c可从切换命令中指示的可用传输波束集中选择合适的基站传输波束(例如,最强传输波束)。UE 115-c可选择诸前置码索引中与所选传输波束相对应的前置码索引(例如,被选择为传达最强gNB传输波束的RACH Msg1前置码)。在420,UE 115-c可在PRACH上向基站105-c传送RACH消息(例如,RACH Msg1)。RACH消息可包括所选前置码索引和/或可包括关于一个或多个可用传输波束的波束报告。基站105-c可处理RACH消息,并且基于该RACH消息来选择用于RACH响应(例如,随机接入响应)的传输波束。例如,基站105-c可处理包括在RACH Msg1中的前置码索引和/或波束报告。
如本文所述,在通过专用时域/频域RACH资源的切换的CFRA规程期间,NR系统中的基站105可考虑向UE 115提供上行链路发射功率控制信息。此外,如本文所述,在通过专用时域/频域RACH资源的切换的CFRA规程期间,波束管理规程可涉及允许基站105(例如,gNB)和UE 115选择更好波束的附加信息(例如,最强SSB)的测量报告。
图5解说了根据本公开的各个方面的支持用于专用时域/频域RACH的不同配置的过程流500。过程流500可包括基站105-d和UE 115-d,它们可以是如参照图1至4所描述的对应设备的示例。过程流500可解说其中UE 115-d可在RACH消息3传输中向基站105-d传送附加的波束报告信息的CBRA场景。
在505,UE 115-d可选择用于RACH消息(例如,RACH前置码消息、RACH Msg1等)的上行链路传输波束。UE 115-d可在所选上行链路传输波束上向基站105-d传送RACH消息(例如,在PRACH上传送Msg1)。在一些情形中,RACH消息可包括波束报告。在其他情形中,RACH消息可不包括波束报告。
在510,基站105-d可选择下行链路传输波束以供传输至UE 115-d。基站105-d可在所选下行链路传输波束上向UE 115-d传送RACH响应消息(例如,随机接入响应消息,其被称为RACH Msg2)。
在515,UE 115-d可向基站105-d传送UE标识消息(例如,RACH Msg3),该UE标识消息可以可任选地包括波束报告。波束报告可基于接收到的SS或SSB,并且可包括对用于传输和接收的一个或多个波束的指示。例如,波束报告可包括对针对基站105-d的下行链路传输波束和针对UE 115-d的下行链路接收波束的指示。在一些情形中,UE标识消息可不包括波束报告。
在520,基站105-d可向UE 115-d传送争用解决消息(例如,RACH Msg4)以完成RACH过程。基站105-d可在基于波束报告选择的下行链路传输波束上传送争用解决消息,并且UE115-d可接收该争用解决消息并且利用在该波束报告中传达的下行链路接收波束来进行通信。
图6解说了根据本公开的各个方面的支持用于随机接入规程中的消息内容和传输的不同配置的过程流600。过程流600可包括基站105-e和UE 115-e,它们可以是如参照图1至5所描述的对应设备的示例。过程流600可解说其中UE 115-e可在RACH前置码消息中向基站105-e传送附加的波束报告信息的CFRA场景(例如,在切换规程期间)。
在605,为了准予UE 115-e无争用资源,基站105-e可向UE 115-e传送对时间和频率资源集、前置码指派或两者的指示。该传输可基于对UE 115-e的切换命令或者可以是该切换命令的组成部分。该传输可包括对下行链路传输波束集的指示。
在610,UE 115-e可选择用于基站105-e的下行链路传输波束。该选择可基于在切换命令中指示的候选波束集。UE 115-e可选择用于RACH消息的前置码(例如,RACH前置码消息、RACH Msg1等),以便指示所选下行链路传输波束(例如,被选择来传达基站105-e的波束集中的最强传输波束的Msg1前置码)。
在615,UE 115-e可使用CFRA来向基站105-e传送指示所选下行链路传输波束的RACH消息(例如,传送RACH Msg1、PRACH等)。在一些情形中,UE 115-e可在波束报告中指示所选波束。
在620,基站105-e可响应于RACH消息而向UE 115-e传送RACH响应消息(例如,RACHMsg2)。基站105-e可在RACH消息中指示的下行链路传输波束上传送RACH响应消息(例如,选择波束报告中指示的波束或不同的波束)。在RACH响应消息之后,在一些情形中,UE 115-e和基站105-e可交换UE标识消息和争用解决消息以完成RACH规程。
图7示出了根据本公开的各方面的无线设备705的框图700。无线设备705可以是如本文所描述的UE 115的各方面的示例。无线设备705可包括接收机710、UE RACH配置模块715、和发射机720。无线设备705还可包括处理器。这些组件中的每一者可彼此处于通信(例如,经由一条或多条总线)。
接收机710可接收信息,诸如分组、用户数据、或与各种信息信道相关联的控制信息(例如,控制信道、数据信道、以及与用于随机接入规程中的消息内容和传输的不同配置相关的信息等)。信息可被传递到该设备的其他组件。接收机710可以是参照图10描述的收发机1035的各方面的示例。接收机710可利用单个天线或天线集合。
UE RACH配置模块715可以是参照图10描述的UE RACH配置模块1015的各方面的示例。UE RACH配置模块715和/或其各种子组件中的至少一些子组件可以在硬件、由处理器执行的软件、固件、或其任何组合中实现。如果在由处理器执行的软件中实现,则UE RACH配置模块715和/或其各个子组件中的至少一些子组件的功能可由设计成执行本公开中描述的功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其他可编程逻辑器件、分立的门或晶体管逻辑、分立的硬件组件、或其任何组合来执行。UE RACH配置模块715和/或其各个子组件中的至少一些子组件可物理地位于各个位置,包括被分布成使得功能的各部分由一个或多个物理设备在不同物理位置处实现。在一些示例中,根据本公开的各个方面,UE RACH配置模块715和/或其各个子组件中的至少一些子组件可以是分开且相异的组件。在其他示例中,根据本公开的各方面,UE RACH配置模块715和/或其各个子组件中的至少一些子组件可以与一个或多个其他硬件组件(包括但不限于输入/输出(I/O)组件、收发机、网络服务器、另一计算设备、本公开中所描述的一个或多个其他组件或其组合)组合。
UE RACH配置模块715可从基站接收与用于CBRA规程的第二RACH传输参数不同的用于CFRA规程的第一RACH传输参数;生成用于CFRA规程的RACH消息;以及基于第一RACH传输参数来在该CFRA规程中传送该RACH消息。
在一些情形中,UE RACH配置模块715可从基站接收指示RACH消息的内容和传输参数的配置消息;基于所指示的内容来生成RACH消息;以及基于该传输参数来在随机接入规程中传送该RACH消息。
附加地或替换地,UE RACH配置模块715可从基站接收用于RACH消息的配置消息和用于CFRA规程的第一传输参数,其中第一传输参数对应于专用时间和频率资源内的专用RACH前置码,并且不同于对应于共用时间和频率资源内的专用RACH前置码的用于CFRA规程的第二传输参数。UE RACH配置模块715可基于配置消息来生成RACH消息,并且基于第一传输参数来在CFRA规程中传送该RACH消息。
在一些情形中,UE RACH配置模块715可从基站接收用于RACH消息的配置消息和用于CFRA规程的第一传输参数,其中第一传输参数对应于与第一SSB或CSI-RS相关联的专用RACH前置码,并且不同于对应于与第二SSB或CSI-RS相关联的专用RACH前置码的用于CFRA规程的第二传输参数。第一SSB或CSI-RS可与专用时间和频率资源相关联,而第二SSB或CSI-RS可与共用时间和频率资源相关联。UE RACH配置模块715可基于配置消息来生成RACH消息,并且基于第一传输参数来在CFRA规程中传送该RACH消息。
发射机720可传送由该设备的其他组件生成的信号。在一些示例中,发射机720可与接收机710共处于收发机模块中。例如,发射机720可以是参照图10描述的收发机1035的各方面的示例。发射机720可利用单个天线或天线集合。
图8示出了根据本公开的各方面的无线设备805的框图800。无线设备805可以是如参照图7所描述的无线设备705或UE 115的各方面的示例。无线设备805可包括接收机810、UE RACH配置模块815和发射机820。无线设备805还可包括处理器。这些组件中的每一者可彼此处于通信(例如,经由一条或多条总线)。
接收机810可接收信息,诸如分组、用户数据、或与各种信息信道相关联的控制信息(例如,控制信道、数据信道、以及与用于随机接入规程中的消息内容和传输的不同配置相关的信息等)。信息可被传递到该设备的其他组件。接收机810可以是参照图10描述的收发机1035的各方面的示例。接收机810可利用单个天线或天线集合。
UE RACH配置模块815可以是参照图10描述的UE RACH配置模块1015的各方面的示例。UE RACH配置模块815还可包括配置组件825、RACH生成器830、和RACH传输组件835。
在第一实现中,配置组件825可从基站接收与用于CBRA规程的第二RACH传输参数不同的用于CFRA规程的第一RACH传输参数。RACH生成器830可生成用于CFRA规程的RACH消息。RACH传输组件835可基于第一RACH传输参数来在该CFRA规程中传送该RACH消息。
在第二实现中,配置组件825可从基站接收指示RACH消息的内容和传输参数的配置消息。在一些情形中,配置消息是切换消息。
RACH生成器830可基于所指示的内容来生成RACH消息。在一些情形中,该内容指示RACH消息中的比特数,其中生成RACH消息包括基于所指示的比特数来生成RACH消息。在一些情形中,比特数是基于UE的链路增益。
RACH传输组件835可基于该传输参数来在随机接入规程中传送该RACH消息。在一些情形中,RACH传输组件835可在CFRA规程中、在专用时间和频率资源内、在定向传输中、或者在这些的任何组合中传送RACH消息。在一些情形中,RACH传输组件835可传送时分复用或频分复用信号。在一些情形中,传送RACH消息包括使用由传输参数指示的发射功率来传送RACH消息。在一些情形中,传输参数由与该基站不同的目标基站来生成。在一些情形中,传送RACH消息包括在至少一个附加定向传输中传送RACH消息。
发射机820可传送由该设备的其他组件生成的信号。在一些示例中,发射机820可与接收机810共处于收发机模块中。例如,发射机820可以是参照图10描述的收发机1035的各方面的示例。发射机820可利用单个天线或天线集合。
图9示出了根据本公开的各方面的UE RACH配置模块915的框图900。UE RACH配置模块915可以是参照图7、8和10所描述的UE RACH配置模块715、UE RACH配置模块815、或UERACH配置模块1015的各方面的示例。UE RACH配置模块915可包括配置组件920、RACH生成器925、RACH传输组件930、蜂窝小区质量组件935、索引选择组件940、前置码选择组件945、序列类型组件950、调制方案组件955、频调间隔组件960、波形组件965、时分复用器970、频分复用器975、连接组件980和质量报告组件985。这些模块中的每一者可彼此直接或间接通信(例如,经由一条或多条总线)。
配置组件920可从基站接收与用于CBRA规程的第二RACH传输参数不同的用于CFRA规程的第一RACH传输参数。在一些情形中,配置组件920可接收指示RACH消息的内容和传输参数的配置消息。在一些情形中,配置消息是切换消息。RACH消息可以是RACH Msg1或RACH前置码的示例。
用于CFRA规程的第一RACH传输参数可对应于专用时间和频率资源内的专用RACH前置码。第一RACH传输参数可不同于用于CFRA规程的第三RACH传输参数,该第三RACH传输参数对应于共用时间和频率资源内的专用RACH前置码。在一些示例中,第一RACH传输参数可对应于专用时间和频率资源内与第一SSB相关联的专用RACH前置码,而第三RACH传输参数可对应于共用时间和频率资源内与第二SSB相关联的专用RACH前置码。在一些示例中,第一RACH传输参数可对应于专用时间和频率资源内与第一CSI-RS相关联的专用RACH前置码,而第三RACH传输参数可对应于共用时间和频率资源内与第二CSI-RS相关联的专用RACH前置码。
在一些情形中,第一RACH传输参数可指示根序列、或随机接入响应搜索空间、或随机接入响应CORESET、或受限集配置、或用于RACH消息的副载波间隔、或用于选择SSB的RSRP阈值、或用于选择CSI-RS的RSRP阈值、或其任何组合。此外,在一些情形中,第一RACH传输参数可指示PRACH配置索引、可用于在单个时间实例中进行频分复用的RACH传输机会的数目、最低RACH传输时机的频率偏移、零相关区划配置、RACH收到目标功率、最大RACH前置码重传次数、用于RACH前置码重传的功率斜升步长、随机接入响应窗口长度、或其某种组合。
这些传输参数可以是不同的,以便使UE 115或基站105更高效地利用RACH规程和/或资源。网络(例如,基站105)可控制专用时间和频率RACH区域的RACH拥塞水平,而网络可能无法控制共用时间和频率RACH区域的RACH拥塞水平或者可能对其不具有相同水平的控制。例如,在共用时间和频率RACH资源中,UE 115可利用未由网络具体调度的用于CBRA的RACH前置码,并且此类RACH前置码的使用可引起共用时间和频率RACH资源中的干扰(例如,RACH拥塞)。因此,共用时间和频率RACH区域可经历比其中UE 115可不执行这些CBRA规程的专用时间和频率RACH区域更大的干扰(例如,来自UE 115执行CBRA规程的干扰)。基站105可基于各资源和/或各规程之间的拥塞水平的这种差异来向UE 115发送不同的传输参数(例如,前置码收到目标功率、功率斜升步长、最大前置码传输等)。例如,对于CFRA规程和/或对于专用RACH资源,基站105可指示UE 115利用较高发射功率、较频繁的传输或其他传输参数以在较低干扰环境中高效地通信(例如,以提高吞吐量)。相反,对于CBRA规程和/或对于共用RACH资源,基站105可指示UE 115利用较低发射功率、较不频繁的传输或其他传输参数以在较高干扰环境中高效地通信(例如,以通过减少干扰其他传输的可能性来更好地共享资源)。
RACH生成器925可生成用于RACH规程(例如,CFRA规程)的RACH消息。RACH生成器925可基于所指示的内容来生成RACH消息。在一些情形中,该内容指示RACH消息中的比特数,其中生成RACH消息包括基于所指示的比特数来生成RACH消息。在一些情形中,比特数是基于UE的链路增益。在一些情形中,RACH生成器925可基于配置消息来生成RACH消息。基于配置消息来生成RACH消息可包括:处理配置消息以标识用于CFRA规程的RACH前置码集中的第一子集;以及从RACH前置码集中的第一子集中为RACH消息选择RACH前置码,其中RACH前置码集中的第一子集不同于用于CBRA规程的RACH前置码集中的第二子集。
RACH传输组件930可基于第一RACH传输参数来在RACH规程中传送RACH消息。在一些情形中,RACH传输组件930可在CFRA规程中、在专用时间和频率资源内、在定向传输中、或者在这些的任何组合中传送RACH消息。在一些情形中,RACH传输组件930可传送时分复用或频分复用信号。在一些情形中,传送RACH消息包括使用由传输参数指示的发射功率来传送RACH消息。在一些情形中,传输参数由与该基站不同的目标基站来生成。在一些情形中,传送RACH消息包括在至少一个附加定向传输中传送RACH消息。在一些情形中,RACH传输组件930可基于第一传输参数来在CFRA规程中传送RACH消息。例如,RACH传输组件930可在专用时间和频率资源内传送RACH消息。
蜂窝小区质量组件935可执行与测得的蜂窝小区质量相关联的过程集。例如,在一些情形中,发射功率是基于UE的一个或多个先前报告来推导出的,该一个或多个先前报告指示与目标基站相关联的蜂窝小区质量。在一些情形中,该一个或多个先前报告包括针对目标基站的不同波束的集合的波束质量测量,其中蜂窝小区质量是基于该波束质量测量。
索引选择组件940可从索引集中选择至少一个索引,其中该内容包括要将该至少一个索引包括在RACH消息的有效载荷中的指令。在一些情形中,该至少一个索引可以是波束索引的示例,并且可从基站波束索引集中选择。在这些情形中,索引选择组件940可在传输时间传送RACH消息以传达该至少一个波束索引或者隐式地标识与该至少一个波束索引不同的第二波束索引,并且索引选择组件940可经由对应于该至少一个波束索引或第二波束索引的下行链路发射波束来接收随机接入响应。在一些情形中,选择该至少一个索引包括基于针对从基站接收到的参考信号集的RSRP测量的排序来选择该至少一个索引。在一些情形中,该至少一个索引是SSB索引、CSI-RS块索引或波束索引之一。在一些情形中,选择该至少一个索引包括基于定向传输功率限制来选择该至少一个索引。前置码选择组件945可基于所选的至少一个索引来从前置码集中为RACH消息选择前置码。
序列类型组件950可标识该内容指示不同参考信号类型的集合中的参考信号类型,其中传送RACH消息包括传送具有所指示的参考信号类型的参考信号。在一些情形中,所指示的参考信号类型是Zadoff-Chu序列、或最大长度序列、或伪随机二进制序列、或正交相移键控序列之一。
调制方案组件955可使用所指示的调制方案来传送RACH消息。频调间隔组件960可使用在专用时间和频率资源内为RACH消息传输所指派的频调间隔来传送RACH消息。在一些情形中,所指派的频调间隔不同于在共用时间和频率资源内用于RACH消息传输的第二所指派的频调间隔。波形组件965可使用所指示的波形数来传送RACH消息。
时分复用器970可基于对参考信号和有效载荷进行时分复用来生成信号。频分复用器975可基于对参考信号和有效载荷进行频分复用来生成信号。
连接组件980可接收对RACH消息的随机接入响应,并基于该随机接入响应来建立与基站的连接。在一些情形中,连接组件980可基于交织模式来在随机接入响应窗口中监视随机接入响应。例如,连接组件980可在随机接入响应窗口的第一部分中使用第一接收波束以及在随机接入响应窗口的第二部分中使用第二接收波束来监视随机接入响应。在一些情形中,连接组件980可处理MIB、SIB、RMSI、切换消息、或其某种组合中的至少一者,以标识随机接入响应窗口的交织模式。
质量报告组件985可例如在该内容指定要在RACH消息中包括质量报告的情况下生成包括质量报告的RACH消息。该质量报告可以是波束质量报告或蜂窝小区质量报告的示例。在一些情形中,对于波束质量报告,该报告可包括针对一个或多个波束的RSRP、或RSRQ、或RSSI、或CQI、或SNR、或SINR、或这些中的某种组合中的至少一者。在一些情形中,该一个或多个波束中的波束可包括在SSB内传送的SS、或CSI-RS、或MRS。在一些情形中,SS可以是PSS、或SSS、或PBCH信号、或PBCH信号的DMRS、或其任何组合的示例。在一些情形中,质量报告组件985可处理包括与质量报告相对应的上行链路消息参数的随机接入响应消息,并且可基于该上行链路消息参数来传送上行链路消息。例如,上行链路消息参数可以是用于上行链路消息的调度、用于上行链路消息的调制或编码方案、用于上行链路消息的功率控制参数、或其某种组合的示例。
图10示出了根据本公开的各方面的包括设备1005的系统1000的示图。设备1005可以是例如以上参照图7和8所描述的无线设备705、无线设备805或UE 115的各组件的示例或者包括这些组件。设备1005可包括用于双向语音和数据通信的组件,包括用于传送和接收通信的组件,包括UE RACH配置模块1015、处理器1020、存储器1025、软件1030、收发机1035、天线1040、以及I/O控制器1045。这些组件可经由一条或多条总线(例如,总线1010)处于电子通信。设备1005可与一个或多个基站105进行无线通信。
处理器1020可包括智能硬件设备(例如,通用处理器、DSP、中央处理单元(CPU)、微控制器、ASIC、FPGA、可编程逻辑器件、分立的门或晶体管逻辑组件、分立的硬件组件、或者其任何组合)。在一些情形中,处理器1020可被配置成使用存储器控制器来操作存储器阵列。在其他情形中,存储器控制器可被集成到处理器1020中。处理器1020可被配置成执行存储器中所存储的计算机可读指令以执行各种功能(例如,支持用于随机接入规程中的消息内容和传输的不同配置的功能或任务)。
存储器1025可包括随机存取存储器(RAM)和只读存储器(ROM)。存储器1025可存储包括指令的计算机可读、计算机可执行软件1030,这些指令在被执行时使得处理器执行本文所描述的各种功能。在一些情形中,存储器1025可尤其包含基本输入/输出系统(BIOS),该BIOS可控制基本硬件或软件操作,诸如与外围组件或设备的交互。
软件1030可包括用于实现本公开的各方面的代码,包括用于支持用于随机接入规程中的消息内容和传输的不同配置的代码。软件1030可被存储在非瞬态计算机可读介质(诸如系统存储器或其他存储器)中。在一些情形中,软件1030可以不由处理器直接执行,而是可使得计算机(例如,在被编译和执行时)执行本文中所描述的各功能。
收发机1035可经由一个或多个天线、有线或无线链路进行双向通信,如上所述。例如,收发机1035可表示无线收发机并且可与另一无线收发机进行双向通信。收发机1035还可包括调制解调器以调制分组并将经调制的分组提供给天线以供传输、以及解调从天线接收到的分组。
在一些情形中,无线设备可包括单个天线1040。然而,在一些情形中,该设备可具有不止一个天线1040,这些天线可以能够并发地传送或接收多个无线传输。
I/O控制器1045可管理设备1005的输入和输出信号。I/O控制器1045还可管理未被集成到设备1005中的外围设备。在一些情形中,I/O控制器1045可代表至外部外围设备的物理连接或端口。在一些情形中,I/O控制器1045可以利用操作系统,诸如
Figure BDA0002380742200000511
Figure BDA0002380742200000512
或另一已知操作系统。在其他情形中,I/O控制器1045可表示调制解调器、键盘、鼠标、触摸屏或类似设备或者与其交互。在一些情形中,I/O控制器1045可被实现为处理器的一部分。在一些情形中,用户可经由I/O控制器1045或者经由I/O控制器1045所控制的硬件组件来与设备1005交互。
图11示出了根据本公开的各方面的无线设备1105的框图1100。无线设备1105可以是如本文中所描述的基站105的各方面的示例。无线设备1105可包括接收机1110、基站RACH配置模块1115和发射机1120。无线设备1105还可包括处理器。这些组件中的每一者可彼此处于通信(例如,经由一条或多条总线)。
接收机1110可接收信息,诸如分组、用户数据、或与各种信息信道相关联的控制信息(例如,控制信道、数据信道、以及与用于随机接入规程中的消息内容和传输的不同配置相关的信息等)。信息可被传递到该设备的其他组件。接收机1110可以是参照图14描述的收发机1435的各方面的示例。接收机1110可利用单个天线或天线集合。
基站RACH配置模块1115可以是如参照图14所描述的基站RACH配置模块1415的各方面的示例。基站RACH配置模块1115和/或其各个子组件中的至少一些子组件可以在硬件、由处理器执行的软件、固件、或其任何组合中实现。如果在由处理器执行的软件中实现,则基站RACH配置模块1115和/或其各个子组件中的至少一些子组件的功能可由设计成执行本公开中描述的功能的通用处理器、DSP、ASIC、FPGA或其他可编程逻辑器件、分立的门或晶体管逻辑、分立的硬件组件、或其任何组合来执行。基站RACH配置模块1115和/或其各个子组件中的至少一些子组件可物理地位于各个位置处,包括被分布成使得功能的各部分由一个或多个物理设备在不同物理位置处实现。在一些示例中,根据本公开的各个方面,基站RACH配置模块1115和/或其各个子组件中的至少一些子组件可以是分开且相异的组件。在其他示例中,根据本公开的各个方面,基站RACH配置模块1115和/或其各个子组件中的至少一些子组件可以与一个或多个其他硬件组件(包括但不限于I/O组件、收发机、网络服务器、另一计算设备、本公开中所描述的一个或多个其他组件、或者其组合)相组合。
基站RACH配置模块1115可向UE传送与用于CBRA规程的第二RACH传输参数不同的用于CFRA规程的第一RACH传输参数;基于第一RACH传输参数来在该CFRA规程中接收该RACH消息;以及基于该RACH消息来传送随机接入响应。
在某一情形中,基站RACH配置模块1115可将UE配置有RACH消息的内容和传输参数。附加地,基站RACH配置模块1115可基于该传输参数来在随机接入规程中接收RACH消息,并基于该RACH消息来传送随机接入响应。附加地或替换地,基站RACH配置模块1115可确定要将UE从基站切换到目标基站。基站RACH配置模块1115可附加地从目标基站接收对RACH消息的内容和传输参数的指示;以及向UE传送指示该RACH消息的内容和传输参数的配置消息。
附加地或替换地,基站RACH配置模块1115可向UE传送用于RACH消息的配置消息和对应于针对专用时间和频率资源的专用RACH前置码的用于CFRA规程的第一传输参数,其中该第一传输参数不同于对应于针对共用时间和频率资源的专用RACH前置码的用于CFRA规程的第二传输参数。基站RACH配置模块1115可基于第一传输参数来在CFRA规程中接收RACH消息,并基于该RACH消息来传送随机接入响应。
在一些情形中,基站RACH配置模块1115可向UE传送用于RACH消息的配置消息和对应于与第一SSB或CSI-RS相关联的专用RACH前置码(例如,在专用时间和频率资源内)的用于CFRA规程的第一传输参数,其中该第一传输参数不同于对应于与第二SSB或CSI-RS相关联的专用RACH前置码(例如,在共用时间和频率资源内)的用于CFRA规程的第二传输参数。基站RACH配置模块1115可基于第一传输参数来在CFRA规程中接收RACH消息,并基于该RACH消息来传送随机接入响应。
发射机1120可传送由该设备的其他组件生成的信号。在一些示例中,发射机1120可与接收机1110共处于收发机模块中。例如,发射机1120可以是参照图14描述的收发机1435的各方面的示例。发射机1120可利用单个天线或天线集合。
图12示出了根据本公开的各方面的无线设备1205的框图1200。无线设备1205可以是参照图11描述的无线设备1105或基站105的各方面的示例。无线设备1205可包括接收机1210、基站RACH配置模块1215和发射机1220。无线设备1205还可包括处理器。这些组件中的每一者可彼此处于通信(例如,经由一条或多条总线)。
接收机1210可接收信息,诸如分组、用户数据、或与各种信息信道相关联的控制信息(例如,控制信道、数据信道、以及与用于随机接入规程中的消息内容和传输的不同配置相关的信息等)。信息可被传递到该设备的其他组件。接收机1210可以是参照图14描述的收发机1435的各方面的示例。接收机1210可利用单个天线或天线集合。
基站RACH配置模块1215可以是如参照图14所描述的基站RACH配置模块1415的各方面的示例。基站RACH配置模块1215还可包括配置组件1225、RACH接收组件1230、RACH响应组件1235、以及切换组件1240。
在第一方面,配置组件1225可向UE传送与用于CBRA规程的第二RACH传输参数不同的用于CFRA规程的第一RACH传输参数。RACH接收组件1230可基于第一RACH传输参数来在CFRA规程中接收RACH消息。RACH响应组件1235可基于该RACH消息来传送随机接入响应。
更具体地,配置组件1225可向UE传送与用于CBRA规程的第二RACH传输参数不同的用于CFRA规程的第一RACH传输参数。在一些情形中,配置组件1225可将UE配置有RACH消息的内容和传输参数。附加地或替换地,配置组件1225可从目标基站接收对RACH消息的内容和传输参数的指示;以及向UE传送指示该RACH消息的内容和传输参数的配置消息。在一些情形中,配置UE进一步包括将UE配置有CFRA资源。在一些情形中,配置消息是切换命令消息的示例。
RACH接收组件1230可基于该传输参数(例如,第一RACH传输参数)来在随机接入规程中接收该RACH消息。RACH响应组件1235可基于该RACH消息来传送随机接入响应。
切换组件1240可确定要将UE从基站切换到目标基站。在一些情形中,切换组件1240可向目标基站传送对切换决策的指示,其中接收对RACH消息的内容和传输参数的指示是基于对切换决策的指示。切换组件1240可从UE接收对关于基站的第一蜂窝小区质量的第一指示和对关于目标基站的第二蜂窝小区质量的第二指示,其中确定要切换该UE是基于第一蜂窝小区质量和第二蜂窝小区质量。
发射机1220可传送由该设备的其他组件生成的信号。在一些示例中,发射机1220可与接收机1210共处于收发机模块中。例如,发射机1220可以是参照图14描述的收发机1435的各方面的示例。发射机1220可利用单个天线或天线集合。
图13示出了根据本公开的各方面的基站RACH配置模块1315的框图1300。基站RACH配置模块1315可以是参照图11、12和14所描述的基站RACH配置模块1415的各方面的示例。基站RACH配置模块1315可包括配置组件1320、RACH接收组件1325、RACH响应组件1330、切换组件1335、切换配置组件1340、蜂窝小区质量组件1345、定向传输组件1350、负载参数组件1355、链路增益组件1360、和交织组件1365。这些模块中的每一者可彼此直接或间接通信(例如,经由一条或多条总线)。
配置组件1320可向UE传送与用于CBRA规程的第二RACH传输参数不同的用于CFRA规程的第一RACH传输参数。在一些情形中,配置组件1320可将UE配置有RACH消息的内容和传输参数。配置组件1320可从目标基站接收对RACH消息的内容和传输参数的指示;以及可向UE传送指示该RACH消息的内容和传输参数的配置消息。在一些情形中,配置UE进一步包括将UE配置有CFRA资源。在一些情形中,配置消息是切换命令消息。
附加地或替换地,配置组件1320可向UE传送用于RACH消息的配置消息以及与用于CBRA规程的第二传输参数不同的用于CFRA规程的第一传输参数。在一些情形中,该配置消息可标识与用于CBRA规程的RACH前置码集中的第二子集不同的用于CFRA规程的RACH前置码集中的第一子集。在一些情形中,用于CFRA规程的第一传输参数可对应于专用时间和频率资源内的专用RACH前置码,并且可不同于对应于共用时间和频率资源内的专用RACH前置码的用于CFRA规程的第三传输参数。
在一些示例中,第一传输参数可对应于专用时间和频率资源内与第一SSB相关联的专用RACH前置码,而第二传输参数可对应于共用时间和频率资源内与第二SSB相关联的专用RACH前置码。在一些示例中,第一传输参数可对应于专用时间和频率资源内与第一CSI-RS相关联的专用RACH前置码,而第二传输参数可对应于共用时间和频率资源内与第二CSI-RS相关联的专用RACH前置码。
在一些情形中,第一RACH传输参数可指示根序列、或随机接入响应搜索空间、或随机接入响应CORESET、或受限集配置、或用于RACH消息的副载波间隔、或用于选择SSB的RSRP阈值、或用于选择CSI-RS的RSRP阈值、或其任何组合。此外,在一些情形中,第一RACH传输参数可指示PRACH配置索引、可用于在单个时间实例中进行频分复用的RACH传输机会的数目、最低RACH传输时机的频率偏移、零相关区划配置、RACH收到目标功率、最大RACH前置码重传次数、用于RACH前置码重传的功率斜升步长、随机接入响应窗口长度、或其某种组合。
RACH接收组件1325可基于该传输参数(例如,第一RACH传输参数)来在随机接入规程中接收该RACH消息。例如,RACH接收组件1325可在CFRA规程中、在专用时间和频率资源中、在定向传输中、或者在其某种组合中接收RACH消息。在一些情形中,RACH接收组件1325可基于第一传输参数来在CFRA规程中接收RACH消息。在一些情形中,可在专用时间和频率资源内接收到RACH消息。在一些情形中,RACH消息可以是RACH Msg1或RACH前置码的示例。
RACH响应组件1330可基于该RACH消息来传送随机接入响应。在一些情形中,RACH响应组件1330可基于该至少一个波束索引来从不同下行链路定向传输的集合中选择下行链路定向传输,其中传送随机接入响应涉及使用所选的下行链路定向传输来传送随机接入响应。在一些情形中,RACH响应组件1330可基于被包括在RACH消息中的波束质量报告来确定与随机接入响应相关联的至少一个参数或者基于被包括在RACH消息中的波束索引来确定与随机接入响应相关联的至少一个参数。在一些情形中,RACH响应组件1330可通过以下操作来确定该至少一个参数:确定不同TTI的集合内UE在其中传送RACH消息的TTI;确定对应于所确定的TTI的波束索引;以及选择与被包括在RACH消息中的波束索引或对应于所确定的TTI的波束索引之一相对应的下行链路传输波束。在一些情形中,RACH响应组件1330可基于所定义的规则来选择下行链路传输波束。
切换组件1335可确定要将UE从基站切换到目标基站。在一些情形中,切换组件1335可向目标基站传送对切换决策的指示,其中接收对RACH消息的内容和传输参数的指示是基于对切换决策的指示。在一些情形中,切换组件1335可从UE接收对关于基站的第一蜂窝小区质量的第一指示和对关于目标基站的第二蜂窝小区质量的第二指示,其中确定要切换该UE是基于第一蜂窝小区质量和第二蜂窝小区质量。
切换配置组件1340可从服务基站接收对切换决策的指示,其中传送对内容和传输参数的指示是基于切换决策。在一些情形中,配置UE包括向该UE的服务基站传送对内容和传输参数的指示以用于向该UE传送对内容和传输参数的指示。
质量组件1345可接收UE的一个或多个蜂窝小区质量报告;基于该一个或多个蜂窝小区质量报告来确定传输参数;基于该一个或多个蜂窝小区质量报告来推导出发射功率;以及选择与所推导出的发射功率相对应的传输参数。在一些情形中,该一个或多个蜂窝小区质量报告包括针对基站的不同波束的集合的波束质量测量。在一些情形中(例如,在该内容指定要在RACH消息中包括质量报告的情况下),质量组件1345可处理RACH消息以标识质量报告。质量报告可以是波束质量报告或蜂窝小区质量报告的示例。波束质量报告可包括针对一个或多个波束的RSRP、或RSRQ、或RSSI、或CQI、或SNR、或SINR、或其任何组合中的至少一者。该一个或多个波束中的波束可包括在SSB内传送的SS、或CSI-RS、或MRS。SS可以是PSS、或SSS、或PBCH信号、或PBCH信号的DMRS、或其任何组合的示例。在一些情形中(例如,在随机接入响应包括与质量报告相对应的上行链路消息参数的情况下),质量组件1345可根据上行链路消息参数来接收上行链路消息。在一些情形中,上行链路消息参数可以是用于上行链路消息的调度、或用于上行链路消息的调制或编码方案、或用于上行链路消息的功率控制参数、或其任何组合中的至少一者的示例。
定向传输组件1350可基于该至少一个索引来从不同下行链路定向传输的集合中选择下行链路定向传输,其中传送随机接入响应包括使用所选的下行链路定向传输来传送随机接入响应。
负载参数组件1355可确定用于不同定向传输的集合的负载参数,其中该传输参数指示用于基于该负载参数来传送RACH消息的发射功率。链路增益组件1360可确定UE的链路增益并且基于该链路增益来选择RACH消息的比特数,其中该内容标识RACH消息的比特数。
交织组件1365可基于被包括在RACH消息中的第一波束索引或对应于在其中传送RACH消息的TTI的第二波束索引之一来确定随机接入响应窗口的交织模式,其中传送随机接入响应可涉及基于该交织模式来在随机接入响应窗口内传送随机接入响应。在一些情形中,交织组件1365可传送MIB、或SIB、或RMSI、或切换消息、或其任何组合中的至少一者,以指示随机接入响应窗口的交织模式以用于将UE配置有该交织模式。在一些情形中,传送随机接入响应可包括在随机接入响应窗口的第一部分内、或在随机接入窗口的第二部分内、或在随机接入窗口的第一和第二部分两者内传送随机接入响应。
图14示出了根据本公开的各方面的包括设备1405的系统1400的示图。设备1405可以是如以上例如参照图1所描述的基站105各组件的示例或者包括这些组件。设备1405可包括用于双向语音和数据通信的组件,其包括用于传送和接收通信的组件,包括基站RACH配置模块1415、处理器1420、存储器1425、软件1430、收发机1435、天线1440、网络通信管理器1445、以及站间通信管理器1450。这些组件可经由一条或多条总线(例如,总线1410)处于电子通信。设备1405可与一个或多个UE 115进行无线通信。
处理器1420可包括智能硬件设备(例如,通用处理器、DSP、CPU、微控制器、ASIC、FPGA、可编程逻辑器件、分立的门或晶体管逻辑组件、分立的硬件组件,或者其任何组合)。在一些情形中,处理器1420可被配置成使用存储器控制器来操作存储器阵列。在其他情形中,存储器控制器可被集成到处理器1420中。处理器1420可被配置成执行存储器中所存储的计算机可读指令以执行各种功能(例如,支持用于随机接入规程中的消息内容和传输的不同配置的功能或任务)。
存储器1425可包括RAM和ROM。存储器1425可存储包括指令的计算机可读、计算机可执行软件1430,这些指令在被执行时使得处理器执行本文所描述的各种功能。在一些情形中,存储器1425可尤其包含BIOS,该BIOS可控制基本硬件或软件操作,诸如与外围组件或设备的交互。
软件1430可包括用于实现本公开的各方面的代码,包括用于支持用于随机接入规程中的消息内容和传输的不同配置的代码。软件1430可被存储在非瞬态计算机可读介质(诸如系统存储器或其他存储器)中。在一些情形中,软件1430可以不由处理器直接执行,而是可使得计算机(例如,在被编译和执行时)执行本文中所描述的各功能。
收发机1435可经由一个或多个天线、有线或无线链路进行双向通信,如上所述。例如,收发机1435可表示无线收发机并且可与另一无线收发机进行双向通信。收发机1435还可包括调制解调器以调制分组并将经调制的分组提供给天线以供传输、以及解调从天线接收到的分组。
在一些情形中,无线设备可包括单个天线1440。然而,在一些情形中,该设备可具有不止一个天线1440,这些天线可以能够并发地传送或接收多个无线传输。
网络通信管理器1445可管理与核心网的通信(例如,经由一个或多个有线回程链路)。例如,网络通信管理器1445可管理客户端设备(诸如一个或多个UE 115)的数据通信的传递。
站间通信管理器1450可管理与其他基站105的通信,并且可包括控制器或调度器以用于与其他基站105协作地控制与UE 115的通信。例如,站间通信管理器1450可针对各种干扰缓解技术(诸如波束成形或联合传输)来协调对去往UE 115的传输的调度。在一些示例中,站间通信管理器1450可以提供LTE/LTE-A无线通信网络技术内的X2接口以提供基站105之间的通信。
图15示出了解说根据本公开的各方面的用于配置用于不同随机接入规程的RACH传输参数的方法1500的流程图。方法1500的操作可由如本文中所描述的UE 115或其组件来实现。例如,方法1500的操作可由如参照图7到10所描述的UE RACH配置模块来执行。在一些示例中,UE 115可执行代码集以控制该设备的功能元件执行下述各功能。附加地或替换地,UE 115可使用专用硬件来执行下述功能的各方面。
在框1505,UE 115可从基站接收用于CFRA规程的RACH传输参数。该RACH传输参数可以是第一RACH传输参数的示例,其中用于CFRA规程的第一RACH传输参数不同于用于CBRA规程的第二RACH传输参数(例如,其中第一RACH传输参数和第二RACH传输参数指示针对相同的RACH传输变量或分量的不同值,诸如针对PRACH配置索引的不同值)。在一些情形中,可作为用于RACH消息的配置消息的一部分来接收RACH传输参数。框1505的操作可根据本文中描述的方法来执行。在某些示例中,框1505的操作的各方面可由如参照图7至10所描述的配置组件来执行。
在框1510,UE 115可生成用于该CFRA规程的RACH消息。在一些情形中,可基于接收到的配置消息来生成RACH消息。框1510的操作可根据本文中描述的方法来执行。在某些示例中,框1510的操作的各方面可由如参照图7至10描述的RACH生成器来执行。
在框1515,UE 115可至少部分地基于该RACH传输参数来在该CFRA规程中传送该RACH消息。例如,UE 115可在用于CFRA规程的专用时间和频率资源内传送RACH消息。框1515的操作可根据本文中描述的方法来执行。在某些示例中,框1515的操作的各方面可由如参照图7至10所描述的RACH传输组件来执行。
图16示出了解说根据本公开的各方面的用于配置用于不同随机接入规程的RACH传输参数的方法1600的流程图。方法1600的操作可由如本文中所描述的UE 115或其组件来实现。例如,方法1600的操作可由如参照图7到10所描述的UE RACH配置模块来执行。在一些示例中,UE 115可执行代码集以控制该设备的功能元件执行下述各功能。附加地或替换地,UE 115可使用专用硬件来执行下述功能的各方面。
在框1605,UE 115可从基站接收指示RACH消息的内容和传输参数的配置消息。框1605的操作可根据本文中描述的方法来执行。在某些示例中,框1605的操作的各方面可由如参照图7至10所描述的配置组件来执行。
在框1610,UE 115可至少部分地基于所指示的内容来生成RACH消息。框1610的操作可根据本文中描述的方法来执行。在某些示例中,框1610的操作的各方面可由如参照图7至10描述的RACH生成器来执行。
在框1615,UE 115可使用由该传输参数指示的发射功率来传送该RACH消息,其中该RACH消息在随机接入规程中被传送。例如,UE 115可在用于CFRA规程的专用时间和频率资源内在定向传输中传送RACH消息。框1615的操作可根据本文中描述的方法来执行。在某些示例中,框1615的操作的各方面可由如参照图7至10所描述的RACH传输组件来执行。
图17示出了解说根据本公开的各方面的用于配置用于不同随机接入规程的RACH传输参数的方法1700的流程图。方法1700的操作可由如本文中所描述的UE 115或其组件来实现。例如,方法1700的操作可由如参照图7至10所描述的UE RACH配置模块来执行。在一些示例中,UE 115可执行代码集以控制该设备的功能元件执行下述各功能。附加地或替换地,UE 115可使用专用硬件来执行下述功能的各方面。
在框1705,UE 115可从基站接收指示RACH消息的内容和传输参数的配置消息。框1705的操作可根据本文中描述的方法来执行。在某些示例中,框1705的操作的各方面可由如参照图7至10所描述的配置组件来执行。
在框1710,UE 115可从索引集中选择至少一个索引,其中该内容包括要将该至少一个索引包括在该RACH消息的有效载荷中的指令。框1710的操作可根据本文中描述的方法来执行。在某些示例中,框1710的操作的各方面可由如参照图7至10所描述的索引选择组件来执行。
在框1715,UE 115可基于所指示的内容来生成RACH消息。框1715的操作可根据本文中描述的方法来执行。在某些示例中,框1715的操作的各方面可由如参照图7至10描述的RACH生成器来执行。
在框1720,UE 115可基于该传输参数来在随机接入规程中传送该RACH消息。例如,UE 115可在用于CFRA规程的专用时间和频率资源内在定向传输中传送RACH消息。框1720的操作可根据本文中描述的方法来执行。在某些示例中,框1720的操作的各方面可由如参照图7至10所描述的RACH传输组件来执行。
图18示出了解说根据本公开的各方面的用于配置用于不同随机接入规程的RACH传输参数的方法1800的流程图。方法1800的操作可由如本文中所描述的基站105或其组件来实现。例如,方法1800的操作可由如参照图11至14所描述的基站RACH配置模块来执行。在一些示例中,基站105可执行代码集以控制该设备的功能元件执行下述功能。附加地或替换地,基站105可以使用专用硬件来执行下述功能的各方面。
在框1805,基站105可向UE 115传送用于CFRA规程的RACH传输参数。该RACH传输参数可以是第一RACH传输参数的示例,其中用于CFRA规程的第一RACH传输参数不同于用于CBRA规程的第二RACH传输参数(例如,其中第一RACH传输参数和第二RACH传输参数指示针对相同的RACH传输变量或参数的不同值,诸如针对PRACH配置索引的不同值)。在一些情形中,基站105可传送指示RACH传输参数的用于RACH消息的配置消息。框1805的操作可根据本文中描述的方法来执行。在某些示例中,框1805的操作的各方面可由如参照图11至14所描述的配置组件来执行。
在框1810,基站105可从UE 115且至少部分地基于该RACH传输参数(例如,第一RACH传输参数)来在该CFRA规程中接收RACH消息。框1810的操作可根据本文中描述的方法来执行。在某些示例中,框1810的操作的各方面可由如参照图11至14所描述的RACH接收组件来执行。
在框1815,基站105可至少部分地基于接收到的RACH消息来向UE 115传送随机接入响应(例如,响应于该RACH消息的随机接入响应消息)。框1815的操作可根据本文中描述的方法来执行。在某些示例中,框1815的操作的各方面可由如参照图11至14所描述的RACH响应组件来执行。
图19示出了解说根据本公开的各方面的用于配置用于不同随机接入规程的RACH传输参数的方法1900的流程图。方法1900的操作可由如本文中所描述的基站105或其组件来实现。例如,方法1900的操作可由如参照图11至14所描述的基站RACH配置模块来执行。在一些示例中,基站105可执行代码集以控制该设备的功能元件执行下述功能。附加地或替换地,基站105可以使用专用硬件来执行下述功能的各方面。
在框1905,基站105可确定UE的链路增益。框1905的操作可根据本文中描述的方法来执行。在某些示例中,框1905的操作的各方面可由如参照图11至14所描述的链路增益组件来执行。
在框1910,基站105可基于该链路增益来选择RACH消息的比特数。框1910的操作可根据本文中描述的方法来执行。在某些示例中,框1910的操作的各方面可由如参照图11至14所描述的链路增益组件来执行。
在框1915,基站105可将该UE配置有RACH消息的内容和传输参数,其中该内容标识该RACH消息的比特数。框1915的操作可根据本文中描述的方法来执行。在某些示例中,框1915的操作的各方面可由如参照图11至14所描述的配置组件来执行。
在框1920,基站105可基于该传输参数来在随机接入规程中接收该RACH消息。例如,基站105可在用于CFRA规程的专用时间和频率资源内在定向传输中接收RACH消息。框1920的操作可根据本文中描述的方法来执行。在某些示例中,框1920的操作的各方面可由如参照图11至14所描述的RACH接收组件来执行。
在框1925,基站105可基于该RACH消息来传送随机接入响应。框1925的操作可根据本文中描述的方法来执行。在某些示例中,框1925的操作的各方面可由如参照图11至14所描述的RACH响应组件来执行。
图20示出了解说根据本公开的各方面的用于配置用于不同随机接入规程的RACH传输参数的方法2000的流程图。方法2000的操作可由如本文中所描述的基站105或其组件来实现。例如,方法2000的操作可由如参照图11至14所描述的基站RACH配置模块来执行。在一些示例中,基站105可执行代码集以控制该设备的功能元件执行下述功能。附加地或替换地,基站105可以使用专用硬件来执行下述功能的各方面。
在框2005,基站105可确定要将UE从该基站切换到目标基站。框2005的操作可根据本文中描述的方法来执行。在某些示例中,框2005的操作的各方面可由如参照图11至14所描述的切换组件来执行。
在框2010,基站105可从该目标基站接收对RACH消息的内容和传输参数的指示。框2010的操作可根据本文中描述的方法来执行。在某些示例中,框2010的操作的各方面可由如参照图11至14所描述的配置组件来执行。
在框2015,基站105可向该UE传送指示该RACH消息的内容和传输参数的配置消息。框2015的操作可根据本文中描述的方法来执行。在某些示例中,框2015的操作的各方面可由如参照图11至14所描述的配置组件来执行。
应当注意,上述方法描述了可能的实现,并且各操作和步骤可被重新安排或以其他方式被修改且其他实现也是可能的。此外,来自两种或更多种方法的诸方面可被组合。
本文中所描述的技术可用于各种无线通信系统,诸如码分多址(CDMA)、时分多址(TDMA)、频分多址(FDMA)、正交频分多址(OFDMA)、单载波频分多址(SC-FDMA)以及其他系统。CDMA系统可以实现诸如CDMA2000、通用地面无线电接入(UTRA)等无线电技术。CDMA2000涵盖IS-2000、IS-95和IS-856标准。IS-2000版本常可被称为CDMA2000 1X、1X等。IS-856(TIA-856)常被称为CDMA2000 1xEV-DO、高速率分组数据(HRPD)等。UTRA包括宽带CDMA(WCDMA)和其他CDMA变体。TDMA系统可实现诸如全球移动通信系统(GSM)之类的无线电技术。
OFDMA系统可实现诸如超移动宽带(UMB)、E-UTRA、电气电子工程师协会(IEEE)802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、Flash-OFDM等无线电技术。UTRA和E-UTRA是通用移动电信系统(UMTS)的部分。LTE和LTE-A是使用E-UTRA的UMTS版本。UTRA、E-UTRA、UMTS、LTE、LTE-A、NR以及GSM在来自名为“第三代伙伴项目”(3GPP)的组织的文献中描述。CDMA2000和UMB在来自名为“第三代伙伴项目2”(3GPP2)的组织的文献中描述。本文中所描述的技术既可被用于以上提及的系统和无线电技术,也可被用于其他系统和无线电技术。尽管LTE或NR系统的各方面可被描述以用于示例目的,并且在以上大部分描述中可使用LTE或NR术语,但本文中所描述的技术也可应用于LTE或NR应用以外的应用。
宏蜂窝小区一般覆盖相对较大的地理区域(例如,半径为数千米的区域),并且可允许无约束地由与网络供应商具有服务订阅的UE 115接入。小型蜂窝小区可与较低功率基站105相关联(与宏蜂窝小区相比而言),且小型蜂窝小区可在与宏蜂窝小区相同或不同的(例如,有执照、无执照等)频带中操作。根据各个示例,小型蜂窝小区可包括微微蜂窝小区、毫微微蜂窝小区、以及微蜂窝小区。微微蜂窝小区例如可覆盖较小地理区域并且可允许无约束地由与网络供应商具有服务订阅的UE 115接入。毫微微蜂窝小区也可覆盖较小地理区域(例如,住宅)并且可提供有约束地由与该毫微微蜂窝小区有关联的UE 115(例如,封闭订户群(CSG)中的UE 115、住宅中的用户的UE 115等)接入。用于宏蜂窝小区的eNB可被称为宏eNB。用于小型蜂窝小区的eNB可被称为小型蜂窝小区eNB、微微eNB、毫微微eNB、或家用eNB。eNB可支持一个或多个(例如,两个、三个、四个,等等)蜂窝小区,并且还可支持使用一个或多个分量载波的通信。
本文中所描述的一个或多个无线通信系统100可支持同步或异步操作。对于同步操作,基站105可以具有类似的帧定时,并且来自不同基站105的传输可以在时间上大致对准。对于异步操作,基站105可以具有不同的帧定时,并且来自不同基站105的传输可以不在时间上对准。本文中所描述的技术可用于同步或异步操作。
本文中所描述的信息和信号可使用各种各样的不同技艺和技术中的任一种来表示。例如,贯穿上面说明始终可能被述及的数据、指令、命令、信息、信号、比特、码元和码片可由电压、电流、电磁波、磁场或磁粒子、光场或光粒子、或其任何组合来表示。
结合本文中的公开描述的各种解说性框以及模块可以用设计成执行本文中描述的功能的通用处理器、DSP、ASIC、FPGA或其他可编程逻辑器件、分立的门或晶体管逻辑、分立的硬件组件、或其任何组合来实现或执行。通用处理器可以是微处理器,但在替换方案中,处理器可以是任何常规的处理器、控制器、微控制器、或状态机。处理器还可被实现为计算设备的组合(例如,DSP与微处理器的组合、多个微处理器、与DSP核心协同的一个或多个微处理器,或者任何其他此类配置)。
本文中所描述的功能可以在硬件、由处理器执行的软件、固件、或其任何组合中实现。如果在由处理器执行的软件中实现,则各功能可以作为一条或多条指令或代码存储在计算机可读介质上或藉其进行传送。其他示例和实现落在本公开及所附权利要求的范围内。例如,由于软件的本质,上述功能可使用由处理器执行的软件、硬件、固件、硬连线或其任何组合来实现。实现功能的特征也可物理地位于各种位置,包括被分布以使得功能的各部分在不同的物理位置处实现。
计算机可读介质包括非瞬态计算机存储介质和通信介质两者,其包括促成计算机程序从一地向另一地转移的任何介质。非瞬态存储介质可以是能被通用或专用计算机访问的任何可用介质。作为示例而非限定,非瞬态计算机可读介质可包括RAM、ROM、电可擦除可编程只读存储器(EEPROM)、闪存存储器、压缩盘(CD)ROM或其他光盘存储、磁盘存储或其他磁存储设备、或能被用来携带或存储指令或数据结构形式的期望程序代码手段且能被通用或专用计算机、或者通用或专用处理器访问的任何其他非瞬态介质。任何连接也被正当地称为计算机可读介质。例如,如果软件是使用同轴电缆、光纤电缆、双绞线、数字订户线(DSL)、或诸如红外、无线电、以及微波之类的无线技术从网站、服务器、或其他远程源传送的,则该同轴电缆、光纤电缆、双绞线、DSL、或诸如红外、无线电、以及微波之类的无线技术就被包括在介质的定义之中。如本文中所使用的盘(disk)和碟(disc)包括CD、激光碟、光碟、数字通用碟(DVD)、软盘和蓝光碟,其中盘常常磁性地再现数据而碟用激光来光学地再现数据。以上介质的组合也被包括在计算机可读介质的范围内。
如本文(包括权利要求中)所使用的,在项目列举(例如,以附有诸如“中的至少一个”或“中的一个或多个”之类的措辞的项目列举)中使用的“或”指示包含性列举,以使得例如A、B或C中的至少一个的列举意指A或B或C或AB或AC或BC或ABC(即,A和B和C)。同样,如本文所使用的,短语“基于”不应被解读为引述封闭条件集。例如,被描述为“基于条件A”的示例性步骤可基于条件A和条件B两者而不脱离本公开的范围。换言之,如本文所使用的,短语“基于”应当以与短语“至少部分地基于”相同的方式来解读。
在附图中,类似组件或特征可具有相同的附图标记。此外,相同类型的各个组件可通过在附图标记后跟随短划线以及在类似组件之间进行区分的第二标记来加以区分。如果在说明书中仅使用第一附图标记,则该描述可应用于具有相同的第一附图标记的类似组件中的任何一个组件而不论第二附图标记、或其他后续附图标记如何。
本文结合附图阐述的说明描述了示例配置而不代表可被实现或者落在权利要求的范围内的所有示例。本文所使用的术语“示例性”意指“用作示例、实例或解说”,而并不意指“优于”或“胜过其他示例”。本详细描述包括具体细节以提供对所描述的技术的理解。然而,可在没有这些具体细节的情况下实践这些技术。在一些实例中,众所周知的结构和设备以框图形式示出以避免模糊所描述的示例的概念。
提供本文中的描述是为了使得本领域技术人员能够制作或使用本公开。对本公开的各种修改对于本领域技术人员将是显而易见的,并且本文中所定义的普适原理可被应用于其他变形而不会脱离本公开的范围。由此,本公开并非被限定于本文所描述的示例和设计,而是应被授予与本文所公开的原理和新颖特征相一致的最广范围。

Claims (30)

1.一种用于由用户装备(UE)进行无线通信的方法,包括:
从基站接收与用于基于争用的随机接入(CBRA)规程的第二随机接入信道(RACH)传输参数不同的用于无争用随机接入(CFRA)规程的第一RACH传输参数;
生成用于所述CFRA规程的RACH消息;以及
至少部分地基于所述第一RACH传输参数来在所述CFRA规程中传送所述RACH消息。
2.根据权利要求1所述的方法,其特征在于,在所述CFRA规程中传送所述RACH消息包括:
在专用时间和频率资源内传送所述RACH消息。
3.根据权利要求2所述的方法,其特征在于,在所述CFRA规程中传送所述RACH消息包括:
在定向传输中传送所述RACH消息。
4.根据权利要求2所述的方法,其特征在于,所述第一RACH传输参数指示在所述专用时间和频率资源内用于RACH消息传输的所指派的频调间隔,所述频调间隔不同于在共用时间和频率资源内用于RACH消息传输的第二所指派的频调间隔,并且其中传送所述RACH消息包括:
使用所指派的频调间隔来传送所述RACH消息。
5.根据权利要求1所述的方法,其特征在于,所述第一RACH传输参数指示物理RACH(PRACH)配置索引。
6.根据权利要求1所述的方法,其特征在于,所述第一RACH传输参数指示能用于在单个时间实例中进行频分复用的RACH传输机会的数目。
7.根据权利要求1所述的方法,其特征在于,所述第一RACH传输参数指示最低RACH传输时机的频率偏移。
8.根据权利要求1所述的方法,其特征在于,所述第一RACH传输参数指示零相关区划配置。
9.根据权利要求1所述的方法,其特征在于,所述第一RACH传输参数指示RACH收到目标功率。
10.根据权利要求1所述的方法,其特征在于,所述第一RACH传输参数指示最大RACH前置码重传次数。
11.根据权利要求1所述的方法,其特征在于,所述第一RACH传输参数指示用于RACH前置码重传的功率斜升步长。
12.根据权利要求1所述的方法,其特征在于,所述第一RACH传输参数指示随机接入响应窗口长度。
13.根据权利要求1所述的方法,其特征在于,接收所述第一RACH传输参数包括:
从所述基站接收用于所述RACH消息的配置消息,其中所述配置消息指示所述第一RACH传输参数。
14.根据权利要求13所述的方法,其特征在于,所述配置消息是切换消息。
15.根据权利要求1所述的方法,其特征在于:
用于所述CFRA规程的所述第一RACH传输参数对应于专用时间和频率资源内的专用RACH前置码;以及
所述第一RACH传输参数不同于用于CFRA规程的第三RACH传输参数,所述第三RACH传输参数对应于共用时间和频率资源内的专用RACH前置码。
16.根据权利要求1所述的方法,其特征在于,所述第一RACH传输参数对应于专用时间和频率资源内与第一同步信号块(SSB)、第一信道状态信息参考信号(CSI-RS)、或其组合相关联的专用RACH前置码。
17.根据权利要求1所述的方法,其特征在于,进一步包括:
至少部分地基于交织模式来在随机接入响应窗口中监视随机接入响应。
18.根据权利要求17所述的方法,其特征在于,监视所述随机接入响应进一步包括:
在所述随机接入响应窗口的第一部分中使用第一接收波束以及在所述随机接入响应窗口的第二部分中使用第二接收波束来监视所述随机接入响应。
19.根据权利要求1所述的方法,其特征在于,所述第一RACH传输参数是由与所述基站不同的目标基站来生成的。
20.一种用于由基站进行无线通信的方法,包括:
向用户装备(UE)传送与用于基于争用的随机接入(CBRA)规程的第二随机接入信道(RACH)传输参数不同的用于无争用随机接入(CFRA)规程的第一RACH传输参数;
至少部分地基于所述第一RACH传输参数来在所述CFRA规程中接收RACH消息;以及
至少部分地基于所述RACH消息来传送随机接入响应。
21.根据权利要求20所述的方法,其特征在于,在所述CFRA规程中接收所述RACH消息包括:
在专用时间和频率资源内接收所述RACH消息。
22.根据权利要求21所述的方法,其特征在于,所述第一RACH传输参数指示在所述专用时间和频率资源内用于RACH消息传输的所指派的频调间隔,所述频调间隔不同于在共用时间和频率资源内用于RACH消息传输的第二所指派的频调间隔,并且其中接收所述RACH消息包括:
使用所指派的频调间隔来接收所述RACH消息。
23.根据权利要求20所述的方法,其特征在于,所述第一RACH传输参数指示物理RACH(PRACH)配置索引、零相关区划配置、或其组合。
24.根据权利要求20所述的方法,其特征在于,所述第一RACH传输参数指示能用于在单个时间实例中进行频分复用的RACH传输机会的数目、最低RACH传输时机的频率偏移、或其组合。
25.根据权利要求20所述的方法,其特征在于,所述第一RACH传输参数指示RACH收到目标功率、最大RACH前置码重传次数、用于RACH前置码重传的功率斜升步长、随机接入响应窗口长度、或其组合。
26.根据权利要求20所述的方法,其特征在于,传送所述第一RACH传输参数包括:
向所述UE传送用于所述RACH消息的配置消息,其中所述配置消息指示所述第一RACH传输参数。
27.根据权利要求20所述的方法,其特征在于:
用于所述CFRA规程的所述第一RACH传输参数对应于专用时间和频率资源内的专用RACH前置码;以及
所述第一RACH传输参数不同于用于CFRA规程的第三RACH传输参数,所述第三RACH传输参数对应于共用时间和频率资源内的专用RACH前置码。
28.根据权利要求20所述的方法,其特征在于,所述第一RACH传输参数对应于专用时间和频率资源内与第一同步信号块(SSB)、第一信道状态信息参考信号(CSI-RS)、或其组合相关联的专用RACH前置码。
29.一种用于无线通信的设备,包括:
用于从基站接收与用于基于争用的随机接入(CBRA)规程的第二随机接入信道(RACH)传输参数不同的用于无争用随机接入(CFRA)规程的第一RACH传输参数的装置;
用于生成用于所述CFRA规程的RACH消息的装置;以及
用于至少部分地基于所述第一RACH传输参数来在所述CFRA规程中传送所述RACH消息的装置。
30.一种用于无线通信的设备,包括:
用于向用户装备(UE)传送与用于基于争用的随机接入(CBRA)规程的第二随机接入信道(RACH)传输参数不同的用于无争用随机接入(CFRA)规程的第一RACH传输参数的装置;
用于至少部分地基于所述第一RACH传输参数来在所述CFRA规程中接收RACH消息的装置;以及
用于至少部分地基于所述RACH消息来传送随机接入响应的装置。
CN201880051449.7A 2017-08-11 2018-08-10 用于随机接入规程中的消息内容和传输的不同配置 Active CN110999495B (zh)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201762544756P 2017-08-11 2017-08-11
US62/544,756 2017-08-11
US201762550561P 2017-08-25 2017-08-25
US62/550,561 2017-08-25
US201862630610P 2018-02-14 2018-02-14
US62/630,610 2018-02-14
US16/059,946 2018-08-09
US16/059,946 US11723063B2 (en) 2017-08-11 2018-08-09 Different configurations for message content and transmission in a random access procedure
PCT/US2018/046310 WO2019033027A1 (en) 2017-08-11 2018-08-10 DIFFERENT CONFIGURATIONS FOR MESSAGE CONTENT AND TRANSMISSION IN A RANDOM ACCESS PROCEDURE

Publications (2)

Publication Number Publication Date
CN110999495A true CN110999495A (zh) 2020-04-10
CN110999495B CN110999495B (zh) 2023-11-28

Family

ID=63452721

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880051449.7A Active CN110999495B (zh) 2017-08-11 2018-08-10 用于随机接入规程中的消息内容和传输的不同配置

Country Status (4)

Country Link
US (2) US11723063B2 (zh)
EP (1) EP3666018A1 (zh)
CN (1) CN110999495B (zh)
WO (1) WO2019033027A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114173360A (zh) * 2021-12-10 2022-03-11 海能达通信股份有限公司 数据发送及确定同步信号块索引的方法、装置及设备

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11477824B2 (en) * 2017-09-07 2022-10-18 Futurewei Technologies, Inc. System and method for request multiplexing
CN111567094B (zh) * 2017-10-06 2022-11-15 鸿颖创新有限公司 多波束环境中的随机存取信道资源选择的方法及装置
US11444679B2 (en) * 2017-10-30 2022-09-13 Telefonaktiebolaget Lm Ericsson (Publ) Reception beam selection for a radio access network
US10447370B2 (en) * 2017-11-07 2019-10-15 Intel IP Corporation Systems, methods and devices for using s-Measure with new radio
CN110505710B (zh) * 2018-05-17 2023-01-20 中兴通讯股份有限公司 随机接入方法及装置、存储介质、电子装置
US11140613B2 (en) * 2018-07-25 2021-10-05 Industrial Technology Research Institute Network access method and UE using the same
US11071147B2 (en) * 2018-08-08 2021-07-20 Qualcomm Incorporated Backoff procedure in random access
WO2020034224A1 (zh) * 2018-08-17 2020-02-20 Oppo广东移动通信有限公司 一种窗口调整方法及装置、网络设备、终端
CN110972322B (zh) * 2018-09-28 2022-10-28 华为技术有限公司 一种随机接入的方法和通信装置
CN112970277A (zh) * 2018-10-29 2021-06-15 苹果公司 连接性增强
US11096079B2 (en) 2018-10-29 2021-08-17 Apple Inc. Cell measurements using configured reference signals while in RRC inactive mode
BR112021008357A2 (pt) * 2018-11-01 2021-08-03 Nokia Technologies Oy seleção de modo de acesso aleatório
US11201662B2 (en) * 2018-11-02 2021-12-14 Apple Inc. Uplink transmit beam sweep
US10764851B2 (en) * 2018-12-13 2020-09-01 Nxp Usa, Inc. Early detection of SSB index using prioritized candidate SSB index ordering
EP3909377A1 (en) * 2018-12-14 2021-11-17 Telefonaktiebolaget LM Ericsson (publ) Random access for radio access networks
US20200245157A1 (en) * 2019-01-24 2020-07-30 Qualcomm Incorporated Techniques for indicating a preferred beam in wireless communication random access
US11979912B2 (en) * 2019-02-07 2024-05-07 Qualcomm Incorporated Signaling of transmission parameters
JP7362677B2 (ja) * 2019-02-15 2023-10-17 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム
US11412544B2 (en) * 2019-02-27 2022-08-09 Samsung Electronics Co., Ltd. Method and apparatus for configuration of a RACH occasion in NR unlicensed
KR20200110201A (ko) 2019-03-14 2020-09-23 한국전자통신연구원 통신 시스템에서 단말의 접속 제어 방법
CN111726135B (zh) * 2019-03-22 2022-01-14 成都华为技术有限公司 通信方法和通信设备
EP3934332A4 (en) 2019-03-27 2022-03-23 Guangdong Oppo Mobile Telecommunications Corp., Ltd. INFORMATION PROCESSING METHOD AND TERMINAL, AND NETWORK DEVICE
US20200322948A1 (en) * 2019-04-05 2020-10-08 Qualcomm Incorporated Reporting uplink control information in a random access procedure
PL3753196T3 (pl) * 2019-04-26 2022-03-28 Telefonaktiebolaget Lm Ericsson (Publ) Urządzenie sieciowe, urządzenie końcowe i sposoby w nich zawarte
EP3963746A2 (en) * 2019-05-03 2022-03-09 Sony Group Corporation Methods for beam control signalling, network nodes and wireless devices
US11184820B2 (en) 2019-05-30 2021-11-23 Qualcomm Incorporated Fast user equipment handover between base stations
US11297645B2 (en) 2019-09-27 2022-04-05 Qualcomm Incorporated Handling conflicts between dynamic scheduling and random access resources
US11425760B2 (en) * 2019-10-04 2022-08-23 Qualcomm Incorporated Multi-root preamble techniques for wireless communications systems
US11357041B2 (en) * 2019-11-27 2022-06-07 Qualcomm Incorporated Simultaneous message transmissions in RACH with multiple TRP
WO2021122328A1 (en) * 2019-12-19 2021-06-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Communication system
CN113015258A (zh) * 2019-12-20 2021-06-22 中国移动通信有限公司研究院 信息传输方法、装置、相关设备及存储介质
CN111148256B (zh) * 2020-01-02 2022-04-12 国网安徽省电力有限公司电力科学研究院 基于NB-IoT协议的智能电网上行信道的资源分配方法
US20230074439A1 (en) * 2020-01-17 2023-03-09 Telefonaktiebolaget Lm Ericsson (Publ) Network Device, Terminal Device, and Methods Therein
US20230032007A1 (en) * 2020-01-29 2023-02-02 Lenovo (Singapore) Pte. Ltd. Indicating beam correspondence using a rach procedure
CN115298969A (zh) * 2020-02-11 2022-11-04 高通股份有限公司 用于请求上行链路传输资源以用于最大准许照射量报告的技术
US11683839B2 (en) * 2020-02-24 2023-06-20 Qualcomm Incorporated Physical random access channel configuration for a maximum permissible exposure condition
US11778528B2 (en) 2020-03-13 2023-10-03 Qualcomm Incorporated Layer 1 based uplink-only cell switch
US20210337487A1 (en) * 2020-04-22 2021-10-28 Qualcomm Incorporated Mixed synchronization signal blocks
CN113825250A (zh) * 2020-06-19 2021-12-21 中国移动通信有限公司研究院 信息发送方法、接收方法及设备
US20220046726A1 (en) * 2020-08-07 2022-02-10 Qualcomm Incorporated Beam-specific coverage enhancement for random access procedure
US20220078855A1 (en) * 2020-09-04 2022-03-10 Qualcomm Incorporated Beam changes during random access procedures
US20230112574A1 (en) * 2021-09-28 2023-04-13 Mediatek Inc. Timing advance acquisition for neighbor cells
WO2023213602A1 (en) * 2022-05-05 2023-11-09 Nokia Technologies Oy Methods for beam specific power control

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016754A1 (en) * 2013-07-29 2015-02-05 Telefonaktiebolaget L M Ericsson (Publ) Methods and devices for contention based random access
WO2015135203A1 (en) * 2014-03-14 2015-09-17 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for a handover using dedicated random access resource
US20170231011A1 (en) * 2016-02-04 2017-08-10 Samsung Electronics Co., Ltd. Method and apparatus for ue signal transmission in 5g cellular communications

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2223456B1 (en) * 2007-12-20 2012-09-12 Telefonaktiebolaget LM Ericsson (publ) Prescheduled retransmission for initial establishment
US8885458B2 (en) * 2011-07-13 2014-11-11 Telefonaktiebolaget L M Ericsson (Publ) Simplified signaling for small data transmissions
EP2756729B1 (en) 2011-09-16 2019-02-20 Telefonaktiebolaget LM Ericsson (publ) Improved contention-free random access procedure in wireless networks
WO2013109177A1 (en) * 2012-01-17 2013-07-25 Telefonaktiebolaget L M Ericsson (Publ) Support of switching tti bundling on/off
US8462688B1 (en) * 2012-01-25 2013-06-11 Ofinno Technologies, Llc Base station and wireless device radio resource control configuration
US9432363B2 (en) * 2014-02-07 2016-08-30 Apple Inc. System and method for using credentials of a first client station to authenticate a second client station
US20190104549A1 (en) 2014-11-26 2019-04-04 Idac Holdings, Inc. Initial access in high frequency wireless systems
WO2016153176A1 (ko) * 2015-03-20 2016-09-29 엘지전자 주식회사 무선 통신 시스템에서 상향링크 동기화를 수행하는 방법 및 이를 위한 장치
US9629095B2 (en) * 2015-03-24 2017-04-18 Ofinno Technologies, Llc Control channel power control in a wireless network using primary and secondary transmit power control indexes
KR102368455B1 (ko) * 2015-05-15 2022-02-28 삼성전자주식회사 무선 통신 시스템에서 랜덤 액세스를 위한 장치 및 방법
US10375739B2 (en) * 2015-08-26 2019-08-06 Panasonic Intellectual Property Corporation Of America Random access procedure for unlicensed cells
EP3565363B1 (en) * 2015-09-28 2023-08-30 Telefonaktiebolaget LM Ericsson (publ) Random access preamble for minimizing pa backoff
EP3400752B1 (en) * 2016-01-07 2019-08-14 Telefonaktiebolaget LM Ericsson (publ.) Signaling reduction for out-of-sync users
US10506605B2 (en) * 2016-01-29 2019-12-10 Research & Business Foundation Sungkyunkwan University Random access method considering a coverage level, subcarrier spacing configuration and/or multi-tone configuration in internet of things environment
US10630410B2 (en) * 2016-05-13 2020-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
CN109644494B (zh) * 2016-06-15 2022-08-12 康维达无线有限责任公司 一种用于下一代网络中的随机接入过程的装置
CN109479331B (zh) * 2016-07-15 2023-04-14 株式会社Ntt都科摩 用户终端和无线通信方法
US10849011B2 (en) * 2016-10-14 2020-11-24 Qualcomm Incorporated Rach procedures using multiple PRACH transmissions
BR112019014484A2 (pt) * 2017-01-13 2020-02-11 Motorola Mobility Llc Método e aparelho para realizar acesso aleatório com base em contenção em uma frequência de portadora
EP3603185A1 (en) * 2017-03-22 2020-02-05 IDAC Holdings, Inc. Delayed handover execution in wireless networks based on a trigger condition
US11647543B2 (en) * 2017-03-23 2023-05-09 Comcast Cable Communications, Llc Power control for random access
US10568050B2 (en) * 2017-05-04 2020-02-18 Ofinno, Llc RACH power adjustment
US10524294B2 (en) * 2017-05-04 2019-12-31 Ofinno, Llc Scheduling request transmission
WO2018204887A1 (en) * 2017-05-04 2018-11-08 Ofinno Technologies, Llc Rach power offset
CN116545601A (zh) * 2017-05-05 2023-08-04 三星电子株式会社 无线通信系统中的用户设备、基站及其方法
US10405281B1 (en) * 2017-06-15 2019-09-03 Sprint Communications Company L.P. Dynamic minimum receiver levels based on carrier aggregation
WO2019030570A1 (en) * 2017-08-09 2019-02-14 Lenovo (Singapore) Pte. Ltd. METHOD AND APPARATUS FOR DETERMINING TRANSMISSION POWER DURING A RANDOM ACCESS PROCEDURE
JP7319962B2 (ja) * 2017-08-10 2023-08-02 アイピーエルエー ホールディングス インコーポレイテッド 新無線におけるコネクテッドモードのモビリティ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016754A1 (en) * 2013-07-29 2015-02-05 Telefonaktiebolaget L M Ericsson (Publ) Methods and devices for contention based random access
WO2015135203A1 (en) * 2014-03-14 2015-09-17 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for a handover using dedicated random access resource
US20170231011A1 (en) * 2016-02-04 2017-08-10 Samsung Electronics Co., Ltd. Method and apparatus for ue signal transmission in 5g cellular communications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Basic handover procedure in NR" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114173360A (zh) * 2021-12-10 2022-03-11 海能达通信股份有限公司 数据发送及确定同步信号块索引的方法、装置及设备
CN114173360B (zh) * 2021-12-10 2023-11-24 海能达通信股份有限公司 数据发送及确定同步信号块索引的方法、装置及设备

Also Published As

Publication number Publication date
US20190053271A1 (en) 2019-02-14
US20230413319A1 (en) 2023-12-21
EP3666018A1 (en) 2020-06-17
CN110999495B (zh) 2023-11-28
US11723063B2 (en) 2023-08-08
WO2019033027A1 (en) 2019-02-14

Similar Documents

Publication Publication Date Title
CN110999495B (zh) 用于随机接入规程中的消息内容和传输的不同配置
CN112913152B (zh) 用于经pdcch指令的rach的多个msg1的方法和装置
CN110999392B (zh) 用于发送随机接入前导码消息的配置
US11323169B2 (en) Simultaneous uplink transmissions using spatial multiplexing
CN112840734B (zh) 两步随机接入过程的消息1
CN113678567B (zh) 与随机接入信道操作相关的技术
CN112889341B (zh) 经修改的回程随机接入信道
US11470645B2 (en) Channel occupancy time aware sensing and resource selection for new radio-unlicensed sidelink
CN110915288B (zh) 多波束上行链路随机接入信道消息
CN113615304B (zh) 用于在随机接入过程中使用多个上行链路资源集合的技术
CN113412669A (zh) 用于配置随机接入传输的技术
CN111034330B (zh) 具有跨频带下行链路/上行链路配对的随机接入规程
CN111316749A (zh) 用于在共享频谱频带中操作的同步通信系统的信号
CN111247866A (zh) 用于先听后讲的保留和挑战方案
WO2020243977A1 (en) Adaptive retransmission for a random access procedure
CN111989945A (zh) 无线电链路监视参考信号资源重新配置
CN113519203B (zh) 用于两步随机接入的干扰管理
CN114731700A (zh) Nr-轻型随机接入响应重复
CN110999422A (zh) 基于规程的上行链路功率控制
CN113366796A (zh) 传输参数的信令
WO2021127962A1 (en) Efficient new radio-light message a repetition in two-step random access channel procedure
WO2020231605A1 (en) Inter-cell coordination of random access channel transmission
CN113711681A (zh) 物理上行链路共享信道时机聚合
CN113615299A (zh) 用于随机接入规程的前置码到解调参考信号映射
WO2020057319A1 (en) User equipment identification in a random access response transmission

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant