CN110995485A - 一种无拓扑结构的社交消息传播范围预测方法 - Google Patents

一种无拓扑结构的社交消息传播范围预测方法 Download PDF

Info

Publication number
CN110995485A
CN110995485A CN201911216093.0A CN201911216093A CN110995485A CN 110995485 A CN110995485 A CN 110995485A CN 201911216093 A CN201911216093 A CN 201911216093A CN 110995485 A CN110995485 A CN 110995485A
Authority
CN
China
Prior art keywords
message
propagation
vector
user
messages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911216093.0A
Other languages
English (en)
Other versions
CN110995485B (zh
Inventor
刘勇
刘子图
李晓坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Bangfucheng Technology Co ltd
Original Assignee
Heilongjiang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heilongjiang University filed Critical Heilongjiang University
Priority to CN201911216093.0A priority Critical patent/CN110995485B/zh
Publication of CN110995485A publication Critical patent/CN110995485A/zh
Application granted granted Critical
Publication of CN110995485B publication Critical patent/CN110995485B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/147Network analysis or design for predicting network behaviour
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/01Social networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L51/00User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
    • H04L51/52User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail for supporting social networking services

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Signal Processing (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • General Health & Medical Sciences (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

一种无拓扑结构的社交消息传播范围预测方法,本发明涉及社交消息传播范围预测方法。本发明的目的是为了解决现有方法并没有考虑消息在传播过程中会存在相互影响的问题。过程为:一、在传播图构造完成之后,使用随机游走方式从传播图中提取若干条该消息可能的传播路径;二、使用word2vec方法计算出消息的传播路径上每个目标用户的初始特征向量;三、得到传播路径上每个目标用户的最终向量表示;四、计算出每个目标消息的传播特征向量;五、计算出其他消息的影响向量;六、将四得到的目标消息的传播特征向量和其他消息的影响向量结合在一起,使用MLP拟合出目标消息的增量传播范围。本发明用于消息传播范围预测领域。

Description

一种无拓扑结构的社交消息传播范围预测方法
技术领域
本发明涉及社交消息传播范围预测方法。
背景技术
近年来随着社交网络的快速发展,越来越多的用户使用新浪微博、推特、facebook等社交网站分享自己的生活。据统计facebook截止到2018年12月31日每月的活跃用户超过23亿[1](Zephoria.The top 20valuable Facebook statistics-up-dated April 2018.[Online],Available:https://zephoria.com/top-15-valuable-facebook-statistics/,January 1,2019.)。由此可见社交网已经成为许多人生活中的一部分。与此同时各大社交平台也在促进着各种消息的快速传播。例如在新浪微博上平均每天有几亿条微博产生。在每天产生的微博中会包含很多重要信息。用户更新一条微博可能包含着用户对某消息的态度和观点[2](Yu L,Cui P,Wang F,et al.From micro to macro:Uncovering andpredicting information cascading process with behavioral dynamics[C]//2015IEEE International Conference on Data Mining.IEEE,2015:559-568.),也可能是分享身边的新鲜事[3](Althoff T,Jindal P,Leskovec J.Online Actions with OfflineImpact:How Online Social Networks Influence Online and Offline User Behavior[C]//Tenth Acm International Conference on Web Search&Data Mining.ACM,2017:537-546.)。预测消息的传播范围在病毒营销、舆情监控、商品推荐等诸多领域都有广泛的应用,因此受到了数据挖掘领域的广泛关注。
目前对消息传播范围进行预测所使用的方法主要有两种,一种是根据消息特征或者消息的特定类型进行传播范围预测。例如可以根据发布的twitter是否带有标志性的图片从而预测它在facebook上的传播范围[4](Cheng J,Adamic L,Dow P A,et al.Cancascades be predicted?[C]//Proceedings of the 23rd international conferenceon World wide web.ACM,2014:925-936.);也可以通过分析发布的twitter是否包含对消息传播有利的内容来预测它的传播范围[6]。然而使用消息特征预测消息传播范围显然不能推广到不同的平台。另一种方法是使用社交网络中用户的拓扑结构[5,6,7,8]([5]L.Weng,F.Menczer,and Y.-Y.Ahn.Predicting successful memes using network andcommunity structure.arXiv preprint arXiv:1403.6199,2014.[6]C.Tan,L.Lee,andB.Pang.The effect of wording on message propagation:Topic-and author-controlled natural experiments on twitter.arXiv preprint arXiv:1405.1438,2014.[7]Li C,Ma J,Guo X,et al.Deepcas:An end-to-end predictor of informationcascades[C]//Proceedings of the 26th international conference on World WideWeb.International World Wide Web Conferences Steering Committee,2017:577-586.[8]Islam,M.R.,Muthiah,S.,Adhikari,B.,Prakash,B.A.,&Ramakrishnan,N.(2018,November).DeepDiffuse:Predicting the'Who'and'When'in Cascades.In 2018IEEEInternational Conference on Data Mining(ICDM)(pp.1055-1060).IEEE.)或消息的转发结构[9](Li C,Guo X,Mei Q.Joint Modeling of Text and Networks for CascadePrediction[C]//Twelfth International AAAI Conference on Web and SocialMedia.2018.)来预测消息传播范围。然而在很多实际应用中,很难获得消息的传播结构以及用户的拓扑结构,通常只能获得消息的传播序列。例如在豆瓣网中,对于电影的影评只显示用户在什么时间评价了电影,而没有表明用户因为受到哪些用户影响才评价该电影。因此,只利用消息的传播序列而不考虑用户的拓扑结构来预测消息的传播范围具有更广泛的应用场景。
相关工作
在社交网中消息的传播范围包括微博/推特在一定时间内的转发数[4,5,10,11,12]([4]Cheng J,Adamic L,Dow P A,et al.Can cascades be predicted?[C]//Proceedingsof the 23rd international conference on World wide web.ACM,2014:925-936.
[5]L.Weng,F.Menczer,and Y.-Y.Ahn.Predicting successful memes usingnetwork and community structure.arXiv preprint arXiv:1403.6199,2014.
[10]Chen G,Kong Q,Mao W,et al.A Partition and Interaction CombinedModel for Social Event Popularity Prediction[C]//2018IEEE InternationalConference on Intelligence and Security Informatics(ISI).IEEE,2018:232-237.
[11]Jenders M,Kasneci G,Naumann F.Analyzing and predicting viraltweets[C]//Proceedings of the 22nd international conference on World Wide Webcompanion.ACM,2013:657-664.
[12]Cheung M,She J,Junus A,et al.Prediction of virality timing usingcascades in social media[J].ACM Transactions on Multimedia Computing,Communications,and Applications(TOMM),2017,13(1):2.),照片的被浏览数[2],视频被点赞的次数[13,14]([13]Wu S,Rizoiu M A,Xie L.Beyond views:Measuring andpredicting engagement in online videos[C]//Twelfth International AAAIConference on Web and Social Media.2018.
[14]Ren Z M,Shi Y Q,Liao H.Characterizing popularity dynamics ofonline videos[J].Physica A:Statistical Mechanics and its Applications,2016,453:236-241.)、或者学术论文在一定时间内被引用的次数[15](Shen H,Wang D,Song C,etal.Modeling and predicting popularity dynamics via reinforced poissonprocesses[C]//Twenty-eighth AAAI conference on artificial intelligence.2014.)等多种情况。相关工作大致可以分为3类:(1)利用消息本身的特征进行预测;(2)利用消息的传播序列和用户的社交关系进行预测;(3)只利用消息的传播序列进行预测。
消息特征或者消息的特定类型可以帮助预测消息的传播范围。例如:文献[4]根据发布的twitter是否带有标志性的图片来预测它在facebook上的转发次数;文献[6]分析twitter是否包含对消息传播有利的内容来预测它的转发次数;文献[13]分析视频在规定的时间段内观看人数的增长量来预测消息被观看的次数。然而消息的传播范围除了消息本身的特征,更多依赖发布消息或者转发消息用户的影响力,因此此类方法预测效果一般,而且不易推广到其他平台。
目前的绝大多数研究都是利用消息的传播序列和用户的社交关系进行预测。该类方法又可分为2种。一类是将消息传播预测视为分类问题,通过预测传播范围是否会超过某个阈值,来预测某个消息是否会变成流行消息[8,13,15]。另一类将消息传播范围预测看作回归问题,预测消息的最终传播范围或者截止到某一时刻的传播范围。此类研究通常使用确定的时间属性[13]、早期消息传播的拓扑结构[7,24]([7]Li C,Ma J,Guo X,et al.Deepcas:An end-to-end predictor of information cascades[C]//Proceedings of the 26thinternational conference on World Wide Web.International World Wide WebConferences Steering Committee,2017:577-586.
[24]Zhang J,Liu B,Tang J,et al.Social influence locality for modelingretweeting behaviors[C]//Proceedings of the Twenty-Third international jointconference on Artificial Intelligence.AAAI Press,2013.)以及用户的拓扑结构[25](Zhang J,Tang J,Zhong Y,et al.Structinf:Mining structural influence fromsocial streams[C]//Thirty-First AAAI Conference on ArtificialIntelligence.2017.),来进行传播范围预测。文献[16,17]([16]Lerman K,Ghosh R,Surachawala T.Social Contagion:An Empirical Study of Information Spread onDigg and Twitter Follower Graphs[J].Computer Science,2012.
[17]Zang C,Cui P,Song C,et al.Structural patterns of informationcascades and their implications for dynamics and semantics[J].2017.)预测消息的宏观传播范围。文献[18](Yu L,Cui P,Wang F,et al.From micro to macro:Uncoveringand predicting information cascading process with behavioral dynamics[C]//2015IEEE International Conference on Data Mining.IEEE,2015:559-568.)学习多数消息传播过程中的普遍拓扑结构预测消息传播范围。此类方法需要消息的传播结构或者用户的拓扑结构,但实际应用中这些信息不易获得。
目前在无拓扑结构结构(用户社交关系)条件下,对消息传播范围预测的研究相对较少。2012年Rodriguez等人[19](Gomez-Rodriguez M,Leskovec J,Krause A.Inferringnetworks of diffusion and influence[J].ACM Transactions on KnowledgeDiscovery from Data(TKDD),2012,5(4):21.)利用用户被影响的时间特征推断消息传播的路径,然后累加路径上的用户数计算传播范围。2012年Aleksandr等人[20](Simma A,Jordan M I.Modeling Events with Cascades of Poisson Processes[J].ComputerScience-Learning,2012:546-555.)提出了基于连续时间和霍克斯进程的随机过程范围预测模型。2014年BOURIGAULT等人[21](Bourigault S,Lagnier C,Lamprier S,etal.Learning social network embeddings for predicting information diffusion[C]//ACM International Conference on Web Search and Data Mining.ACM,2014:393-402)提出了基于学习映射观察动态时间对连续空间的影响,将参与扩散的节点投射到潜在的表达空间。然后计算用户向量的相似性判断用户是否会被另一个用户影响。2016BOURIGAULT等人[22](Bourigault S,Lamprier S,Gallinari P.RepresentationLearning for Information Diffusion through Social Networks:an EmbeddedCascade Model[C]//Proceedings of the Ninth ACM International Conference onWeb Search and Data Mining.ACM,2016.)使用用户表达空间,将用户的影响能力映射到一个多维空间中,通过计算多维空间中两个向量的距离来计算是否会被影响。
发明内容
本发明的目的是为了解决现有方法并没有考虑消息在传播过程中会存在相互影响的问题,而提出一种无拓扑结构的社交消息传播范围预测方法。
一种无拓扑结构的社交消息传播范围预测方法具体过程为:
步骤一、根据消息动作日志中的传播时间差为每个消息构造一个加权的传播图,传播图边上的数字代表用户之间的影响概率,在传播图构造完成之后,使用随机游走方式从传播图中提取若干条该消息可能的传播路径;
步骤二、使用word2vec方法计算出消息的传播路径上每个目标用户的初始特征向量;
步骤三、将消息的传播路径上的每个目标用户的初始特征向量送入Bi-GRU中得到传播路径上每个目标用户的最终向量表示;
所述Bi-GRU为双向门控制循环神经网络;
步骤四、基于传播路径上每个目标用户的最终向量表示和注意力机制,计算出每个目标消息的传播特征向量;
步骤五、构造加权传播图、随机游走、word2vec计算其他消息参与用户的特征向量,然后构造其他消息的传播向量;
基于其他消息的传播向量,使用梯度下降方法计算出其他消息的影响向量;
步骤六、将步骤四得到的目标消息的传播特征向量和其他消息的影响向量结合在一起,使用MLP拟合出目标消息的增量传播范围。
本发明的有益效果为:
本发明研究了无拓扑结构条件下消息传播范围预测问题,提出了一种无拓扑结构的消息传播范围预测方法NT-EP。该方法由4部分构成:(1)利用消息传播随时间衰减的特性为每个消息构造一个加权的传播图,在传播图上使用随机游走策略获取多条传播路径,再使用word2vec方法计算每个用户的特征向量;(2)把目标消息的传播路径替换成用户的特征向量序列输入到双向门控制循环神经网络(Bi-GRU),结合注意力机制计算出目标消息的传播特征向量;(3)考虑到不同消息传播可能存在的相互影响,利用目标消息发生前的其他消息,使用梯度下降方法计算出其他消息的影响向量;(4)将目标消息的传播特征向量和其他消息的影响向量结合在一起,使用多层感知机(MLP)拟合出目标消息的传播范围。
与其他方法相比,NT-EP方法具有2个明显的创新:(1)首次考虑了消息之间的相互影响;(2)利用消息传播随时间衰减特性为每条消息构造加权传播图,抽取传播路径。
NT-EP方法充分考虑了消息之间的相互影响。这是因为在消息的传播过程中,消息与消息之间必然会产生影响。例如:在公布个人所得税起征点改革消息之后的一段时间内,用户会增加对包含具体税率改革内容的消息的关注。因此个人所得税起征点改革消息对有相关内容的消息传播产生了影响。消息传播中的相互影响来自于两方面,一方面来源于消息本身的内容,也就是消息本身是否为热点消息,是否会被普遍关注。另一方面来源于已经参与消息传播的用户对于其他消息传播的影响。在一段时间内,用户使用社交网络的时间上限是固定的。用户浏览某些消息的时间更多意味着用户浏览其他消息的时间会减少。因此本发明方法NT-EP考虑了目标消息发生前后其他消息对目标消息可能存在的各种影响,构造了其他消息的影响向量,结合目标消息的传播特征向量来预测目标消息的传播范围。本发明实验部分比较了利用消息影响与不利用消息影响NT-EP方法的两种变体,证明了消息影响对范围预测的重要性。
NT-EP方法根据传播序列构造加权传播图,来模拟接近真实传播轨迹的传播路径。在无拓扑结构的条件下,只有用户的动作序列。但是用户在接受消息过程中必然会受到之前接受相同消息用户的影响,而且影响强度依赖于接受消息的时间差。假设在消息e传播过程中用户a接受了消息e,在用户a之前用户b和用户c也接受消息e,并且用户b接受的时间早于用户c。那么直觉上用户c对用户a接受消息影响更大。根据消息传播随消息衰减的特性[13],构造有向边b->a和c->a,c->a边上的权值大于b->a,边上的权值代表了影响强度,依赖于两个用户接受消息的时间差。NT-EP方法按照这种方式为每个消息构造一个随时间衰减的传播图,然后使用随机游走策略抽取多条传播路径,这些传播路径更接近于真实的传播轨迹。本发明实验部分构造了NT-EP方法的两种变体,一种利用时间衰减构造传播图,另一种与不利用时间衰减构造传播图,比较了这两种变体的性能,再次证明了消息传播符合时间衰减特性。本发明的贡献如下:
1.提出了一种新的无拓扑结构条件下的消息传播范围预测方法NT-EP。
2.NT-EP利用了消息之间的相互影响,提高了消息传播范围预测的准确性。
3.NT-EP利用了消息传播随时间衰减的特性为消息构造加权传播图,使得抽取的随机游走路径更接近真实的传播轨迹,提高了消息传播范围预测的准确性。
4.实验结果表明,NT-EP能对无拓扑结构条件下的消息传播范围进行准确预测,并且预测效果明显优于现有的方法。
现有方法并没有考虑消息在传播过程中会存在相互影响的情况。本发明利用了消息之间的相互影响,提出了一种无拓扑结构的传播范围预测方法NT-EP。该方法具有以下优势:(a)是一种端对端的学习框架;(b)适用于无拓扑结构;(c)考虑了消息传播过程中的相互作用;(d)抽取的随机游走路径更接近真实的传播路径;(e)结合目标消息的传播向量和其他消息的影响向量,同时利用注意力机制预测传播范围,使预测结果更准确。
本发明研究了无拓扑结构条件下消息传播范围预测问题,提出一种社交消息传播范围预测方法NT-EP。NT-EP首次利用消息之间的相互影响来提高范围预测的准确性。实验结果表明,NT-EP在多个评价指标上优于现有的方法Deepcas和EmbeddingIC。未来研究准备加入用户兴趣向量和用户基本属性进行范围预测,以及增加多层注意力机制尝试改善预测
附图说明
图1为NT-EP方法的框架图;
图2为构造消息传播的加权图;
图3为用户向量不同维度对MSE的影响图;
图4为α选取对MSE的影响图;
图5为μ值选取对MSE的影响图;
图6为K值的选择对MSE的影响图;
图7为T值的选择对MSE的影响图。
具体实施方式
具体实施方式一:本实施方式一种无拓扑结构的社交消息传播范围预测方法具体过程为:
本发明研究了无拓扑结构条件下消息传播范围预测问题,提出了一种无拓扑结构的消息传播范围预测方法NT-EP。该方法由4部分构成:(1)利用消息传播随时间衰减的特性为每个消息构造一个加权的传播图,在传播图上使用随机游走策略获取多条传播路径,再使用word2vec方法计算每个用户的特征向量;(2)把目标消息的传播路径替换成用户的特征向量序列输入到双向门控制循环神经网络(Bi-GRU),结合注意力机制计算出目标消息的传播特征向量;(3)考虑到不同消息传播可能存在的相互影响,利用目标消息发生前的其他消息,使用梯度下降方法计算出其他消息的影响向量;(4)将目标消息的传播特征向量和其他消息的影响向量结合在一起,使用多层感知机(MLP)拟合出目标消息的传播范围。
在无拓扑结构的消息传播预测中,没有社交网络的拓扑结构,只有用户的动作日志L={(u,i,t)|u∈V,i∈I,t∈T},其中V为社交网中用户集合,I为社交网中发生的消息集合,T为用户参与消息传播的时间区间,(u,i,t)表示用户u在时间t参与了消息i(例如:用户u对消息i转发、点赞等)。对于给定的目标消息ia,有消息ia从发生时刻it到当前时刻tc的动作日志
Figure BDA0002299555700000071
在一段时间△t之后,还可以搜集到消息ia截止到时间tc+Δt的动作日志
Figure BDA0002299555700000072
在舆情监控中,对突发消息提前预警可以有助于政府和主管部门提前采取干预措施。因此本发明研究问题定义如下:对刚发生不久的消息ia,根据消息ia的当前动作日志
Figure BDA0002299555700000073
预测消息ia在未来一段时间△t之后的增量传播范围,即
Figure BDA0002299555700000074
NT-EP传播范围预测框架
对于无拓扑结构下社交消息传播预测问题,本发明提出了一种新的社交消息传播范围预测方法NT-EP,其框架如图1所示。
步骤一、根据消息动作日志中的传播时间差为每个消息构造一个加权的传播图,如图1中(a)、(b)所示。传播图边上的数字代表用户之间的影响概率,在传播图构造完成之后,使用随机游走方式从传播图中提取若干条该消息可能的传播路径,如图1中(c)所示;
步骤二、使用word2vec方法计算出消息的传播路径上每个目标用户的初始特征向量;
步骤三、将消息的传播路径上的每个目标用户的初始特征向量送入Bi-GRU中得到传播路径上每个目标用户的最终向量表示,如图1中(d)所示。
所述Bi-GRU为双向门控制循环神经网络;
步骤四、基于传播路径上每个目标用户的最终向量表示和注意力机制,计算出每个目标消息的传播特征向量,如图1中(j)所示。
步骤五、在消息传播过程中,不同消息之间会存在相互影响。因此也必须计算目标消息发生前其他消息的可能影响。如图1中(e),(f),(g),(h)所示,使用和目标消息类似的方式,构造加权传播图、随机游走、word2vec计算其他消息参与用户的特征向量,然后构造其他消息的传播向量;
基于其他消息的传播向量,使用梯度下降方法计算出其他消息的影响向量,如图1中(i)所示;
步骤六、将步骤四得到的目标消息的传播特征向量和其他消息的影响向量结合在一起,使用MLP拟合出目标消息的增量传播范围,如图1中(l),(m)所示。
具体实施方式二:本实施方式与具体实施方式一不同的是,所述步骤一中根据消息动作日志中的传播时间差为每个消息构造一个加权的传播图,如图1中(a)、(b)所示。传播图边上的数字代表用户之间的影响概率,在传播图构造完成之后,使用随机游走方式从传播图中提取若干条该消息可能的传播路径,如图1中(c)所示;具体过程为:
传播路径选取
给定的动作日志通常对每个消息的动作按照传播时间排序,如图2中(a)所示。用户V1在时间1接受了消息A1,用户V2在时间2接受了消息A1,……。从给定的动作日志中无法获得消息真实的传播轨迹。因为真实的其情况可能是:用户V3在时间3接受了消息A1可能是因为用户V3和用户V1是朋友,并且用户V3看到了用户V1接受了消息A1,从而影响用户V3也接受了消息A1。用户V3不认识用户V2,V3接受了消息A1从来没有受到用户V2的影响。这样的真实传播轨迹在没有用户社交关系的条件下是无法获得的。
但是根据社交网上消息传播呈指数衰减特性[13],有理由认为当用户V3接受消息A1的时候,用户V2影响的概率大于用户V1影响的概率,因为V2接受消息A1的时间离V3接受消息A1的时间更近。
因此根据两个用户接受消息的时间差来刻画两个用户的影响。假设用户V1和V2接受消息的时间分别为t1和t2,并且t1<t2,则用户V1对V2的影响概率由公式(1)定义:
Figure BDA0002299555700000091
其中,μ为调整时间差影响的超参数,实验中给出了该参数的选择过程;
计算出每个消息中用户之间的影响概率后,根据影响概率为每个消息构造一个加权图,来模拟该消息的真实传播轨迹,如图2中(b)所示,如果在消息A1中用户V1接受消息A1的时间早于用户V2接受消息A1的时间,则从用户V1引出一条边指向用户V2,边上的权值表示用户V1对用户V2的影响概率,由(1)计算。在得到加权图后,再对加权图归一化,使得每个节点到其他节点的边的概率和为1,如图2中(c)所示;为了模拟真实的传播路径,在归一化的加权图上根据边上的概率进行随机游走,每次游走的开始节点都是接受消息的第一个用户,例如图2中(c)中的V1
针对每个消息,采样K条路径,并且每条路径的长度为T,即每条路径最多包含T个节点;当游走过程中遇到某条路径长度小于T的时候,在后面添加若干补充位,让每条路径长度都等于T;
在抽取了所有消息的传播路径后,使用词向量方法word2vec计算每个用户的初始特征向量。
其它步骤及参数与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同的是,所述步骤二中使用word2vec方法计算出消息的传播路径上每个目标用户的初始的特征向量;具体过程为:
在抽取了所有消息的传播路径后,将每条传播路径当作一个句子,路径上的每个用户当作句子中的单词,输入到word2vec[23](Le Q,Mikolov T.Distributedrepresentations of sentences and documents[C]//International conference onmachine learning.2014:1188-1196.)的skip-gram模型中,得到每个目标用户的初始特征向量;假设用户初始的特征向量的维度为H。
其它步骤及参数与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是,所述步骤三中将消息的传播路径上的每个目标用户的初始特征向量送入Bi-GRU中得到传播路径上每个目标用户的最终向量表示;具体过程为:
因为循环神经网络适合处理时序数据,本发明采用门控循环单元(GRU)来捕捉目标消息的传播过程。对于每条传播路径,从前向后处理路径上的每个用户,第i个用户的输入为用户i的初始特征向量xi∈RH,GRU对初始特征向量xi进行计算后更新隐藏状态hi=GRU(xi,hi-1),其中hi-1∈RH表示GRU更新前的隐藏状态,hi∈RH表示GRU更新后的隐藏状态。
其中,RH为用户向量的维度;
为了知道消息在传播过程中会被哪些用户影响,使用相同的方法再从后向前处理路径上的每个用户。因此本发明使用的是双向GRU(Bi-GRU),拼接隐藏状态的输出得到对应用户的最终向量表示。
具体通过如下公式对用户向量进行更新,
Figure BDA0002299555700000101
其中,W和U作为训练期间学习的GRU参数,ri为更新门,Wr为权重参数,Ur为权重参数,br为权重参数,σ为激活函数,ui为重置门,Wu为权重参数,Uu为权重参数,bu为权重参数,
Figure BDA0002299555700000102
为候选状态,Wh为权重参数,Uh为权重参数,bh为权重参数,yi为输出层的输出,Wo为权重参数;hi为隐藏状态;i表示传播路径中第i个节点;用户节点向量xi和隐藏状态hi-1一起作为Bi-GRU模型输入,并通过GRU的公式(5)计算更新权重参数;
如图1中(d)所示,每条传播路径经过GRU处理后,会得到该路径上每个目标用户的最终向量表示(m1,m2,m3,……)。
其它步骤及参数与具体实施方式一至三之一相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是,所述步骤四中基于传播路径上每个目标用户的最终向量表示和注意力机制,计算出每个目标消息的传播特征向量,如图1中(j)所示。具体过程为:
使用注意力机制合并用户的最终向量表示,得到该传播路径的向量表示,最后对所有传播路径的向量表示累加求和,得到目标消息的传播特征向量h(a),如公式(6)所示:
Figure BDA0002299555700000111
其中,K代表消息a上抽取的传播路径数,T表示每条传播路径的长度,mki是通过GRU得到的第k条路径上第i个用户的最终用户向量,λi为参数。
为了区分同一条路径上不同节点对消息传播向量的作用,使用注意力机制,设T个节点的权重分别为λ1,λ2,…,λT,并且满足
Figure BDA0002299555700000112
参数λ1,λ2,…,λT通过端对端的学习获得。
其它步骤及参数与具体实施方式一至四之一相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是,所述步骤五中在消息传播过程中,不同消息之间会存在相互影响。因此也必须计算目标消息发生前其他消息的可能影响。如图1中(e),(f),(g),(h)所示,使用和目标消息类似的方式,构造加权传播图、随机游走、word2vec方法计算其他消息参与用户的特征向量(参照步骤一步骤二),然后构造其他消息的传播向量;
基于其他消息的传播向量,使用梯度下降方法计算出其他消息的影响向量,如图1中(i)所示;具体过程为:
构造加权传播图、随机游走;具体过程为:
传播路径选取
给定的动作日志通常对每个消息的动作按照传播时间排序,如图2中(a)所示。用户V1在时间1接受了消息A1,用户V2在时间2接受了消息A1,……。从给定的动作日志中无法获得消息真实的传播轨迹。因为真实的其情况可能是:用户V3在时间3接受了消息A1可能是因为用户V3和用户V1是朋友,并且用户V3看到了用户V1接受了消息A1,从而影响用户V3也接受了消息A1。用户V3不认识用户V2,V3接受了消息A1从来没有受到用户V2的影响。这样的真实传播轨迹在没有用户社交关系的条件下是无法获得的。
但是根据社交网上消息传播呈指数衰减特性[13],有理由认为当用户V3接受消息A1的时候,用户V2影响的概率大于用户V1影响的概率,因为V2接受消息A1的时间离V3接受消息A1的时间更近。
因此根据两个用户接受消息的时间差来刻画两个用户的影响。假设用户V1和V2接受消息的时间分别为t1和t2,并且t1<t2,则用户V1对V2的影响概率定义为:
Figure BDA0002299555700000121
其中,μ为调整时间差影响的超参数,实验中给出了该参数的选择过程;
计算出每个消息中用户之间的影响概率后,根据影响概率为每个消息构造一个加权图,来模拟该消息的真实传播轨迹,如图2中(b)所示,如果在消息A1中用户V1接受消息A1的时间早于用户V2接受消息A1的时间,则从用户V1引出一条边指向用户V2,边上的权值表示用户V1对用户V2的影响概率,由(1)计算。在得到加权图后,再对加权图归一化,使得每个节点到其他节点的边的概率和为1,如图2中(c)所示;为了模拟真实的传播路径,在归一化的加权图上根据边上的概率进行随机游走,每次游走的开始节点都是接受消息的第一个用户,例如图2中(c)中的V1
针对每个消息,采样K条路径,并且每条路径的长度为T,即每条路径最多包含T个节点;当游走过程中遇到某条路径长度小于T的时候,在后面添加若干补充位,让每条路径长度都等于T;
在抽取了所有消息的传播路径后,使用词向量方法word2vec计算每个用户的初始特征向量。
使用word2vec方法计算其他消息参与用户的特征向量;具体过程为:
在抽取了所有消息的传播路径后,将每条传播路径当作一个句子,路径上的每个用户当作句子中的单词,输入到word2vec[23](Le Q,Mikolov T.Distributedrepresentations of sentences and documents[C]//International conference onmachine learning.2014:1188-1196.)的skip-gram模型中,得到每个目标用户的初始特征向量;假设用户初始的特征向量的维度为H。
其他消息影响向量
社交网中消息与消息之间存在着不同程度的联系。一个消息的传播可能促进或者抑制另一个消息的传播。例如:国家个人所得方案公布时,短时间内对税率信息查询有促进传播的作用。此外,用户上网浏览消息的时间有限,对于某些消息的关注增加,对其他消息的关注就会降低。
下面介绍其他消息对目标消息的影响能力。该影响能力通过一个影响向量来刻画。
设当前的目标消息为a,a发生时间为ta;如果消息e在消息a之前发生,并且消息e的发生时间与消息a的发生时间距离较近,那么消息e的传播很可能会对消息a的传播产生影响;基于这一思想,获取在ta之前很短的时间段τ内发生的影响消息集合Sa={e1,e2,…,em},该集合内每个消息对消息a传播的影响都需要考虑;
假设影响消息集合Sa={e1,e2,…,em}中每个消息截止到时间ta时刻的传播范围分别为n1,n2,…,nm,发生时间分别为t1,t2,…,tm,并且满足t1<t2<…<tm<ta,ta-t1<τ;对影响消息集合Sa={e1,e2,…,em}中的某个消息ei来说,消息ei的影响能力与传播能力共同作用决定了消息ei在ta时的传播范围ni
消息ei影响范围ni越大,消息ei的影响能力越强。这是因为在某段时间内若消息ei成为热点消息,在短时间内有巨大的浏览量,用户对当前目标消息的浏览量会有所减少。根据这一思想,使用d维向量pi表示消息ei的传播能力,使用d维向量qi表示消息ei的影响向量,构造下面的目标函数:
Figure BDA0002299555700000131
式中,m为Sa中的消息数量;
消息ei的传播向量pi来自于参与消息ei的用户传播能力,因此消息ei的传播向量pi表示为:
Figure BDA0002299555700000132
其中,xj是使用word2vec(词向量)的skip-gram(跳字模型)模型从传播路径上得到的用户向量,j为参与消息传播的用户数量;
因为消息ei的传播范围为ni,所以有ni个不同的用户向量xj;对于消息ei的影响向量qi,本发明使用梯度下降算法求解,使公式(2)的目标函数最小化;
在得到影响消息集合Sa={e1,e2,…,em}中每个消息的影响向量{q1,q2,…,qm}后,使用如下方式计算整个消息集合Sa对当前目标消息a的影响向量qSa
Figure BDA0002299555700000141
式中,qj为影响消息集合的影响向量,tj为影响消息集合中每个消息发生的初始时间。
其它步骤及参数与具体实施方式一至五之一相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同的是,所述对于消息ei的影响向量qi,本发明使用梯度下降算法求解,使公式(2)的目标函数最小化,具体过程为:具体算法如算法1所示。
将其他消息的传播向量pi,i=1.2….,m;其他消息当前传播范围ni,i=1.2….,m;学习率
Figure BDA0002299555700000142
作为是算法的输入;
第一步初始化qi,i=1.2….,m,然后多轮重复迭代
Figure BDA0002299555700000143
Figure BDA0002299555700000144
更新qi的值使公式(2)的差值最小;
式中,Δg为中间变量;
Figure BDA0002299555700000145
为学习率。
Figure BDA0002299555700000146
Figure BDA0002299555700000151
其它步骤及参数与具体实施方式一至六之一相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同的是,所述步骤六中将步骤四得到的目标消息的传播特征向量和其他消息的影响向量结合在一起,使用MLP拟合出目标消息的传播范围,如图1中(l),(m)所示;具体过程为:
目标消息a的传播范围依赖于目标消息a的传播向量h(a)和其他消息的影响向量qSa,将目标消息a的传播向量h(a)和其他消息的影响向量qSa融合为一条向量l(a),表达式如下:
l(a)=h(a)+αqSa (7)
其中,α为其他消息影响向量的权重,实验部分给出了参数α的选择过程;
将融合后的向量l(a)作为多层感知机的输入,输出预测的目标消息a的传播范围f(a)=MLP(l(a));
其中MLP为一个多层感知机,f(a)为目标消息a的传播范围。
其它步骤及参数与具体实施方式一至七之一相同。
采用以下实施例验证本发明的有益效果:
实施例一:
实验结果及分析
实验数据
本发明中使用两套无拓扑结构的传播数据进行实验并对结果评估。数据描述如表1所示。
微博[24]:基于用户关系的信息分享、传播的社交媒体。从论文中提供的数据中选取在2012.9.28到2012.10.29之间发生的1280个消息的动作日志。截取的数据中包含261839个用户,1280个消息,以及933683条传播记录。
Flixster[12]:是一个电影社交网站,可以让用户分享电影的评分,讨论新的电影。使用1000个消息的动作日志。其中包含109816个用户和581202条传播记录。
表1实验数据描述
Figure BDA0002299555700000152
Figure BDA0002299555700000161
实验中预测消息传播范围时通过调整时间长度t和Δt来选择预测的时间区间。t表示消息从发生开始到当前时刻所经过的时间,也就是消息已经发生了多久。Δt表示在t时间之后的时间长度。实验中选择t与Δt的大小分别为12小时、24小时、36小时来对消息的传播范围进行预测。实验中需要进行其他消息影响向量和用户特征向量占用空间存储。实验中将数据按7:1:2的比例分为训练集、验证集、测试集。数据集中每个消息的全部动作日志只出现在训练集、测试集、验证集中的一个。在训练集中训练模型,在验证集中调整超参数,在测试集中测试方法的性能。
评估指标
本发明中使用均方误差(MSE)来评估传播范围预测效果。这是回归任务中常见的评估指标。它是由预测值与真实值差的平方和求平均得到,定义如下:
Figure BDA0002299555700000162
其中pi为实际传播用户数,
Figure BDA0002299555700000163
为预测值,Deepcas[7]中为了避免误差的数值过大导致MSE值过大,将pi取对数后再计算均方误差的大小,即pi=log2(Δsi+1),其中Δsi为实际传播用户数。本发明采用与Deepcas相同的处理方式。
本发明中使用精确率、召回率、F1-score来评估消息热点预测效果。在热点消息预测时,只进行采样12小时的传播并预测消息的最终传播范围。实验中设置一个阈值,超过阈值会被认为是热点消息。实验中选择的阈值为1000。具体的定义如下:
TP(真正例):预测传播范围大于阈值,并且实际传播范围大于阈值的消息数。
FN(假负例):预测传播范围大于阈值,但实际传播范围小于阈值的消息数。
FP(假正例):预测传播范围小于阈值,但实际传播范围大于阈值的消息数。
TN(真负例):预测传播范围小于阈值,并且实际传播范围小于阈值的消息数。
精确率P(precession):在所有被预测为热点的消息中,实际为热点的消息所占的百分比,如下式所示。
Figure BDA0002299555700000164
召回率R(recall):在所有实际为热点的消息中,被预测为热点的消息所占的百分比,如下式所示。
Figure BDA0002299555700000171
F1分数(F1-score):统计学中同时兼顾精确率和召回率的一种指标,如下式所示。
Figure BDA0002299555700000172
对比方法
EmbeddingIC[22]:一种嵌入版本的独立级联模型,充分考虑用户之间的相互影响,把用户嵌入到隐藏投影空间中,借助EM算法求发送方和接收方的嵌入向量,推测传播概率。根据计算出的传播概率计算最终消息传播范围。
Deepcas[7]:一种消息传播范围预测方法。通过随机采样获得消息扩散的路径,使用GRU网络将路径转换为路径的表达向量。最后通过注意力机制来预测消息的传播范围。
NT-EP-T:NT-EP的一种变体。通过时间衰减游走采样传播路径,不利用消息的相互影响。
NT-EP-R:NT-EP的一种变体。不使用时间衰减游走(使用传统的随机游走)采样传播路径,但是利用消息的相互影响。
实验中,传播序列的选择算法使用C语言编写,在VS环境下编译运行,对比算法也使用C语言编写。
NT-EP中神经网络部分使用python语言和tensorflow框架编写,在Anaconda3环境下编译运行。评价标准也使用python语言进行处理。所使用的台式机环境为Intel(R)Corei7-7700K 4.2GHz CPU,16GB RAM,操作系统为Window10。
参数选择
在验证集中调整模型的超参数,包括用户向量维度d,其他消息影响向量的权重α,时间差的影响参数μ,学习率λ,消息抽取的路径数K,路径长度T等。实验中设置算法1中计算消息影响向量的学习率λ为0.0005。
参数选择均使用微博数据进行实验,采样12小时传播序列,预测未来12小时传播范围。先随机固定其他参数来考察用户向量维度d对MSE的影响,实验结果如图3所示。随着维度d的增加,MSE的值在逐渐减小,表明预测效果越来越好。但当维度超过50时,预测效果改善并不明显。为了平衡预测效果和运行时间,本发明后面的所有实验都采用用户向量维度d=50。
其他参数的选取也采用上述类似的处理方式。在选取其他消息影响向量的权重α时,固定用户向量维度d=50。图4为α选取过程,选取α时在0到1之间每0.2取值,其中α=0.8时MSE的取值最优,因此本发明后面的所有实验都采用α=0.8。图5给出了参数μ的选择过程,先固定用户向量维度d=50和α=0.8,其他参数随机选择,观察参数μ对MSE的影响,在μ=1时MSE值最小。因此后续实验选择μ=1时作为时间衰减游走采样的参数值。传播路径数量K与传播路径长度T的选择过程如图6和图7所示,因此后续实验中固定K=200和T=10作为传播路径数量和传播路径长度。
实验结果
表2微博数据传播范围预测结果
Figure BDA0002299555700000181
表3Flixster数据集传播范围预测结果
Figure BDA0002299555700000182
表4微博数据精确率、召回率、F1-score结果
Figure BDA0002299555700000183
Figure BDA0002299555700000191
不同方法对传播范围的预测效果如表2和表3所示。其中表2为微博数据上的实验结果,实验中分别采样12小时、24小时、36小时,然后对未来12小时、24小时、36小时的传播范围预测。表3为Flixster数据集的实验结果,实验中分别采样10天、20天、30天,然后对未来10天、20天、30的传播范围预测。从表2和表3中可以看出,本发明方法NT-EP、及其变体NT-EP-R和NT-EP-T预测效果均优于对比方法Deepcas和EmbeddingIC。表3中的实验结果好于表2中的结果,其原因在于微博数据比Flixster数据的消息数更多,每个消息的传播范围更广,能让各种模型学习的更充分。
Embedding-IC方法所在行只有一个实验结果,因为Embedding-IC方法和时间长度Δt无关。Embedding-IC把所有用户映射到一个向量空间中,通过距离计算用户之间的影响概率。该方法考虑所有用户对当前用户的影响,导致许多无关的用户也进行计算,但实际上激活时间上相近的用户才可能产生影响,所以Embedding-IC方法很容易导致过拟合,预测效果较差。Deepcas使用传统随机游走采样传播路径,没有考虑时间差对传播消息的影响,而且Deepcas也没有考虑消息之间的相互影响,因此预测效果并不理想。
方法变体NT-EP-T通过时间衰减游走采样传播路径,不利用消息的相互影响预测时间传播范围。从表2和表3可以看出,NT-EP-T优于Deepcas,说明时间差对消息的传播起重要作用。方法变体NT-EP-R利用消息的相互影响,但不使用时间衰减游走采样传播路径。从表2和3可以看出,NT-EP-T优于Deepcas,说明消息之间确实存在相互影响。NT-EP方法同时考虑消息的相互影响与时间差对消息传播的作用,预测效果明显优于Deepcas、NT-EP-T和NT-EP-R。
为了进一步验证本发明方法的有效性,也对热点消息进行了预测,实验结果如表4所示。实验中使用微博数据采样12小时,对未来12小时、24小时、36小时是否会成为热点消息进行预测,在实验中设置的阈值为1000。如果传播范围预测值大于阈值,则预测为热点消息。实验结果再次表明本发明方法NT-EP优于现有方法,也再次证明了消息之间的相互影响确实存在以及消息传播具有时间衰减等特性。
本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,本领域技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (8)

1.一种无拓扑结构的社交消息传播范围预测方法,其特征在于:所述方法具体过程为:
步骤一、根据消息动作日志中的传播时间差为每个消息构造一个加权的传播图,传播图边上的数字代表用户之间的影响概率,在传播图构造完成之后,使用随机游走方式从传播图中提取若干条该消息可能的传播路径;
步骤二、使用word2vec方法计算出消息的传播路径上每个目标用户的初始特征向量;
步骤三、将消息的传播路径上的每个目标用户的初始特征向量送入Bi-GRU中得到传播路径上每个目标用户的最终向量表示;
所述Bi-GRU为双向门控制循环神经网络;
步骤四、基于传播路径上每个目标用户的最终向量表示和注意力机制,计算出每个目标消息的传播特征向量;
步骤五、构造加权传播图、随机游走、word2vec计算其他消息参与用户的特征向量,然后构造其他消息的传播向量;
基于其他消息的传播向量,使用梯度下降方法计算出其他消息的影响向量;
步骤六、将步骤四得到的目标消息的传播特征向量和其他消息的影响向量结合在一起,使用MLP拟合出目标消息的增量传播范围。
2.根据权利要求1所述一种无拓扑结构的社交消息传播范围预测方法,其特征在于:所述步骤一中根据消息动作日志中的传播时间差为每个消息构造一个加权的传播图,传播图边上的数字代表用户之间的影响概率,在传播图构造完成之后,使用随机游走方式从传播图中提取若干条该消息可能的传播路径;具体过程为:
假设用户V1和V2接受消息的时间分别为t1和t2,并且t1<t2,则用户V1对V2的影响概率由公式(1)定义:
Figure FDA0002299555690000011
其中,μ为调整时间差影响的超参数;
计算出每个消息中用户之间的影响概率后,根据影响概率为每个消息构造一个加权图,在得到加权图后,再对加权图归一化,使得每个节点到其他节点的边的概率和为1;
在归一化的加权图上根据边上的概率进行随机游走,每次游走的开始节点都是接受消息的第一个用户;
针对每个消息,采样K条路径,并且每条路径的长度为T,即每条路径最多包含T个节点;当游走过程中遇到某条路径长度小于T的时候,在后面添加若干补充位,让每条路径长度都等于T。
3.根据权利要求1或2所述一种无拓扑结构的社交消息传播范围预测方法,其特征在于:所述步骤二中使用word2vec方法计算出消息的传播路径上每个目标用户的初始的特征向量;具体过程为:
在抽取了所有消息的传播路径后,将每条传播路径当作一个句子,路径上的每个用户当作句子中的单词,输入到word2vec的skip-gram模型中,得到每个目标用户的初始特征向量;用户初始的特征向量的维度为H。
4.根据权利要求3所述一种无拓扑结构的社交消息传播范围预测方法,其特征在于:所述步骤三中将消息的传播路径上的每个目标用户的初始特征向量送入Bi-GRU中得到传播路径上每个目标用户的最终向量表示;具体过程为:
Figure FDA0002299555690000021
其中,W和U作为训练期间学习的GRU参数,ri为更新门,Wr为权重参数,Ur为权重参数,br为权重参数,σ为激活函数,ui为重置门,Wu为权重参数,Uu为权重参数,bu为权重参数,
Figure FDA0002299555690000022
为候选状态,Wh为权重参数,Uh为权重参数,bh为权重参数,yi为输出层的输出,Wo为权重参数;hi为隐藏状态;i表示传播路径中第i个节点;用户节点向量xi和隐藏状态hi-1一起作为Bi-GRU模型输入,并通过GRU的公式(5)计算更新权重参数;
每条传播路径经过GRU处理后,会得到该路径上每个目标用户的最终向量表示(m1,m2,m3,……)。
5.根据权利要求4所述一种无拓扑结构的社交消息传播范围预测方法,其特征在于:所述步骤四中基于传播路径上每个目标用户的最终向量表示和注意力机制,计算出每个目标消息的传播特征向量;具体过程为:
使用注意力机制合并用户的最终向量表示,得到该传播路径的向量表示,最后对所有传播路径的向量表示累加求和,得到目标消息的传播特征向量h(a),如公式(6)所示:
Figure FDA0002299555690000031
其中,K代表消息a上抽取的传播路径数,T表示每条传播路径的长度,mki是通过GRU得到的第k条路径上第i个用户的最终用户向量,λi为参数。
6.根据权利要求5所述一种无拓扑结构的社交消息传播范围预测方法,其特征在于:所述步骤五中构造加权传播图、随机游走、word2vec方法计算其他消息参与用户的特征向量,然后构造其他消息的传播向量;
基于其他消息的传播向量,使用梯度下降方法计算出其他消息的影响向量;具体过程为:
设当前的目标消息为a,a发生时间为ta;如果消息e在消息a之前发生,并且消息e的发生时间与消息a的发生时间距离近,那么消息e的传播会对消息a的传播产生影响;获取在ta之前时间段τ内发生的影响消息集合Sa={e1,e2,…,em};
假设影响消息集合Sa={e1,e2,…,em}中每个消息截止到时间ta时刻的传播范围分别为n1,n2,…,nm,发生时间分别为t1,t2,…,tm,并且满足t1<t2<…<tm<ta,ta-t1<τ;
对影响消息集合Sa={e1,e2,…,em}中的某个消息ei来说,消息ei的影响能力与传播能力共同作用决定了消息ei在ta时的传播范围ni
使用d维向量pi表示消息ei的传播能力,使用d维向量qi表示消息ei的影响向量,构造下面的目标函数:
Figure FDA0002299555690000032
式中,m为Sa中的消息数量;
消息ei的传播向量pi来自于参与消息ei的用户传播能力,因此消息ei的传播向量pi表示为:
Figure FDA0002299555690000033
其中,xj是使用word2vec的skip-gram模型从传播路径上得到的用户向量,j为参与消息传播的用户数量;
因为消息ei的传播范围为ni,所以有ni个不同的用户向量xj;对于消息ei的影响向量qi,使用梯度下降算法求解,使公式(2)的目标函数最小化;
在得到影响消息集合Sa={e1,e2,…,em}中每个消息的影响向量{q1,q2,…,qm}后,使用如下方式计算整个消息集合Sa对当前目标消息a的影响向量qSa
Figure FDA0002299555690000041
式中,qj为影响消息集合的影响向量,tj为影响消息集合中每个消息发生的初始时间。
7.根据权利要求6所述一种无拓扑结构的社交消息传播范围预测方法,其特征在于:所述对于消息ei的影响向量qi,使用梯度下降算法求解,使公式(2)的目标函数最小化,具体过程为:
将其他消息的传播向量pi,i=1.2….,m;其他消息当前传播范围ni,i=1.2….,m;学习率
Figure FDA0002299555690000042
作为输入;
第一步初始化qi,i=1.2….,m,然后多轮重复迭代
Figure FDA0002299555690000043
Figure FDA0002299555690000044
更新qi的值使公式(2)的差值最小;
式中,Δg为中间变量;
Figure FDA0002299555690000045
为学习率。
8.根据权利要求7所述一种无拓扑结构的社交消息传播范围预测方法,其特征在于:所述步骤六中将步骤四得到的目标消息的传播特征向量和其他消息的影响向量结合在一起,使用MLP拟合出目标消息的传播范围;具体过程为:
目标消息a的传播范围依赖于目标消息a的传播向量h(a)和其他消息的影响向量qSa,将目标消息a的传播向量h(a)和其他消息的影响向量qSa融合为一条向量l(a),表达式如下:
l(a)=h(a)+αqSa (7)
其中,α为其他消息影响向量的权重;
将融合后的向量l(a)作为多层感知机的输入,输出预测的目标消息a的传播范围f(a)=MLP(l(a));
其中MLP为一个多层感知机,f(a)为目标消息a的传播范围。
CN201911216093.0A 2019-12-02 2019-12-02 一种无拓扑结构的社交消息传播范围预测方法 Active CN110995485B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911216093.0A CN110995485B (zh) 2019-12-02 2019-12-02 一种无拓扑结构的社交消息传播范围预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911216093.0A CN110995485B (zh) 2019-12-02 2019-12-02 一种无拓扑结构的社交消息传播范围预测方法

Publications (2)

Publication Number Publication Date
CN110995485A true CN110995485A (zh) 2020-04-10
CN110995485B CN110995485B (zh) 2022-03-04

Family

ID=70089434

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911216093.0A Active CN110995485B (zh) 2019-12-02 2019-12-02 一种无拓扑结构的社交消息传播范围预测方法

Country Status (1)

Country Link
CN (1) CN110995485B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112182423A (zh) * 2020-10-14 2021-01-05 重庆邮电大学 一种基于注意力机制的信息传播演化趋势预测方法
CN112256756A (zh) * 2020-10-22 2021-01-22 重庆邮电大学 一种基于三元关联图和知识表示的影响力发现方法
CN112712210A (zh) * 2020-12-30 2021-04-27 深圳市网联安瑞网络科技有限公司 突发性话题传播规模预测方法、系统、处理终端、介质
CN113408588A (zh) * 2021-05-24 2021-09-17 上海电力大学 一种基于注意力机制的双向gru轨迹预测方法
CN117057943A (zh) * 2023-07-10 2023-11-14 齐齐哈尔大学 一种节点特征感知的时序社交网络影响力最大化方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120158630A1 (en) * 2010-12-17 2012-06-21 Microsoft Corporation Information propagation probability for a social network
US20150350149A1 (en) * 2014-06-02 2015-12-03 International Business Machines Corporation Method for real-time viral event prediction from social data
WO2016041376A1 (zh) * 2014-09-18 2016-03-24 华为技术有限公司 社交网络中预测信息传播的方法及设备
CN109213953A (zh) * 2018-08-13 2019-01-15 华东师范大学 一种社交网络多信息传播模型的建模方法
US20190196897A1 (en) * 2017-01-18 2019-06-27 Fujitsu Limited Influence range specifying method, influence range specifying apparatus, and storage medium
WO2019183191A1 (en) * 2018-03-22 2019-09-26 Michael Bronstein Method of news evaluation in social media networks

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120158630A1 (en) * 2010-12-17 2012-06-21 Microsoft Corporation Information propagation probability for a social network
US20150350149A1 (en) * 2014-06-02 2015-12-03 International Business Machines Corporation Method for real-time viral event prediction from social data
WO2016041376A1 (zh) * 2014-09-18 2016-03-24 华为技术有限公司 社交网络中预测信息传播的方法及设备
US20190196897A1 (en) * 2017-01-18 2019-06-27 Fujitsu Limited Influence range specifying method, influence range specifying apparatus, and storage medium
WO2019183191A1 (en) * 2018-03-22 2019-09-26 Michael Bronstein Method of news evaluation in social media networks
CN109213953A (zh) * 2018-08-13 2019-01-15 华东师范大学 一种社交网络多信息传播模型的建模方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
王乐等: "社交网络中信息传播预测的研究综述", 《信息网络安全》 *
王瑞: "《CNKI优秀硕士学位论文全文库》", 15 April 2018 *
王瑞等: "基于用户影响与兴趣的社交网信息传播模型", 《通信学报》 *
胡长军等: "在线社交网络信息传播研究综述", 《电子与信息学报》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112182423A (zh) * 2020-10-14 2021-01-05 重庆邮电大学 一种基于注意力机制的信息传播演化趋势预测方法
CN112182423B (zh) * 2020-10-14 2022-09-27 重庆邮电大学 一种基于注意力机制的网络舆情事件演化趋势预测方法
CN112256756A (zh) * 2020-10-22 2021-01-22 重庆邮电大学 一种基于三元关联图和知识表示的影响力发现方法
CN112256756B (zh) * 2020-10-22 2022-09-23 重庆邮电大学 一种基于三元关联图和知识表示的影响力发现方法
CN112712210A (zh) * 2020-12-30 2021-04-27 深圳市网联安瑞网络科技有限公司 突发性话题传播规模预测方法、系统、处理终端、介质
CN113408588A (zh) * 2021-05-24 2021-09-17 上海电力大学 一种基于注意力机制的双向gru轨迹预测方法
CN113408588B (zh) * 2021-05-24 2023-02-14 上海电力大学 一种基于注意力机制的双向gru轨迹预测方法
CN117057943A (zh) * 2023-07-10 2023-11-14 齐齐哈尔大学 一种节点特征感知的时序社交网络影响力最大化方法及系统
CN117057943B (zh) * 2023-07-10 2024-05-03 齐齐哈尔大学 一种节点特征感知的时序社交网络影响力最大化方法及系统

Also Published As

Publication number Publication date
CN110995485B (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
CN110995485B (zh) 一种无拓扑结构的社交消息传播范围预测方法
Yang et al. Full-scale information diffusion prediction with reinforced recurrent networks
Chen et al. Call attention to rumors: Deep attention based recurrent neural networks for early rumor detection
Gurini et al. Temporal people-to-people recommendation on social networks with sentiment-based matrix factorization
Yan et al. Building task-oriented dialogue systems for online shopping
Xu et al. Improving user recommendation by extracting social topics and interest topics of users in uni-directional social networks
Jalali et al. Information diffusion through social networks: The case of an online petition
Bian et al. Predicting trending messages and diffusion participants in microblogging network
Lu et al. An efficient combined deep neural network based malware detection framework in 5G environment
Liu et al. Content matters: A GNN-based model combined with text semantics for social network cascade prediction
Gong et al. Detecting malicious accounts in online developer communities using deep learning
Lu et al. An evolutionary context-aware sequential model for topic evolution of text stream
Gera et al. T-Bot: AI-based social media bot detection model for trend-centric twitter network
Zhao et al. Learning content–social influential features for influence analysis
Zeng et al. Joint effects of context and user history for predicting online conversation re-entries
Li et al. Dynamic multi-view group preference learning for group behavior prediction in social networks
Wei et al. Using network flows to identify users sharing extremist content on social media
Liu et al. Predicting longitudinal user activity at fine time granularity in online collaborative platforms
Gao et al. Shilling attack detection scheme in collaborative filtering recommendation system based on recurrent neural network
Zhang et al. Detecting collusive spammers on e-commerce websites based on reinforcement learning and adversarial autoencoder
Kumar et al. Session-based recommendations with sequential context using attention-driven LSTM
Kaleroun et al. Collaborating trust and item-prediction with ant colony for recommendation
Yang et al. Prediction of collective actions using deep neural network and species competition model on social media
Wang et al. MOOC Dropout Prediction Based on Dynamic Embedding Representation Learning
Zhang et al. The spread of information in virtual communities

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230105

Address after: 230000 B-1015, wo Yuan Garden, 81 Ganquan Road, Shushan District, Hefei, Anhui.

Patentee after: HEFEI MINGLONG ELECTRONIC TECHNOLOGY Co.,Ltd.

Address before: 150080 No. 74, Xuefu Road, Nangang District, Heilongjiang, Harbin

Patentee before: Heilongjiang University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230316

Address after: 200120 3rd floor, building 2, No.200, zhangheng Road, China (Shanghai) pilot Free Trade Zone, Pudong New Area, Shanghai

Patentee after: Shanghai Bangfucheng Technology Co.,Ltd.

Address before: 230000 B-1015, wo Yuan Garden, 81 Ganquan Road, Shushan District, Hefei, Anhui.

Patentee before: HEFEI MINGLONG ELECTRONIC TECHNOLOGY Co.,Ltd.