CN110994616B - 并网逆变器模型预测功率直流分量控制方法 - Google Patents

并网逆变器模型预测功率直流分量控制方法 Download PDF

Info

Publication number
CN110994616B
CN110994616B CN201911211103.1A CN201911211103A CN110994616B CN 110994616 B CN110994616 B CN 110994616B CN 201911211103 A CN201911211103 A CN 201911211103A CN 110994616 B CN110994616 B CN 110994616B
Authority
CN
China
Prior art keywords
power
grid
current component
direct current
calculating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911211103.1A
Other languages
English (en)
Other versions
CN110994616A (zh
Inventor
陈智勇
肖军
胡毕华
李辉
易灵芝
邓文浪
彭寒梅
盘宏斌
刘勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN201911211103.1A priority Critical patent/CN110994616B/zh
Publication of CN110994616A publication Critical patent/CN110994616A/zh
Application granted granted Critical
Publication of CN110994616B publication Critical patent/CN110994616B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了一种并网逆变器模型预测功率直流分量控制方法,包括以下步骤:以一定的时间间隔采集电网三相静止坐标系下的电压eabc、电网三相静止坐标系下的电流iabc及并网逆变器的直流母线电压udc;根据预设的控制方式选取相应的预测功率模型,修正功率直流分量的参考值,并由采集数据计算出当前采集时刻的功率直流分量;根据预测功率模型,计算出空间矢量调制下的若干矢量相应的代价值,确定出最优的矢量来控制并网逆变器。根据本发明实施例至少具有如下有益效果:选择最优开关矢量来控制并网逆变器,控制灵活,可实现不同的控制方式消除相应的特征谐波,在电网不平衡的情况下,有效地改善并网电能质量。

Description

并网逆变器模型预测功率直流分量控制方法
技术领域
本发明涉及智能配电领域,特别涉及一种并网逆变器模型预测功率直流分量控制方法。
背景技术
并网逆变器作为电力电子接口设备,在分布式发电系统中有着不可或缺的作用。模型预测功率控制(Model-Predictive Power Control,MPPC)由于其动态响应快、控制结构简单,是一种并网逆变器控制策略。然而,当电网发生不平衡故障时,采用传统模型预测功率控制的并网逆变器会向电网注入大量电流谐波,降低并网电能质量。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种并网逆变器模型预测功率直流分量控制方法,在电网不平衡的情况下,有效地改善并网电能质量。
根据本发明的第一方面实施例的并网逆变器模型预测功率直流分量控制方法,包括以下步骤:S100,以一定的时间间隔采集电网三相静止坐标系下的电压eabc、电网三相静止坐标系下的电流iabc及并网逆变器的直流母线电压udc,并将eabc和iabc执行两相静止坐标系转换生成相应的eαβ和iαβ,进一步获得两相静止坐标系下滞后电网电压eαβπ/2角度的正交量
Figure BDA0002298164010000011
S200,根据预设的控制方式选取相应的预测功率模型,修正功率直流分量的参考值,并由采集数据计算出当前采集时刻的功率直流分量;S300,根据所述预测功率模型,计算出空间矢量调制下的若干矢量相应的代价值,确定出最优的所述矢量来控制并网逆变器。
根据本发明实施例的并网逆变器模型预测功率直流分量控制方法,至少具有如下有益效果:选择最优开关矢量来控制并网逆变器,控制灵活,可实现不同的控制方式消除相应的特征谐波,在电网不平衡的情况下,有效地改善并网电能质量。
根据本发明的一些实施例,所述步骤S200包括:S210,根据预设的控制方式选取相应的所述预测功率模型;S220,根据所述预测功率模型修正功率直流分量P'0及Q'0的参考值P'ref及Q'ref,其中,P'0为有功功率直流分量,Q'0为无功功率直流分量;S230,根据所述预测功率模型计算当前采集时刻k的功率直流分量P'0(k)和Q'0(k),其中,P'0(k)为第k个采样时刻有功功率直流分量计算值,Q'0(k)为第k个采样时刻无功功率直流分量。通过当前对功率直流分量采集计算,可计算出下一采样时刻的预测值。
根据本发明的一些实施例,所述步骤S300包括:S310,遍历空间矢量调制下的若干矢量,根据所述预测功率模型计算出功率直流分量的导数dP'0/dt和dQ'0/dt;S320,根据所述导数计算出下一采样时刻k+1的功率直流分量预测值
Figure BDA0002298164010000021
Figure BDA0002298164010000022
计算公式为:
Figure BDA0002298164010000023
其中,
Figure BDA0002298164010000024
为所述有功功率直流分量预测值,
Figure BDA0002298164010000025
为所述无功功率直流分量预测值,
Figure BDA0002298164010000026
Figure BDA0002298164010000027
为若选取第i个矢量用于调节有功和无功功率时相应导数dP'0/dt和dQ'0/dt,Ts为单个采样时间间隔;S330,根据
Figure BDA0002298164010000028
Figure BDA0002298164010000029
计算所述代价值J,确定出最优的所述矢量来控制并网逆变器,所述代价值J计算公式为:
Figure BDA00022981640100000210
根据本发明的一些实施例,所述控制方式包括:消除有功功率振荡、消除无功功率振荡及消除负序电流。三种不同的控制方式,控制灵活,扩大了适用范围。
根据本发明的一些实施例,所述控制方式为消除有功功率振荡时,则所述预测功率模型包括:所述步骤S220中的修正公式为:
Figure BDA0002298164010000031
所述步骤S230中的计算公式为:
Figure BDA0002298164010000032
所述步骤S310中的计算公式为:
Figure BDA0002298164010000033
其中,Pref和Qref为原参考值,eαβ=eα+jeβ,iαβ=iα+jiβ,下标α和β分别代表两相静止坐标系下α轴和β轴的信号分量,
Figure BDA0002298164010000034
为αβ坐标系下滞后电网电压eαβπ/2角度的正交量,复数表现形式为:
Figure BDA0002298164010000035
ω为两相旋转坐标的角速度。利用该计算模型,更有效消除了有功功率振荡。
根据本发明的一些实施例,所述控制方式为消除无功功率振荡时,则所述预测功率模型包括:所述步骤S220中的修正公式为:
Figure BDA0002298164010000036
所述步骤S230中的计算公式为:
Figure BDA0002298164010000037
所述步骤S310中的计算公式为:
Figure BDA0002298164010000038
其中,Pref和Qref为原参考值,eαβ=eα+jeβ,iαβ=iα+jiβ,下标α和β分别代表两相静止坐标系下α轴和β轴的信号分量,
Figure BDA0002298164010000039
为αβ坐标系下滞后电网电压eαβπ/2角度的正交量,复数表现形式为:
Figure BDA0002298164010000041
ω为两相旋转坐标的角速度。利用该计算模型,更有效消除了无功功率振荡。
根据本发明的一些实施例,所述控制方式为消除负序电流时,则所述预测功率模型包括:所述步骤S220中的修正公式为:
Figure BDA0002298164010000042
所述步骤S230中的计算公式为:
Figure BDA0002298164010000043
所述步骤S310中的计算公式为:
Figure BDA0002298164010000044
其中,Pref和Qref为原参考值,eαβ=eα+jeβ,iαβ=iα+jiβ,下标α和β分别代表两相静止坐标系下α轴和β轴的信号分量,
Figure BDA0002298164010000045
为αβ坐标系下滞后电网电压eαβπ/2角度的正交量,复数表现形式为:
Figure BDA0002298164010000046
ω为两相旋转坐标的角速度。利用该计算模型,更有效消除了负序电流。
根据本发明的一些实施例,所述矢量为8个。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为本发明实施例的主要步骤流程示意图;
图2为本发明实施例的详细步骤流程示意图;
图3为本发明实施例的模型预测功率直流分量控制框图;
图4为并网逆变器拓扑结构图;
图5为本发明实施例的用于有功功率振荡消除的流程图;
图6为本发明实施例的用于无功功率振荡消除的流程图;
图7为本发明实施例的用于负序电流消除的流程图;
图8为本发明实施例的仿真平台拓扑图;
图9为本发明实施例的有功功率振荡消除时的波形;
图10为本发明实施例的无功功率振荡消除时的波形;
图11为本发明实施例的负序电流消除时的波形。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,若干的含义是一个或者多个,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
参见图1,本发明的实施例中包括以下步骤:S100,以一定的时间间隔采集电网三相静止坐标系下的电压eabc、电网三相静止坐标系下的电流iabc及并网逆变器的直流母线电压udc,将eabc和iabc执行两相静止坐标系转换生成相应的eαβ和iαβ,进一步,获得两相静止坐标系下滞后电网电压eαβπ/2角度的正交量
Figure BDA0002298164010000051
S200,根据预设的控制方式选取相应的预测功率模型,修正功率直流分量的参考值,并由采集数据计算出当前采集时刻的功率直流分量;S300,根据预测功率模型,计算出空间矢量调制下的若干矢量相应的代价值,确定出最优的矢量来控制并网逆变器。
参见图2,本发明的实施例中步骤S200包括:S201,根据预设的控制方式选取相应的预测功率模型;S220,根据预测功率模型修正功率直流分量P'0及Q'0的参考值P'ref及Q'ref,其中,P'0为有功功率直流分量,Q'0为无功功率直流分量;S230,根据预测功率模型计算当前采集时刻k的功率直流分量P'0(k)和Q'0(k),其中,P'0(k)为第k个采样时刻有功功率直流分量计算值,Q'0(k)为第k个采样时刻无功功率直流分量。
参见图2,本发明的实施例中的步骤S300包括:S310,遍历空间矢量调制下的若干矢量,根据预测功率模型中相应的公式计算出功率直流分量的导数dP'0/dt和dQ'0/dt;S320,根据导数计算出下一采样时刻k+1的功率直流分量预测值
Figure BDA0002298164010000061
Figure BDA0002298164010000062
计算公式为:
Figure BDA0002298164010000063
其中,
Figure BDA0002298164010000064
为有功功率直流分量预测值,
Figure BDA0002298164010000065
为无功功率直流分量预测值,
Figure BDA0002298164010000066
Figure BDA0002298164010000067
为若选取第i个矢量用于调节有功和无功功率时相应导数dP'0/dt和dQ'0/dt,Ts为单个采样时间间隔;S330,根据
Figure BDA0002298164010000068
Figure BDA0002298164010000069
计算代价值J,确定出最优的矢量来控制并网逆变器,代价值J计算公式为:
Figure BDA00022981640100000610
参见图3,为本发明的实施例的模型预测功率直流分量控制框图,下标abc指三相静止坐标系下的信号,下标αβ指两相静止坐标系下的信号;符号abc→αβ代表信号从三相静止坐标系变换至两相静止坐标系;e、i分别为电网电压、电流信号,且eαβ=eα+jeβ,iαβ=iα+jiβ,其中,下标α和β分别代表两相静止坐标系下α轴和β轴的信号分量。udc为并网逆变器直流母线电压;uαβ为udc的复数形式,可写为(uα,uβ)。P'0(k)、Q'0(k)分别为第k时刻功率直流分量的计算值;
Figure BDA00022981640100000611
Figure BDA00022981640100000612
为第k+1采样时刻有功功率和无功功率的预测值;P'ref、Q'ref为功率直流分量P'0、Q'0的参考值;Pref、Qref为功率直流分量P0、Q0的参考值,其中P0和Q0为推导出的有功和无功功率的直流分量,P'0、Q'0是为方便后续计算导数对P0、Q0的自定义修正。Si表示空间矢量调制下的第i个矢量(i=0–7)。
Figure BDA00022981640100000613
Figure BDA00022981640100000614
分别表示第i个矢量下功率直流分量的导数dP'0/dt和dQ'0/dt;
Figure BDA00022981640100000615
为αβ坐标系下滞后电网电压π/2角度的正交量,即
Figure BDA00022981640100000616
。图3中的式(X)为说明书中对应编号X的公式。
下面,对本实施例方法中出现的计算式给出推导过程;这些推导过程也就是对本发明实施例提出的模型预测功率直流分量控制方法实现三种控制效果(即:有功功率振荡消除、无功功率振荡消除、负序电流消除)的理论分析过程,包括:推导出功率直流分量表达式、计算出功率直流分量一阶导数表达式、修正了功率参考表达式。
A.瞬时有功和瞬时无功功率的构成
参见图4,为并网逆变器的拓扑结构,电网电压和电流分别用eabc和iabc表示。逆变器的输出电压为uabc。电网电压和电流eαβ和iαβ是将eabc和iabc通过三相静止到两相静止坐标变换得到。下标αβ表示两相静止坐标系下的变量。电网电压和电流可用公式(1)表示:
Figure BDA0002298164010000071
式(1)中,
Figure BDA0002298164010000072
Figure BDA0002298164010000073
Figure BDA0002298164010000074
分别表示两相静止αβ坐标下电网电压和电流的正序和负序分量。在旋转dq坐标系下,
Figure BDA0002298164010000075
Figure BDA0002298164010000076
Figure BDA0002298164010000077
分别代表正序、负序电网电压和电流,ω为dq坐标系旋转的角速度。
公式(1)中的
Figure BDA0002298164010000078
Figure BDA0002298164010000079
Figure BDA00022981640100000710
可表示为:
Figure BDA00022981640100000711
复功率为:
Figure BDA00022981640100000712
公式(3)中,i*是i的共轭复数。
复功率包括有功功率和无功功率,并可以表示为:
S=P+jQ 公式(4)
公式(4)中,P为瞬时有功功率,Q为瞬时无功功率。
考虑(1)–(4),式(4)可简化为:
Figure BDA0002298164010000081
公式(5)中,P0和Q0是有功和无功功率的直流分量;有功和无功功率的二倍频分量分别为Pc、Ps和Qc、Qs;且P0、Pc、Ps和Q0、Qc、Qs表示为:
Figure BDA0002298164010000082
用e和i表示滞后电网电压、电流π/2角度的正交电压和电流,则有:
Figure BDA0002298164010000083
由两相静止坐标系和两相旋转坐标系的位置关系可以得到:
Figure BDA0002298164010000084
考虑式(1)、(7)、(8),式(7)可化为:
Figure BDA0002298164010000085
并将式(1)、(9)写成矩阵形式:
Figure BDA0002298164010000086
则,式(10)的逆变换为:
Figure BDA0002298164010000087
由两相静止坐标系和两相旋转坐标下电压和电流关系,即式(1),可得:
Figure BDA0002298164010000091
将式(11)带入式(12)可得到:
Figure BDA0002298164010000092
在两相静止坐标系中,电网电压e和电流i,以及滞后电网电压、电流π/2角度的正交电压e和电流i可表示为:
Figure BDA0002298164010000093
联立式(2)、(13)、(14),并将它们代入式(6),可得:
Figure BDA0002298164010000094
公式(15)中,mx(x=1、2、3、4)的具体表达式为:
Figure BDA0002298164010000095
由公式(5)可知本文将瞬时功率表示成直流分量和二倍频分量叠加的形式;由公式(15)可知瞬时功率的直流分量和二倍频分量与电网电流、电压的关系。因此,在下文中我们消除有功功率和无功功率振荡的时候,只需要令对应表达式中二倍频分量的系数为零即可。
B.有功功率振荡消除(Active-Power-Oscillation Cancellation,APOC)
当电网电压出现不平衡,且控制算法目标:实现有功功率振荡消除;则可令式(15)中,m1和m2等于零,即有:
Figure BDA0002298164010000101
求解(17),得
Figure BDA0002298164010000102
Figure BDA0002298164010000103
表达式为:
Figure BDA0002298164010000104
将式(18)代入式(15)中P0、Q0的表达式,得:
Figure BDA0002298164010000105
式中,P0和Q0是具备APOC作用的功率直流分量。为求功率直流分量导数时便于计算,定义P'0、Q'0
Figure BDA0002298164010000106
进而,式(20)可以简化为
Figure BDA0002298164010000107
将P0和Q0的参考值定义为Pref和Qref,则根据式(20),可通过以下公式计算P'0、Q'0的参考值:
Figure BDA0002298164010000108
图4所示的并网逆变器系统中,当忽略电阻R的影响后,电网电流导数为
Figure BDA0002298164010000109
式(23)中,u是并网逆变器输出电压的复数形式,两相静止αβ坐标系下,u可写为(uα,uβ),L是常数表示电感。电网电压e以及滞后电网电压π/2角度的正交电压e的导数为:
Figure BDA0002298164010000111
对式(21)求导可得功率直流分量P'0和Q'0的导数为:
Figure BDA0002298164010000112
结合式(23)、(24),式(25)可简化为:
Figure BDA0002298164010000113
若选取第i个矢量用于调节有功和无功功率,则式(26)中,dP'0/dt和dQ'0/dt可分别用变量符号
Figure BDA0002298164010000114
Figure BDA0002298164010000115
表示。在采样时刻k,采样得到当前时刻的电网电压e(k)和电网电流i(k),利用式(21)计算出第k时刻的P'0和Q'0,并分别表示为P'0(k)和Q'0(k)。第k+1采样时刻的有功功率
Figure BDA0002298164010000116
和无功功率
Figure BDA0002298164010000117
预测值分别为:
Figure BDA0002298164010000118
所提出模型预测功率直流分量控制方案用于有功功率振荡消除时,其代价值J为:
Figure BDA0002298164010000119
有功功率振荡消除的流程见图5,采集电网的三相电流电压,并做相应坐标转化,同时也采集并网逆变器母线电压,对原始直流功率分量参考值用公式(22)参考值作相应的修正,并对公式(21)计算出采样时刻为k的功率直流分量;遍历间矢量调制下的矢量,对不同电压矢量下的功率直流分量利用公式(26)求相应导数,计算出下一采样时刻k+1的功率直流分量,获取代价值;通过选取最优代价的矢量来控制并网逆变器来消除有功功率振荡。
C.无功功率振荡消除(RPOC)
当电网电压出现不平衡,且期望实现有功功率振荡消除;则可令式(15)中,m3,m4等于零,即有:
Figure BDA0002298164010000121
在两相静止αβ坐标系下,求解式(29)可得
Figure BDA0002298164010000122
Figure BDA0002298164010000123
表达式:
Figure BDA0002298164010000124
将式(30)代入式(15)中的P0、Q0,有功和无功功率直流分量P0和Q0表示为
Figure BDA0002298164010000125
为求功率直流分量导数时便于计算,在(31)中,引入P'0和Q'0这2个变量,定义P'0和Q'0为:
Figure BDA0002298164010000126
联立式(31)、(32),式(32)可化简为
Figure BDA0002298164010000127
同样地,联立(23)、(24)和(33),对P'0和Q'0求导可得:
Figure BDA0002298164010000128
当选择第i个矢量用于调节并网逆变器的输出功率时,式(34)中,dP'0/dt和dQ'0/dt用变量符号
Figure BDA0002298164010000129
Figure BDA00022981640100001210
表示。第k+1个采样时刻处的功率直流分量预测值
Figure BDA00022981640100001211
Figure BDA00022981640100001212
可由式(27)确定。
P'0和Q'0的参考值用符号P'ref和Q'ref表示,且根据式(32),P'ref和Q'ref可表示为:
Figure BDA00022981640100001213
随后,模型预测功率直流分量控制方案用于控制P'0和Q'0跟踪P'ref和Q'ref,当选择控制方案用于无功功率振荡消除时,其代价值J也为式(21)。
无功功率振荡消除的流程示意图见图6,采集电网的三相电流电压,并做相应坐标转化,同时也采集并网逆变器母线电压,对原始直流功率分量参考值用公式(35)参考值作相应的修正,并对公式(34)计算出采样时刻为k的功率直流分量;遍历空间矢量调制下的矢量,对不同电压矢量下的功率直流分量利用公式(33)求相应导数,计算出下一采样时刻k+1的功率直流分量,获取代价值;通过选取最优代价的矢量来控制并网逆变器来消除无功功率振荡。
D.负序电流消除(NSCC)
由式(11)可知,在两相静止αβ坐标系下,电流正序和负序分量为:
Figure BDA0002298164010000131
式(11)中,i是电网电流复数形式,可用(iα,iβ)表示,i是滞后电网电流π/2角度的正交电流,用
Figure BDA0002298164010000132
表示。
当电网电压出现不平衡,且期望消除负序电流;可令式(36)中的
Figure BDA0002298164010000133
等于零,则
Figure BDA0002298164010000134
Figure BDA0002298164010000135
有如下关系:
Figure BDA0002298164010000136
将式(37)代入式(15)中P0、Q0的表达式,则功率直流分量P0和Q0为:
Figure BDA0002298164010000137
当这种控制方法用于负序电流消除时,由于P0、Q0表达式较为简便,没必要改写P0、Q0来达到便于计算功率直流分量导数的目的。但是为了满足算法的统一格式,我们令P'0、Q'0分别为P0、Q0,故功率直流分量P'0、Q'0的参考值P'ref、Q'ref分别为Pref、Qref
联立式(23)、(24)和(38),对P'0和Q'0求导可得:
Figure BDA0002298164010000138
当第i个矢量为并网逆变器输出功率控制的最优矢量时,将式(39)中的dP'0/dt和dQ'0/dt用符号
Figure BDA0002298164010000141
Figure BDA0002298164010000142
表示。第k+1个采样时刻处的功率直流分量预测值
Figure BDA0002298164010000143
Figure BDA0002298164010000144
可由式(27)确定。
当选择所提控制方案用于负序电流消除时,其代价值J也为式(21)。
负序电流消除的流程示意图见图7,采集电网的三相电流电压,并做相应坐标转化,同时也采集并网逆变器母线电压,对原始直流功率参考值不作修正,用公式(38)计算出采样时刻为k的功率直流分量;遍历空间矢量调制下的矢量,对不同电压矢量下的功率直流分量利用公式(39)求相应导数,计算出下一采样时刻k+1的功率直流分量,获取代价值;通过选取最优代价的矢量来控制并网逆变器来消除负序电流。
下面为本发明的实施例的仿真实验,由MATLAB搭建仿真平台,以证实所提出模型预测功率直流分量控制的有效性。仿真参数由下表1给出。
Figure BDA0002298164010000145
仿真中,交流电源的电压由三相电压源eao,ebo和eco组成,并且eao与5Ω的电阻器Rin串联,见图8所示。当开关S打开时,电网电压达到平衡并等于127V;同时,当开关S闭合时,三相电压为
Figure BDA0002298164010000146
控制消除有功功率振荡,采用公式(21)、公式(22)、公式(26)控制并网逆变器时,电网电流和输出功率的波形如图9所示。在电网电压不平衡的情况下,电网电流THD(谐波失真)为4.4%,无功功率振荡幅度为0.74kVar。THD和无功振荡的幅度相近,实现了有功振荡消除。在电网电压不平衡的情况下,其电网电流THD远小于传统模型预测功率控制MPPC的THD。
在不平衡电网条件下,控制消除有功功率振荡,采用公式(33)-(35)选择最优矢量时,输出功率波形如图10所示。其电网电流THD为4.38%,实现了无功率振荡消除。图10中表示输出有功功率P的振荡幅度为0.82kW。
在图11中,当控制负序电流消除时,公式(38)、(39)分别用于获取时刻k的功率直流分量和功率直流分量的导数。当电网发生不平衡故障时,电网电流THD为4.81%,三相电网电流iabc的有效值分别为8.09A,7.98A和8.08A。在图11中,由于输出功率P和Q与直流分量P0和Q0之间的两倍频率功率有δP、δQ偏差,故有功和无功功率分别有0.33KW、0.29Kvar的振荡幅度。
如图9~10所示,采用模型预测功率直流分量控制方法时,可以调节功率直流分量P0和Q0以跟踪功率参考值。通过选择不同的控制模式推导出功率直流分量表达式、计算功率直流分量一阶导数表达式、修正功率参考表达式来实现有功功率振荡消除,无功功率振荡消除和负序电流消除。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所述技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (6)

1.一种并网逆变器模型预测功率直流分量控制方法,其特征在于,包括以下步骤:
S100,以一定的时间间隔采集电网三相静止坐标系下的电压eabc、电网三相静止坐标系下的电流iabc及并网逆变器的直流母线电压udc,并将eabc和iabc执行两相静止坐标系转换生成相应的eαβ和iαβ,进一步获得两相静止坐标系下滞后电网电压eαβπ/2角度的正交量
Figure FDA0002826778300000011
S200,根据消除有功功率振荡选取相应的预测功率模型,修正功率直流分量的参考值,并由采集数据计算出当前采集时刻的功率直流分量,所述步骤S200包括:S210,根据所述预测功率模型修正功率直流分量P'0及Q'0的参考值P'ref及Q'ref,其中,P'0为有功功率直流分量,Q'0为无功功率直流分量,修正方法为:
Figure FDA0002826778300000012
S220,根据所述预测功率模型计算当前采集时刻k的功率直流分量P'0(k)和Q'0(k):
Figure FDA0002826778300000013
其中,P'0(k)为第k个采样时刻有功功率直流分量计算值,Q'0(k)为第k个采样时刻无功功率直流分量;Pref和Qref为原参考值,eαβ=eα+jeβ,iαβ=iα+jiβ,下标α和β分别代表两相静止坐标系下α轴和β轴的信号分量,
Figure FDA0002826778300000014
为αβ坐标系下滞后电网电压eαβπ/2角度的正交量,复数表现形式为:
Figure FDA0002826778300000015
S300,根据所述预测功率模型,计算出空间矢量调制下的若干矢量相应的代价值,确定出最优的所述矢量来控制并网逆变器,所述步骤S300包括:S310,遍历空间矢量调制下的若干矢量,根据所述预测功率模型计算出功率直流分量的导数dP'0/dt和dQ'0/dt:
Figure FDA0002826778300000021
其中,ω为两相旋转坐标的角速度;
S320,根据所述导数计算出下一采样时刻k+1的功率直流分量预测值
Figure FDA0002826778300000022
Figure FDA0002826778300000023
计算公式为:
Figure FDA0002826778300000024
其中,
Figure FDA0002826778300000025
为所述有功功率直流分量预测值,
Figure FDA0002826778300000026
为所述无功功率直流分量预测值,
Figure FDA0002826778300000027
Figure FDA0002826778300000028
为选取第i个矢量用于调节有功和无功功率时相应导数dP'0/dt和dQ'0/dt,Ts为单个采样时间间隔;
S330,根据
Figure FDA0002826778300000029
Figure FDA00028267783000000210
计算所述代价值J,确定出最优的所述矢量来控制并网逆变器,所述代价值J计算公式为:
Figure FDA00028267783000000211
2.根据权利要求1所述的并网逆变器模型预测功率直流分量控制方法,其特征在于,所述矢量为8个。
3.一种并网逆变器模型预测功率直流分量控制方法,其特征在于,包括以下步骤:
S100,以一定的时间间隔采集电网三相静止坐标系下的电压eabc、电网三相静止坐标系下的电流iabc及并网逆变器的直流母线电压udc,并将eabc和iabc执行两相静止坐标系转换生成相应的eαβ和iαβ,进一步获得两相静止坐标系下滞后电网电压eαβπ/2角度的正交量
Figure FDA00028267783000000212
S200,根据消除无功功率振荡的控制方式选取相应的预测功率模型,修正功率直流分量的参考值,并由采集数据计算出当前采集时刻的功率直流分量,所述步骤S200包括:S210,根据所述预测功率模型修正功率直流分量P'0及Q'0的参考值P'ref及Q'ref,其中,P'0为有功功率直流分量,Q'0为无功功率直流分量,修正方法为:
Figure FDA0002826778300000031
S220,根据所述预测功率模型计算当前采集时刻k的功率直流分量P'0(k)和Q'0(k):
Figure FDA0002826778300000032
其中,P'0(k)为第k个采样时刻有功功率直流分量计算值,Q'0(k)为第k个采样时刻无功功率直流分量;Pref和Qref为原参考值,eαβ=eα+jeβ,iαβ=iα+jiβ,下标α和β分别代表两相静止坐标系下α轴和β轴的信号分量,
Figure FDA0002826778300000033
为αβ坐标系下滞后电网电压eαβπ/2角度的正交量,复数表现形式为:
Figure FDA0002826778300000034
S300,根据所述预测功率模型,计算出空间矢量调制下的若干矢量相应的代价值,确定出最优的所述矢量来控制并网逆变器,所述步骤S300包括:
S310,遍历空间矢量调制下的若干矢量,根据所述预测功率模型计算出功率直流分量的导数dP'0/dt和dQ'0/dt:
Figure FDA0002826778300000035
其中,ω为两相旋转坐标的角速度;
S320,根据所述导数计算出下一采样时刻k+1的功率直流分量预测值
Figure FDA0002826778300000036
Figure FDA0002826778300000037
计算公式为:
Figure FDA0002826778300000038
其中,
Figure FDA0002826778300000039
为所述有功功率直流分量预测值,
Figure FDA00028267783000000310
为所述无功功率直流分量预测值,
Figure FDA00028267783000000311
Figure FDA00028267783000000312
为选取第i个矢量用于调节有功和无功功率时相应导数dP'0/dt和dQ'0/dt,Ts为单个采样时间间隔;
S330,根据
Figure FDA00028267783000000313
Figure FDA00028267783000000314
计算所述代价值J,确定出最优的所述矢量来控制并网逆变器,所述代价值J计算公式为:
Figure FDA0002826778300000041
4.根据权利要求3所述的并网逆变器模型预测功率直流分量控制方法,其特征在于,所述矢量为8个。
5.一种并网逆变器模型预测功率直流分量控制方法,其特征在于,包括以下步骤:
S100,以一定的时间间隔采集电网三相静止坐标系下的电压eabc、电网三相静止坐标系下的电流iabc及并网逆变器的直流母线电压udc,并将eabc和iabc执行两相静止坐标系转换生成相应的eαβ和iαβ,进一步获得两相静止坐标系下滞后电网电压eαβπ/2角度的正交量
Figure FDA0002826778300000042
S200,根据消除负序电流的控制方式选取相应的预测功率模型,修正功率直流分量的参考值,并由采集数据计算出当前采集时刻的功率直流分量,所述步骤S200包括:S210,根据所述预测功率模型修正功率直流分量P'0及Q'0的参考值P'ref及Q'ref,其中,P'0为有功功率直流分量,Q'0为无功功率直流分量,修正方法为:
Figure FDA0002826778300000043
S220,根据所述预测功率模型计算当前采集时刻k的功率直流分量P'0(k)和Q'0(k):
Figure FDA0002826778300000044
其中,P'0(k)为第k个采样时刻有功功率直流分量计算值,Q'0(k)为第k个采样时刻无功功率直流分量;Pref和Qref为原参考值,eαβ=eα+jeβ,iαβ=iα+jiβ,下标α和β分别代表两相静止坐标系下α轴和β轴的信号分量,
Figure FDA0002826778300000045
为αβ坐标系下滞后电网电压eαβπ/2角度的正交量,复数表现形式为:
Figure FDA0002826778300000046
S300,根据所述预测功率模型,计算出空间矢量调制下的若干矢量相应的代价值,确定出最优的所述矢量来控制并网逆变器,所述步骤S300包括:
S310,遍历空间矢量调制下的若干矢量,根据所述预测功率模型计算出功率直流分量的导数dP'0/dt和dQ'0/dt:
Figure FDA0002826778300000051
其中,ω为两相旋转坐标的角速度;
S320,根据所述导数计算出下一采样时刻k+1的功率直流分量预测值
Figure FDA0002826778300000052
Figure FDA0002826778300000053
计算公式为:
Figure FDA0002826778300000054
其中,
Figure FDA0002826778300000055
为所述有功功率直流分量预测值,
Figure FDA0002826778300000056
为所述无功功率直流分量预测值,
Figure FDA0002826778300000057
Figure FDA0002826778300000058
为选取第i个矢量用于调节有功和无功功率时相应导数dP'0/dt和dQ'0/dt,Ts为单个采样时间间隔;
S330,根据
Figure FDA0002826778300000059
Figure FDA00028267783000000510
计算所述代价值J,确定出最优的所述矢量来控制并网逆变器,所述代价值J计算公式为:
Figure FDA00028267783000000511
6.根据权利要求5所述的并网逆变器模型预测功率直流分量控制方法,其特征在于,所述矢量为8个。
CN201911211103.1A 2019-12-02 2019-12-02 并网逆变器模型预测功率直流分量控制方法 Active CN110994616B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911211103.1A CN110994616B (zh) 2019-12-02 2019-12-02 并网逆变器模型预测功率直流分量控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911211103.1A CN110994616B (zh) 2019-12-02 2019-12-02 并网逆变器模型预测功率直流分量控制方法

Publications (2)

Publication Number Publication Date
CN110994616A CN110994616A (zh) 2020-04-10
CN110994616B true CN110994616B (zh) 2021-04-27

Family

ID=70088897

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911211103.1A Active CN110994616B (zh) 2019-12-02 2019-12-02 并网逆变器模型预测功率直流分量控制方法

Country Status (1)

Country Link
CN (1) CN110994616B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111404165B (zh) * 2020-04-30 2023-09-19 柏拉图(上海)电力有限公司 电压不平衡状态下vsc参考电流及其高阶微分计算方法
CN112383237B (zh) * 2020-10-09 2022-03-22 河南科技大学 一种并网逆变器的模型预测控制方法
CN112821384B (zh) * 2021-01-04 2022-05-31 长江勘测规划设计研究有限责任公司 抑制低频振荡在柔性直流输电系统直流侧传播的控制方法
CN114142516A (zh) * 2021-08-03 2022-03-04 国网湖北省电力有限公司荆门供电公司 一种消除并网逆变器有功振荡的方法
CN116223900B (zh) * 2022-12-30 2024-01-09 广州视骁科技有限公司 确定交流电路功率的方法、装置、电子设备和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105226705A (zh) * 2015-09-23 2016-01-06 国网山东省电力公司济宁供电公司 一种适用于三相并网逆变器的双零矢量模型预测控制方法
CN108400616A (zh) * 2018-03-26 2018-08-14 上海电力学院 一种基于mpdpc的光伏并网逆变器动态性能优化方法
CN108599605A (zh) * 2018-05-14 2018-09-28 华南理工大学 基于两矢量合成的三电平逆变器模型预测功率控制方法
CN109274284A (zh) * 2018-10-18 2019-01-25 华南理工大学 一种不平衡电网下并网逆变器的柔性功率控制方法
CN110021953A (zh) * 2019-04-29 2019-07-16 合肥工业大学 电网电压不平衡时柔性多状态开关的直流侧电压控制方法
CN110018709A (zh) * 2019-04-23 2019-07-16 华北电力大学 基于功率预测的动态最大功率点跟踪技术

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105226705A (zh) * 2015-09-23 2016-01-06 国网山东省电力公司济宁供电公司 一种适用于三相并网逆变器的双零矢量模型预测控制方法
CN108400616A (zh) * 2018-03-26 2018-08-14 上海电力学院 一种基于mpdpc的光伏并网逆变器动态性能优化方法
CN108599605A (zh) * 2018-05-14 2018-09-28 华南理工大学 基于两矢量合成的三电平逆变器模型预测功率控制方法
CN109274284A (zh) * 2018-10-18 2019-01-25 华南理工大学 一种不平衡电网下并网逆变器的柔性功率控制方法
CN110018709A (zh) * 2019-04-23 2019-07-16 华北电力大学 基于功率预测的动态最大功率点跟踪技术
CN110021953A (zh) * 2019-04-29 2019-07-16 合肥工业大学 电网电压不平衡时柔性多状态开关的直流侧电压控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Extraction of Active and Reactive Powers DC Components for Grid-Connected Converters Under Unbalanced Network;Bihua Hu等;《2018 21st International Conference on Electrical Machines and Systems (ICEMS)》;20181129;全文 *
不平衡电网电压下基于滑模变结构控制的双馈风电系统转子侧变流器控制策略;张迪等;《电工技术学报》;20160930;全文 *

Also Published As

Publication number Publication date
CN110994616A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
CN110994616B (zh) 并网逆变器模型预测功率直流分量控制方法
CN107834883B (zh) 一种基于调制波区间划分的中点电压控制装置
CN108418226B (zh) 开绕组双逆变器光伏发电系统的无功补偿控制方法
CN109861374B (zh) 一种无需负载电流传感器的三相全桥不间断电源控制方法
CN106532749A (zh) 一种微电网不平衡功率和谐波电压补偿系统及其应用
Chaoui et al. Direct power control concept and analysis for three phase shunt active power filter
CN112186804A (zh) 一种孤岛微电网母线电压不平衡和谐波补偿方法及系统
Arya et al. Amplitude adaptive notch filter with optimized PI gains for mitigation of voltage based power quality problems
CN116014748A (zh) 基于主动支撑的储能变流器低电压穿越控制方法及装置
Sharma et al. Power quality enhancement in microgrid using adaptive affine projection controlled medium voltage distribution static compensator
Karaca et al. Modelling and simulation of matrix converter under distorted input voltage conditions
CN105186545B (zh) 一种逆变器的电流平衡控制方法及逆变器
JP5938190B2 (ja) 位相調整装置、系統対抗分生成装置、系統連系インバータシステム、および、位相調整方法
Mangaraj et al. Implementation of sparse LMS control algorithm in DSTATCOM
Karuppanan et al. A novel SRF based cascaded multilevel active filter for power line conditioners
Yada et al. An SO-SOGI based control for a three-phase DVR under distorted grid conditions including DC offset
CN114759562B (zh) 基于并网逆变器的公共耦合点谐波抑制方法
CN109510548B (zh) 一种双馈电机柔性功率控制方法及装置
Routimo et al. A novel simple prediction based current reference generation method for an active power filter
Rezaei et al. Sliding mode control of a grid-connected distributed generation unit under unbalanced voltage conditions
CN108599262B (zh) 不平衡电网下的改进虚拟同步机自同步并网运行控制方法
Fathi et al. A frequency domain method for instantaneous determination of reference current in shunt active filter
CN115622059A (zh) 一种频率自适应的多逆变器并联宽频域负载谐波抑制方法
Ginn A hybrid reference signal generator for active compensators
CN110854903B (zh) 基于自适应虚拟阻抗的孤岛微电网无功功率分配控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant