CN110991251B - 基于深度学习的无源人体运动识别方法 - Google Patents
基于深度学习的无源人体运动识别方法 Download PDFInfo
- Publication number
- CN110991251B CN110991251B CN201911078785.3A CN201911078785A CN110991251B CN 110991251 B CN110991251 B CN 110991251B CN 201911078785 A CN201911078785 A CN 201911078785A CN 110991251 B CN110991251 B CN 110991251B
- Authority
- CN
- China
- Prior art keywords
- data
- matrix
- behavior
- neural network
- axis acceleration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 94
- 238000013135 deep learning Methods 0.000 title claims abstract description 8
- 238000003062 neural network model Methods 0.000 claims abstract description 99
- 238000012549 training Methods 0.000 claims abstract description 96
- 239000011159 matrix material Substances 0.000 claims description 144
- 230000006399 behavior Effects 0.000 claims description 141
- 230000001133 acceleration Effects 0.000 claims description 117
- 230000008569 process Effects 0.000 claims description 62
- 238000012795 verification Methods 0.000 claims description 48
- 238000012360 testing method Methods 0.000 claims description 47
- 230000001537 neural effect Effects 0.000 claims description 30
- 239000013598 vector Substances 0.000 claims description 30
- 230000006870 function Effects 0.000 claims description 24
- 230000009466 transformation Effects 0.000 claims description 21
- 238000005070 sampling Methods 0.000 claims description 18
- 230000004913 activation Effects 0.000 claims description 11
- 238000010200 validation analysis Methods 0.000 claims description 9
- 210000001015 abdomen Anatomy 0.000 claims description 6
- 238000004422 calculation algorithm Methods 0.000 claims description 6
- 238000000605 extraction Methods 0.000 claims description 6
- 238000013480 data collection Methods 0.000 claims description 4
- 238000013528 artificial neural network Methods 0.000 claims description 3
- 230000008859 change Effects 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 3
- 230000003542 behavioural effect Effects 0.000 abstract description 2
- 238000012545 processing Methods 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 3
- 238000012706 support-vector machine Methods 0.000 description 3
- 238000003066 decision tree Methods 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000012567 pattern recognition method Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/20—Movements or behaviour, e.g. gesture recognition
- G06V40/23—Recognition of whole body movements, e.g. for sport training
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Computational Linguistics (AREA)
- Software Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Multimedia (AREA)
- Psychiatry (AREA)
- Social Psychology (AREA)
- Human Computer Interaction (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911078785.3A CN110991251B (zh) | 2019-11-06 | 2019-11-06 | 基于深度学习的无源人体运动识别方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911078785.3A CN110991251B (zh) | 2019-11-06 | 2019-11-06 | 基于深度学习的无源人体运动识别方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110991251A CN110991251A (zh) | 2020-04-10 |
CN110991251B true CN110991251B (zh) | 2023-04-07 |
Family
ID=70083424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911078785.3A Active CN110991251B (zh) | 2019-11-06 | 2019-11-06 | 基于深度学习的无源人体运动识别方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110991251B (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106503667A (zh) * | 2016-10-26 | 2017-03-15 | 太原理工大学 | 一种基于wisp和模式识别的跌倒检测方法 |
CN109979161A (zh) * | 2019-03-08 | 2019-07-05 | 河海大学常州校区 | 一种基于卷积循环神经网络的人体跌倒检测方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9221428B2 (en) * | 2011-03-02 | 2015-12-29 | Automatic Labs Inc. | Driver identification system and methods |
-
2019
- 2019-11-06 CN CN201911078785.3A patent/CN110991251B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106503667A (zh) * | 2016-10-26 | 2017-03-15 | 太原理工大学 | 一种基于wisp和模式识别的跌倒检测方法 |
CN109979161A (zh) * | 2019-03-08 | 2019-07-05 | 河海大学常州校区 | 一种基于卷积循环神经网络的人体跌倒检测方法 |
Non-Patent Citations (2)
Title |
---|
Van Wart Adam T ; .Weighted Implementation of Suboptimal Paths (WISP): An Optimized Algorithm and Tool for Dynamical Network Analysis.《Journal of Chemical Theory and Computation》.2014,全文. * |
仇逊超.无源无线传感器平台在人体跑步检测中的应用.《计算机工程与设计》.2014,全文. * |
Also Published As
Publication number | Publication date |
---|---|
CN110991251A (zh) | 2020-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2020103811A4 (en) | Method for recognizing human knee motion postures based on extreme learning machine | |
CN105310696B (zh) | 一种跌倒检测模型构建方法及相应的跌倒检测方法和装置 | |
CN109886068B (zh) | 基于运动数据的动作行为识别方法 | |
CN110478883B (zh) | 一种健身动作教学及矫正系统及方法 | |
Khodabandelou et al. | Attention-based gated recurrent unit for gesture recognition | |
Houmanfar et al. | Movement analysis of rehabilitation exercises: Distance metrics for measuring patient progress | |
WO2020008339A1 (en) | Sensing system and method for monitoring time-dependent processes | |
CN110334573B (zh) | 一种基于密集连接卷积神经网络的人体运动状态判别方法 | |
CN107220617A (zh) | 人体姿态识别系统及方法 | |
WO2020008365A2 (en) | Transferring learning in classifier-based sensing systems | |
CN108683724A (zh) | 一种智能儿童安全及步态健康监护系统 | |
CN111401435B (zh) | 一种基于运动手环的人体运动模式识别方法 | |
Jalloul et al. | Activity recognition using complex network analysis | |
CN113111756B (zh) | 基于人体骨架关键点和长短期记忆人工神经网络的人体摔倒识别方法 | |
CN113012815B (zh) | 一种基于多模态数据的帕金森健康风险评估方法 | |
CN110909876A (zh) | 基于多生理参数和cnn的体征信息监测方法和系统 | |
CN108958482B (zh) | 一种基于卷积神经网络的相似性动作识别装置及方法 | |
Wang et al. | A2DIO: Attention-driven deep inertial odometry for pedestrian localization based on 6D IMU | |
Dhanraj et al. | Efficient smartphone-based human activity recognition using convolutional neural network | |
CN110443145A (zh) | 基于传感器的分离式部署的人体行为识别健康管理系统 | |
CN117133409A (zh) | 基于vr交互技术辅助儿童孤独症谱系障碍康复系统 | |
CN114916928B (zh) | 一种人体姿态多通道卷积神经网络检测方法 | |
CN114881079A (zh) | 面向穿戴式传感器的人体运动意图异常检测方法及系统 | |
CN110991251B (zh) | 基于深度学习的无源人体运动识别方法 | |
CN116115239A (zh) | 基于多模态数据融合的建筑工人尴尬工作姿势识别方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240122 Address after: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province Patentee after: Dragon totem Technology (Hefei) Co.,Ltd. Country or region after: China Address before: 315211, Fenghua Road, Jiangbei District, Zhejiang, Ningbo 818 Patentee before: Ningbo University Country or region before: China |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20250410 Address after: Room 307, Building 6, Youth Dream Factory, No. 35 Qianwan 1st Road, Nanshan Street, Qianhai Shenzhen Hong Kong Cooperation Zone, Shenzhen, Guangdong Province 518000 Patentee after: Shumeng Technology (Shenzhen) Co.,Ltd. Country or region after: China Address before: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province Patentee before: Dragon totem Technology (Hefei) Co.,Ltd. Country or region before: China |