CN110987877A - 快速检测疟疾的方法和系统 - Google Patents

快速检测疟疾的方法和系统 Download PDF

Info

Publication number
CN110987877A
CN110987877A CN201911086082.5A CN201911086082A CN110987877A CN 110987877 A CN110987877 A CN 110987877A CN 201911086082 A CN201911086082 A CN 201911086082A CN 110987877 A CN110987877 A CN 110987877A
Authority
CN
China
Prior art keywords
sample
signals
spectrum
parasitemia
atr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911086082.5A
Other languages
English (en)
Inventor
拜登·罗伯特·伍德
阿泽姆·克霍什曼施
马修·迪克森
里恩·提尔蕾
多纳德·麦克诺顿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Melbourne
Monash University
Original Assignee
University of Melbourne
Monash University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Melbourne, Monash University filed Critical University of Melbourne
Priority to CN201911086082.5A priority Critical patent/CN110987877A/zh
Publication of CN110987877A publication Critical patent/CN110987877A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/129Using chemometrical methods

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biophysics (AREA)
  • Ecology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

快速检测疟疾的方法和系统。所述方法包含:使用与样品接触的ATR‑FTIR光谱仪的ATR基底传递渐逝IR光束,其中所述样品被干燥于所述ATR基底上;检测从ATR基底透射的IR辐射,以产生所述样品的光谱;处理所述光谱中的一个或多个信号,以鉴定任何寄生虫;和使用所述光谱中的一个或多个信号确定所述样品的寄生虫血症水平。所述系统包括:用于接收流体样品的ATR基底;FTIR光谱仪,其被构建为使用所述ATR基底生成延伸到所述样品中的渐逝波;检测器,其用于检测从ATR基底透射的IR辐射以产生信号;和处理器,其被构建为处理所述信号以产生样品的FTIR光谱并使用用于不同感染水平的不同波数值来确定感染水平。

Description

快速检测疟疾的方法和系统
本申请为国际申请PCT/AU2014/000080于2016年9月5日进入中国国家阶段、申请号为201480076825.X、发明名称为“快速检测疟疾的方法和系统”的分案申请。
技术领域
本发明涉及疟疾检测领域,特别是受感染细胞中早期阶段疟疾寄生虫的检测和定量。
在一种形式中,本发明涉及使用衰减全反射红外(ATR-IR)光谱术来检测和定量疟疾的方法。
在另一种形式中,本发明涉及分析通过ATR-IR得到的数据的多变量分析方法。
在一个具体的方面,本发明适合用于诊断疟疾感染。
为了方便起见,在下文中就本发明在使用现场的应用来描述本发明,然而应该领会,本发明不只限于这样的应用,并且本发明能适用于一系列场合,包括实验室,和一系列尺寸的用于商业病理实验室的类型的工作台规模高通量诊断机。
背景技术
在整个本说明书中,使用单数形式的单词“发明人”可以认为是指本发明的一个(单个)发明人或多于一个(多个)发明人。
要领会,在本说明书中包括文献、装置、行为或知识的任何讨论来解释本发明的背景。另外,在整个本说明书中的所述讨论是由于本发明人的认识和/或本发明人对某些相关技术问题的识别而造成的。此外,本说明书中包括材料例如文献、装置、行为或知识的任何讨论以根据发明人的知识和经验来解释本发明的背景,因此,任何这种讨论不应该被认为承认任何所述材料构成在本文中的公开内容和权利要求的优先日期时或之前在澳大利亚或其它地方的相关技术中的现有技术基础或公共常识的一部分。
衰减全反射红外(ATR-IR)光谱术
光谱术是致力于通过检查电磁辐射与材料的相互作用来发现材料的化学组成的学科分支。红外(IR)光谱术主要涉及通过具有在电磁波谱的红外段中的波长的分子振动的能量吸收,亦即波数在200和4000cm-1之间的能量。拉曼光谱术涉及单色光的非弹性散射,给出依赖于分子振动的波长偏移,具有通常在20和4000cm-1之间的波数偏移。
ATR是可以结合IR使用的取样技术。ATR光谱术提供了可能便携的优点,它不昂贵并因此已在生物细胞和组织的分析中成为非常强有力的工具。ATR还允许样品直接以固态或液态检查而无需进一步制备,并且与透射-IR相比,进入样品的程长较短,避免了IR信号在高吸收介质例如水溶液中的强衰减。
在使用中,样品与具有比所述样品更高折射率的晶体的表面发生接触。一束IR光穿过所述ATR晶体,方式是它至少一次从与所述样品接触的内表面反射出来。这种反射形成延伸到所述样品中的渐逝波。进入样品的穿透深度取决于光的波长、所述ATR晶体的入射角和折射率、以及正被探查的介质。反射次数可以变化。然后所述光束在它离开所述晶体时由检测器收集。
疟疾
疟疾是由变形体(Plasmodium)属的寄生性原生动物引起的蚊媒病。五种变形体可以感染人类-恶性疟原虫(P.falciparum)、间日疟原虫(P.vivax)、卵型疟原虫(P.ovale)、三日疟原虫(P.malariae)和诺氏疟原虫(P.knowlesi)-但绝大多数的死亡是恶性疟原虫引起的。恶性疟原虫每年引起高达一百二十万例死亡。感染的准确和早期诊断继之以立即治疗是降低死亡率和防止过度使用抗疟疾药物必不可少的。
诊断疟疾的新技术必须是成本有效的并且具有高灵敏度和能够检测疟疾寄生虫的循环阶段,即环状体和配子体,因为这些是存在于周围血液循环中的仅有的阶段。
当前临床使用的一套疟疾诊断包括:(i)厚血膜的光学显微术,(ii)基于检测恶性疟原虫特异性抗原的快速诊断性试验(RDT),(iii)基因增殖技术例如聚合酶链反应(PCR),和(iv)使用抗体例如免疫荧光(IFA)和酶联免疫吸附测定法(ELISA)的血清学检测试验。
每种方法均具有它自己的优点和缺点。例如,光学显微术需要使用试剂制备血涂片并且基于视觉评估血细胞的形态。所述方法固有地是主观的并且需要有经验的显微镜工作者来做出诊断。
聚合酶链反应(PCR)被认为是最灵敏的和特异性的方法,但具有耗费时间、技术复杂、昂贵和需要PCR机器的缺点,并且因此不适合于在边远地区的疟疾诊断。疟疾RDT,其是基于由结合在试纸中的单克隆抗体捕获寄生虫抗原,易于使用但不能定量寄生虫血症。
现有方法的综述指出,通过光学显微术检查染色的血涂片仍然是选择用于疟疾诊断的方法,因为它便宜并且具有良好的灵敏度(5-10个寄生虫/μl血)。10,11,12然而,它是劳动密集型的、漫长的,并且更重要的是,需要熟练和有经验的显微镜工作者,并且,因为随着疟疾率下降与大多数检查的涂片为阴性而日益繁重。
在它的生命过程期间,疟疾寄生虫跨越几个发育阶段,包括有性并无性繁殖途径。有性或后代期,其出现在雌性按蚊的内脏内,产生许多被称为子孢子的感染性形态,子孢子转移到蚊子的唾液腺并在吸血期间注入人类宿主。
进入血管的子孢子移动到肝脏并侵袭肝细胞,在此它们发育成为裂殖体,每个含有数以万计的裂殖子。裂殖子随后被释放并侵袭红细胞,开始生命周期的红细胞内无性期。裂殖子在食物泡中生长和分裂并发育经过被称为环状体、滋养体和裂殖体阶段的三个不同的形态期(图1)。
成熟阶段寄生虫附着于血管内皮并因此在血涂片中只观察到环状体阶段寄生虫。裂殖体破裂,释放裂殖子并继续红细胞内周期。一些裂殖子不复制,而是在红细胞中发展成为寄生虫的有性形态,称为雌雄配子体,其能够经历向蚊子的传播。
早期阶段配子体与外周循环隔绝,但晚期阶段配子体存在于血涂片中,并且配子体携带者构成了疾病流行的基础。在周围血液中检测环状体对于早期诊断和治疗是关键的。检测在无症状的长期疟疾携带者中低水平的配子体对于根除疟疾的工作是关键的。
在所述寄生虫生命周期的红细胞内阶段期间,恶性疟原虫吞饮一团团宿主细胞细胞质、分解代谢脂质和血红蛋白,并且在所述过程中释放游离血红素,其对生物体是毒性的。疟疾寄生虫已经进化出解毒途径,所述途径利用脂质副产物将隔离的游离血红素催化成为不溶性色素,称为疟色素(Hz)。因此Hz是由疟疾寄生虫(和一些其他食血寄生虫)消化血液而形成的处置产物。
同步加速器粉末衍射分析已经显示,Hz(和它的合成等效物β-高铁血红素)的晶体由铁-羧化物相互作用性血红素二聚体通过氢键和π-π相互作用稳定的重复阵列组成。
振动光谱技术已经广泛用于了解β-高铁血红素和Hz的分子和电子结构;然而,振动光谱在疟疾诊断上的应用尚未完全开拓。已经探查了拉曼成像显微术作为基于Hz色素的强散射来诊断疟疾寄生虫的潜在非主观方法。(Wood等,共振拉曼显微术与部分暗视野显微术相结合照亮了疟疾诊断的新途径(Resonance Raman microscopy in combination withpartial dark-field microscopy lights up a new path in malaria diagnostics),Analyst 2009,134.1119-1125)。虽然所述技术已经显示了对检测所述寄生虫的环状体形态的潜力,但记录图像所花的时间在几个小时左右,因此不适合于临床环境。
还已经在努力研究同步加速器傅里叶变换红外光谱(FTIR)与主成分分析(PCA)相结合以基于Hz和特异性脂质的分子标签在所述寄生虫生命周期的红细胞内阶段之间辨别的潜力(Webster等.利用同步加速器FT-IR显微光谱术和人工神经网络辨别疟疾寄生虫的红细胞内生命周期阶段(Discriminating the Intraerythrocytic Lifecycle Stages ofthe Malaria Parasite Using Synchrotron FT-IR Microspectroscopy and anArtificial Neural Network).Analytical Chemistry 2009,81.2516-2524)。Webster等发现,随着所述寄生虫从它的早期环状体阶段成熟到滋养体并最后到裂殖体阶段,特异性脂质带的吸光度和偏移增加。
该工作证明了利用FTIR光谱术作为疟疾诊断工具的潜力,但显然基于同步加速器的方法不适合于常规实验室使用。
具体而言,现有技术的疟疾检测方法已经集中在检测Hz上。然而,仅依靠检测Hz的主要问题之一是疟疾寄生虫的早期形态(环状体阶段)具有很少量的Hz。因此,现有技术的许多拉曼方法可以最佳检测具有大量Hz的滋养体,然而这遭受到通常在周围血液中见不到滋养体的缺陷。
发明内容
本发明的目的是提供适合于实验室或现场使用的疟疾检测和定量方法。
本发明的另一个目的是减轻与相关领域有关的至少一个缺点。
在本文中描述的实施方式的目的是克服或减轻相关领域系统的至少一个上述缺陷或至少提供相关领域系统的有用的替代。
在本文中描述的实施方式的第一个方面,提供了检测疟疾的方法,所述方法包含以下步骤:
(i)传递渐消(evanescent)IR光束穿过与患者血样接触的所述ATR基底;
(ii)检测从所述ATR基底透射的IR辐射并产生对于样品中的一种或多种脂质是特征性的一个或多个信号,和
(iii)处理所述一个或多个信号以鉴定所述一种或多种脂质和与它们相关的任何疟疾寄生虫。
优选所述处理步骤包括将所述一个或多个信号与疟疾寄生虫相关脂质的参考文库光谱的集合进行比较,以便检测匹配和定量样品中的所述一种或多种脂质。所述参考文库可以包括范围广泛的光谱信息,包括与疟疾寄生虫生命周期的每个阶段有关的脂质、以及感染和未感染RBC的对照样品的特征性脂质谱。此外,鉴于它们特性的内在差异,所述文库中优选包括单细胞谱以及广泛的细胞种群的谱。
与现有技术的方法相反,本发明不依靠检测Hz。相反,它致力于由疟疾寄生虫在它们生命周期的不同阶段表达的特征性光谱脂质标签。所述由ATR-IR检测的脂质标签与文库中已知的光谱脂质标签匹配。
通常,患者样品源自于针刺或注射器等取出的小血液样品。所述血液可以直接施加到所述ATR基底,但更优选地,将红血球通过与血样的其余部分分离来至少部分浓缩。
所述ATR基底可以是所述技术中已知的任何合适的类型,但典型的基底包括锗、硒化锌或金刚石的晶体。在优选实施方式中,用于当前方法的ATR基底是金刚石。
所述脂质通常与下列的至少一种或多种有关:恶性疟原虫、间日疟原虫、卵型疟原虫、三日疟原虫和诺氏疟原虫。
本发明的方法是比较灵敏的。它能够在1ml血液的体积中检测0.001%(好于50个寄生虫/μl血液;p值=0.0006)或更高的寄生虫水平。更优选地,它能够检测至少100个寄生虫/μl样品的寄生虫水平。
通常所述IR光谱术是FTIR,亦即,原始数据已经通过称为傅里叶变换的数学处理转换为光谱。FTIR光谱仪同时收集在宽光谱范围中的光谱数据。被称为色散光谱的替代方法每次测量在窄波长范围内的强度,但实际上过时了。
本发明的处理步骤可以通过各种技术进行。在优选实施方式中,所述处理包括将所述ATR-IR光谱转换成二阶导数,然后运用偏最小二乘回归模型,所述模型的产生利用的是包含光谱标准品校准集的文库,所述标准品含有不同比率下的正常和感染RBC的混合物。
本领域中已知的任何合适的算法都可以用于将所述光谱转换成二阶导数。它消除了基线偏置并解析了光谱带中的拐点。优选地,然后使所述二阶导数光谱经历偏最小二乘(PLS)回归模型,所述模型的产生利用的是含有不同比率的正常和感染RBC的混合物的光谱标准品校准集。然而,PLS以外的许多合适的算法对本领域技术人员将是很显而易见的。
在本文中描述的实施方式的第二个方面,提供了诊断疟疾的分析系统,所述系统包含:
-用于接收血样的ATR基底,
-用于传递渐逝IR光束穿过所述ATR基底的FTIR光谱仪,
-用于检测从所述ATR基底透射的IR辐射以产生信号的检测器,
-处理所述信号以产生FTIR光谱的处理器,
其中在使用中,将血样的FTIR光谱与疟疾寄生虫相关脂质的已知光谱标签进行比较以鉴定匹配。
本发明的方法和系统因此可以与软件平台关联,所述软件平台提交ATR-IR的结果以与不同发育阶段下疟疾寄生虫株的ATR-IR结果文库比较。所述文库可以是本地的或远程的。例如,根据本发明记录的光谱可以从远程位置提交给服务器,用于鉴定所述光谱与RBC中任何疟疾寄生虫相关的脂质的已知光谱特征的文库之间的匹配。
本发明的方法或系统可以与多变量统计或神经网络方法相结合,来鉴定与血样中脂质的光谱标签相关联的疟疾株。神经网络是能够机器学习和模式识别的计算模型,并且特别好地适于分类,包括模式和序列识别和适合度概算。
在本文中描述的实施方式的另一个方面,提供了适于按照预定的指令集操作的处理器机构,所述仪器与所述指令集结合,适于执行本发明的方法。
其他方面和优选的形式在说明书中公开和/或在权利要求书中限定,构成本发明的描述的一部分。
实质上,本发明的实施方式源于认识到寄生虫特异性脂质谱可用于检测和鉴定疟疾感染的特异性株。这明显偏离了集中在寄生虫特异性的疟色素产生性质、特别是检测高铁血红素(单体前体)或疟色素上的现有技术知识。
本发明提供的优点包含如下:
·能迅速进行疟疾寄生虫的检测和定量;
·能检测疟疾寄生虫生命周期的早期阶段;
·不依靠检测Hz并且用于检测具有少或可忽略量的Hz的疟疾寄生虫形态,例如环状体和配子体;
·不需要细胞计数或化学处理;
·样品制备时间极少(<3分钟/样品);
·所述方法简单而便宜;
·高灵敏度-要求在1mL血液的体积中0.001%(好于50个寄生虫/μl血液;p值=0.0006)的寄生虫水平;
·需要的患者血液量极少(大约10μl)-通过针刺(取得大约25μl)能得到合适的量;
·避免了与人判读有关的偏倚和误差。
本发明实施方式的适用性的其他范围将从下文给出的详述描述中变得显而易见。然而,应该理解,所述详细描述和具体实例,在指出本发明的优选实施方式的同时,只作为说明给出,因为从这种详细描述中,本文中公开的精神和范围内的各种变化和修改将变得对本领域技术人员显而易见。
附图说明
本申请的优选和其他实施方式的其他公开、目的、优点和方面可以由相关领域的技术人员通过参考以下结合附图描述的实施方式得到更好的了解,所述附图只作为说明给出,因此不是本文中公开内容的限制,并且其中:
图1是示出疟疾寄生虫在RBC中的无性和有性期的图。裂殖子(1)侵入RBC并发育经过环状体(3)、滋养体(5)(生长)和裂殖体(7)(分裂)阶段。一些寄生虫分化形成能够传播给蚊子的雄性(9)和雌性(11)配子体。消化血红蛋白导致Hz蓄积。血液循环中只存在环状体阶段寄生虫(3)和晚期配子体(9,11)。
图2示出了感染的RBC(寄生虫的环状体(3)、滋养体(5)和配子体(9)阶段)和未感染的RBC(13)(对照)的C-H伸缩区和Hz带标志范围的ATR-FTIR平均二阶导数光谱。
图3示出了在二阶导数函数应用于所述C-H伸缩区(3100-280cm-1)后,对照(C)、环状体(R)、滋养体(T)和配子体(G)感染的RBC数据集的沿着PC1和PC2的PCA得分图(图3a)和PC1相关的载荷图(图3b)。
图4示出了在二阶导数函数应用于所述C-H伸缩区(3100-280cm-1)后,对照-0%(13)&环状体0.00001%(3)沿着PC1和PC2的PCA得分图和PC1相关载荷图。
图5示出了重叠二阶导数光谱的光谱,显示了用于生成所述校准模型的数据类型。[对照(21),0.05%(23),0.8%(25),0.5%(27),3%(29)]
图6示出了早期环状体阶段寄生虫血症的三个范围即模型1(图6a:0,10,15,20和30%)、模型2(图6b:0,1,1.75,2.5,3和5%)和模型3(图6c:0,0.00001,0.005,0.01,0.05,0.1,0.2,0.4,0.5,0.8和1%)的校准和验证集的回归图以及相应的8因子回归系数图(分别是图6d、6e和6f)。
图7示出了利用PLS模型在5-10%的范围内并且预测的平均标准误差为0.08,预测未知样品的实例。预测值显示为水平线,预计值周围的框指示偏差。
图8示出了本发明的用于ATR-FTIR的系统。所述系统包括用于约10μl RBC的移液管(33)基载荷的载荷夹具(31),所述RBC在Eppendorf管(35)中通过离心从全血样品分离。所述RBC负载在以金刚石形式的晶体ATR基底(37)上。渐消IR光束(39)由FTIR光谱仪产生并施加在负载了RBC样品的金刚石晶体(27)上。检测器(41)检测从金刚石晶体(37)透射的IR辐射,产生对于所述RBC样品中存在的一种或多种脂质是特征性的信号。生成的信号传到处理器(43),以与疟疾寄生虫相关脂质文库相比较进行诊断和进一步的诊断。
具体实施方式
本发明将参考下面描述的试验方法进行说明。
适合于进行本发明方法的系统通过将标准台式FTIR光谱仪和如图8中描绘的金刚石晶体ATR附件相结合而产生。
所述ATR技术利用了全内反射的性质来产生渐逝波,所述渐逝波取决于波长、所述晶体和样品的折射率、以及所述红外光束的入射角,穿透到与所述晶面相接触布置的样品中2至3μm。
通常,合适的小血样可通过针刺或注射器或任何其他便利的方法从患者取出。所述血液可以直接施加到所述ATR基底,但更优选地,将红血球通过与血样的其余部分分离而至少部分浓缩。这可以通过任何便利的手段例如离心进行。所述离心步骤可以利用在Eppendorf管中的电池驱动的微量离心机现场进行。
一等份在甲醇中浓集的RBC放在所述ATR附件的金刚石窗口上并用吹风机快速干燥(1分钟)。虽然其他溶剂也合适,但甲醇特别优选,因为它促进用所述ATR-FTIR途径达到的高灵敏度(参见下文)。
样品沉淀和光谱记录的全过程是迅速的,并且使用单个ATR元件可以花不到3分钟。算法将所述光谱转换成二阶导数以消除基线偏置和解析光谱带中的拐点。然后使所述二阶导数光谱经历利用含有不同比率的正常和感染RBC混合物的光谱标准品校准集所产生的偏最小二乘回归模型。
疟原虫培养和配子体富集
恶性疟原虫寄生虫(3D7株)如以前所述维持(Foley等,恶性疟原虫中氯喹结合蛋白的光亲合标记(Photoaffinity labeling of chloroquine-binding proteins inPlasmodium falciparum).J Biol Chem1994,269.6955-61)。简单说,寄生虫维持在O型人RBC中(来源于澳大利亚红十字会血库(Australian Red Cross Blood Bank)并在补充有5%人血清和0.25%Albumax的RPMI-HEPES培养基中培养。寄生虫通过山梨糖醇裂解同步到环状体阶段(C.Lambros,J.P.Vanderberg,培养物中恶性疟原虫红细胞内阶段的同步(Synchronization of Plasmodium falciparum erythrocytic stages in culture).JParasitol 1979,65.418-20)。高寄生虫血症环状体阶段培养物通过用纯化的裂殖体阶段寄生虫接种未感染的RBC而得到,并让其在振动条件下再侵袭过夜,减少多重感染。寄生虫血症通过吉姆萨(Giemsa)染色薄血膜计算,每个培养物计数最少10个视野。
通过在血细胞计数器上计数,得到未感染和寄生虫感染的RBC准确的细胞计数。计算稀释度并且通过用未感染的RBC稀释寄生虫感染的培养物至获得目标稀释度而制备样品。所有的稀释在完全培养基中进行,样品然后在1*PBS中洗涤一次,然后用冷甲醇(EMPARTA ACS,Merck)在冰上(<0℃)固定并通过吹吸彻底混合。样品储存在4℃直到分析。
寄生虫血症系列
用不同阶段的培养寄生虫包括环状体、滋养体、配子体以一定范围寄生虫血症百分比感染的一系列甲醇固定的RBC用于建立PLS校准模型。未感染的甲醇固定的RBC用作对照(0%寄生虫血症)。
表1:不同阶段的恶性疟原虫感染的RBC的寄生虫血症百分比
Figure BDA0002265445430000131
设备&光谱数据获取(ATR-FTIR测量)
Bruker EQUINOX 55型-(Bruker Optic,Ettingen,德国)FTIR光谱仪,配备N2-冷却的汞-镉-碲(MCT)检测器和Golden Gate金刚石ATR附件(Specac limited,Orpington,Kent,英国),用于光谱采集。所述Bruker系统用运行OPUS 6.0版软件的IBM相容的PC控制。
对于每个样品光谱,将200μl所述浓集的固定细胞放在所述金刚石池上并用吹风机风干。以8cm-1的光谱分辨率和与干净的金刚石背景成比率的32个共同添加的干涉图,收集光谱。对于每个样品沉积物,记录3-5个重复光谱以精确评估和确保每个样品光谱的再现性。
数据预处理.所述光谱数据的预处理在OPUS-(Bruker Optic,Ettingen,德国)和Unscrambler X(10.0.1版,Camo,挪威)软件包中进行。为了最佳建模,将原始光谱向量归一化并利用Savitzky-Golay算法以9个平滑点计算二阶导数。
结果和讨论
固定剂选择研究
以下描述了进行初步研究以证实本发明方法的应用。目的在于优化固定剂类型和探查在存储时间期间的光谱变化。在所述研究中考查了乙醇、甲醇和甲醛固定剂。发现甲醇是本发明的ATR测量的优选固定剂,因为它给出了更稳固的光谱(即在储存时间期间变化少)并且所述细胞不用离心就容易与固定剂分离。甲醇的另一个优点是它在吹风机下迅速消散并离开,没有化学残留物。用戊二醛风干或固定细胞达不到同样的灵敏度和精确的定量。甲醇还可以帮助迫使溶解的脂质到所述ATR晶体的表面,尤其当在来自样品夹紧装置的压力下时。
已经计算出,本发明的ATR方法可用于检测在0.00001%寄生虫血症下在所述ATR金刚石晶面上少至大约100个寄生虫的脂质残留物和Hz沉积物。
光谱精确度/再现性
从所有RBC样品得到重复光谱(总共30个,6个样品沉积物x 5个光谱/沉积物),以确保在样品风干后收集代表性的ATR-FTIR光谱。
预处理(归一化和导数计算)后,利用Unscrambler X软件在重复光谱的范围内(600-4000cm-1)进行统计检验。包括方差和标准偏差的描述性统计数据用于评估所述IR光谱的再现性。作为实例,对照样品的重复光谱(30个重复)显示平均吸光度方差为0.0005。这证实了用于在金刚石晶面上沉淀和干燥样品沉积物的所述方法的适用性,并表明所述干燥样品沉积物的光谱是稳固的和可再现的。
重叠平均光谱
在不同的寄生虫血症百分比下所述寄生虫生命周期每个阶段的重复二阶导数光谱被平均(利用Unscrambler-X软件中的简化-均值(reduced-average)选项)并重叠(图2)。
从具有最高可用的寄生虫血症百分比的不同阶段的寄生虫感染RBC[即环状体(30%)、滋养体(80%)、配子体(40%)以及对照(0%)样品]得到重复ATR-FTIR光谱。图2显示了所述C-H伸缩区(3100-2800cm-1)以及1800-900cm-1区的平均二阶导数重叠光谱,突出了来自不同的寄生虫阶段的感染RBC的重要Hz标志带。
在所述二阶导数光谱中,吸光度最大值变得最小,因此,在图2中,吸光度光谱的正强度在二阶导数光谱上变成负数。所述CH伸缩区(3100-2800cm-1)是对不同阶段的所述寄生虫的最佳诊断,如以前用同步加速器FTIR光谱术所显示(Webster等,Analyticalchemistry 2009,81.2516-2524)。
对来自核酸的贡献也有证明,如由包括在1241cm-1处的不对称伸缩和在1095cm-1处的对称伸缩的磷酸二脂标志带所证明的。观察到预计在大约1208-1215cm-1来自Hz的丙酸根基团的C-O伸缩振动作为滋养体的二阶导数光谱中的肩特征并且在配子体中程度较低。在诊断能力方面,发现使用CH伸缩区与1800-950cm-1区和这两个区域的组合相比,达到了更高的灵敏度。
主成分分析(PCA)
在光谱数据预处理之后,在来自所述寄生虫生命周期各阶段的所有重复RBC样品上进行PCA。PCA是大数据集分析的最强有力探察工具之一。PCA通过发现原始变量的线性组合,将所述数据集分解成信号和噪音部分,从而降低所述数据集的维度。PCA应用于来自包括环状体、滋养体和配子体阶段的感染的RBC以及对照样品(未感染的RBC)的二阶导数ATR-FTIR光谱,目的在于评估跨细胞亚群的光谱方差。
3(a)指出来自感染的RBC的不同阶段寄生虫血症(即R、T&G)与所述对照(C)相比,在所述C-H伸缩区中明确的区分和样品分组。在得分图右面的环状体阶段寄生虫与所有其他阶段相比具有大的正PC1值,表明与所述其他阶段相比,脂质组成中的显著差异。在所述群组中观察到的线性亚分组来自于一系列浓度用作所述PCA中的输入数据的事实。在环状体阶段,所述PCA模型中包括四个独立的系列。
3(b)显示了PC1的载荷图,其显示了在2888-2880、3060-2950cm-1区中与脂质的振动方式有关的负载荷,正如以前的发现所预期的那样。(Webster等,Analyticalchemistry 2009,81.2516-2524)。
PCA分析也适用于预计有Hz带(~1712,1664,和1209cm-1)的所有阶段的1800-1000cm-1区(数据未显示)。然而,只达到了滋养体和配子体与对照良好的而不是优秀的分离。
当使用这种光谱窗口时,环状体阶段寄生虫不能确定地与其他组分离,因为环状体只具有很少量的Hz。在PCA得分图中的明确分离以及因为不同百分比的寄生虫血症在亚分组中观察到的线性,证明所述CH伸缩区(3100-2800cm-1)对于PLS预测模型是理想的。
利用PCA分析的ATR-FTIR灵敏度
为了考查ATR-FTIR辨别很低水平的寄生虫血症的灵敏度,将PCA分析应用于环状体&滋养体这两种样品系列中最低%寄生虫血症对比对照(作为0%)的二阶导数光谱。图4显示了在环状体的0.00001%寄生虫血症对比对照时在C-H伸缩区(3100-2800cm-1)中的PCA分析实例。
图4中,所述得分图表明0.00001%寄生虫血症的环状体(环状体系列中制备的最低浓度)对比对照的良好分离或分组。所述PC1的载荷图显示了在2854、2954-2944、2993和3063cm-1的脂质带区中强的负载荷。
对配子体和滋养体系列也分别在0.09和0.5%下(可用的最低浓度)对比对照进行了类似的分析,其表现出所述配子体、滋养体和对照之间优秀的分离。该结果证实了ATR-FTIR检测低至0.00001%的寄生虫血症水平的能力。在Hz区(1800-900cm-1)中进行了相同类型的PCA分析,然而,没有观察到分离,表明Hz区对诊断低水平的寄生虫血症无效。
PLS模型
偏最小二乘(PLS)回归是通过将预测变量(%寄生虫血症)和可观察变量(光谱)投射到多维空间上产生线性回归模型的统计方法。
对于所述环状体阶段寄生虫血症,从3个独立试验构建了三个的寄生虫血症范围(在环状体阶段)的三个PLS模型,即模型1(10-30%)、模型2(0-5%)和模型3(0-1%),最低可检测的寄生虫血症是0.00001%。所述PLS模型是基于完全交叉验证模型,其中一个样品被留在外边,然后预测该样品的寄生虫血症。每个模型相应的验证均方根误差(RMSEV)和R-平方值是:模型1(2.50和0.94),模型2(0.32和0.95)和模型3(0.07和0.95)。
图5中出现的光谱显示了环状体阶段寄生虫的校准用标准集的实例,其用于构建所述PLS回归模型。为了产生最后的模型,将来自3个独立试验的校准数据结合起来。
所述校准和验证集的回归图在图6中与相应的8-因子回归系数图一起显示。所述回归系数图中最大和最小带显示了在所述模型中产生所述线性的重要的带。这些相当于与所述脂质CH伸缩振动有关的主要的带(图6)。因此,所述模型的线性是基于真实的光谱变化而不是光谱的人为现象例如基线调制或噪音。发现当利用所述脂质CH伸缩区(3100-2800cm-1)而不是存在大部分带的1800-900cm-1区时,得到的预测最好。
早先的研究还已经报告了与疟疾寄生虫有关的独特的脂质。研究显示,在寄生虫发育期间,中性脂质在消化室中和中性脂质体中蓄积(Jackson等,疟疾寄生虫恶性疟原虫中的食物泡相关脂质体和不均质的脂质环境(Food vacuole-associated lipid bodiesand heterogeneous lipid environments in the malaria parasite,Plasmodiumfalciparum).Molecular microbiology 2004,54.109-122;Pisciotta等,中性脂质纳米球在恶性疟原虫血红素结晶中的作用(The role of neutral lipid nanospheres inPlasmodium falciparum haem crystallization).Biochem.J 2007,402.197-204;和Ambele&Egan,与疟色素有关的中性脂质在生理pH、温度和离子组成下介导有效和迅速的β-羟高铁血红素形成(Neutral lipids associated with haemozoin mediate efficientand rapid-haematin formation at physiological pH,temperature and ioniccomposition).Malaria Journal20M,11.337)。
与在以后滋养体阶段较薄的脂质边缘围绕大得多的Hz晶体相比,在环状体阶段的寄生虫的图像显示在消化泡内部被中性脂质球围绕的Hz结晶较小。Jackson等(Molecularmicrobiology 2004,54.109-122)证明了中性脂质体含有二和三酰基甘油并且猜测这些结构充当在所述寄生虫的消化泡中通过磷脂消化形成的脂质副产物的储存室。所述Hz脂族和芳族CH振动还有助于该脂质光谱区,提高了所述技术的总灵敏度。
对于在不同阶段和百分比的寄生虫血症的每个感染RBC系列使用相同的方法,得到脂质和Hz带范围二者的一系列最佳回归模型,所述模型具有最小的因子数值和最高的模型适合度。结果表明,光谱预处理和除去异常值改善了在较少的因子下预测值和测量值之间的相关系数,其给予所述优化的模型最小的误差,被认为是“最好的”理论拟合。所述二阶导数的结果还表明了进一步的改善,因为达到高度相关系数所需要的因子较少。
除了上述来自大数据集的最终模型之外,表2中还给出了来自对不同的寄生虫血症系列和在寄生虫生命周期的不同阶段时的RBC在C-H伸缩区的最佳PLS模型的结果总结。它总结了在数据预处理应用于每个模型后,适用于来自不同阶段寄生虫血症的环状体、滋养体和配子体系列以及所有系列的组合的ATR-FTIR光谱的所有预测模型。
表2.对寄生虫(P)系列:环状体(R)、滋养体(T)、配子体(G)&对照(C)和来自R、T、G&C的组合系列在C-H伸缩区(3100-2800cm-1)的最佳PLS模型的总结.
Figure BDA0002265445430000191
*:预测的均方根误差
PLS预测模型对未知/盲样品的应用
为了评估所述PLS模型的应用性和灵敏度,来自低范围寄生虫血症系列(0-5、0-0.1和5-10%)的优化PLS预测模型用于预测作为未知或盲样品的一系列被环状体感染的RBC的寄生虫血症浓度。
所述未知样品的重复光谱(10-15)以与参比样品同样的方式预处理并用于所述PLS预测。将来自环状体系列(R2>0.99和RMSE<0.17)以及来自所有系列的组合光谱的两种PLS模型用于预测。图7指示了预测的实例,其中7&7.4%寄生虫血症的环状体样品用作未知样品并使用在5-10%寄生虫血症范围内的PLS模型,所述预测偏差的平均标准误差在因子1处是0.08%。
寄生虫血症水平在0至2范围内的更多的环状体样品也用作未知样品。所述环状体样品的平均预测浓度全部在0-2%内,平均误差为0.2(Hotelling T2在95%置信限)。对<0.1%寄生虫血症的未知样品的预测显示平均标准偏差为0.05。
预测变差、尤其是在低寄生虫血症水平下的原因可以归于:(i)沉积在所述ATR金刚石池上的感染细胞的数量变化可能致使在干燥的样品沉积物中脂质分布不均匀,(ii)所述脂质沉积物在晶体表面的厚度变化,(iii)样品制备(例如分离和稀释)和参比方法中涉及的误差。
所述金刚石池上样品厚度中的样品均匀性、粒度和一致性被发现是在预测未知样品中得到一致的光谱采集和降低误差上最重要的。发现所述预测的检测限或灵敏度在95%置信限内是0.2%。
所描述的试验结果因此证明了ATR FTIR光谱术作为迅速检测和定量疟疾寄生虫感染的方法的实用性。
虽然本发明已经结合其具体实施方式进行了描述,但应理解它能够进一步修改。本申请打算覆盖总体上遵循本发明原理的任何本发明的变化、应用或改造,并包括在本发明所属领域内已知或惯常的实践范围内并可以适用于以上阐述的基本特征的这类对本公开的偏离。
因为本发明可以用若干形式体现而不背离本发明的基本特征的精神,所以应该理解,除非另作说明,以上描述的实施方式不是为了限制本发明,而是应该在如权利要求书中限定的本发明的精神和范围内广义地解释。所描述的实施方式应在所有方面都被认为是仅仅说明性的而不是限制性的。
各种修改和等效的安排打算包括在本发明和权利要求书的精神和范围内。因此,所述具体实施方式应理解为是可以实践本发明原理的许多方式的说明。在权利要求书中,手段加功能条款旨在覆盖执行所限定的功能并且不仅是结构上等同、而且是等效结构的结构。
应该注意,在本文中使用术语“服务器”、“安全服务器”或类似的术语的情况下,是描述可以用于通讯系统的通讯装置,除非上下文另有要求,并且不应该解释为将本发明限于任何具体的通讯装置类型。因此,通讯装置可以包括但不限于桥接器、路由器、桥路器(路由器)、转换器、结点、或其他通讯装置,其可以或可以不是安全的。
本发明的各种实施方式可以用许多不同的形式体现,包括用于处理器(例如微处理器、微控制器、数字信号处理器或通用计算机,并且在这方面,任何商业处理器都可以作为所述系统中的单处理器、串联或并联处理器组用于实施本发明的实施方式,因而商业处理器的实例包括但不限于MercedTM、PentiumTM、Pentium IITM、XeonTM、CeleronTM、PentiumProTM、EfficeonTM、AthlonTM、AMDTM等)的计算机程序逻辑,用于可编程逻辑装置(例如,现场可编程门阵列(FPGA)或其他PLD)的可编程逻辑,分立元件,集成电路元件(例如,专用集成电路(ASIC)),或包括其任何组合的任何其他机构。
在本发明的示例性实施方式中,用户和服务器之间的所有通讯主要作为一组计算机程序指令来实行,所述指令转变为计算机可执行的形式,照此储存在计算机可读介质中,并由在操作系统控制下的微处理器执行。
实行在本文中描述的所有或部分功能性的计算机程序逻辑可以用各种形式体现,包括源代码形式、计算机可执行形式、和各种中间形式(例如,通过汇编程序、编辑程序、连接程序或定位程序产生的形式)。源代码可以包括以各种编程语言(例如目标码、汇编语言、或高级语言例如Fortran、C、C++、JAVA或HTML)的任一种执行的一系列计算机程序指令。此外,有数以百计可用的计算机语言可以用于实行本发明的实施方式,其中更常用的是Ada;Algol;APL;awk;Basic;C;C++;Conol;Delphi;Eiffel;Euphoria;Forth;Fortran;HTML;Icon;Java;Javascript;Lisp;Logo;Mathematica;MatLab;Miranda;Modula-2;Oberon;Pascal;Perl;PL/I;Prolog;Python;Rexx;SAS;Scheme;sed;Simula;Smalltalk;Snobol;SQL;Visual Basic;Visual C++;Linux和XML)可用于各种操作系统或操作环境。所述源代码可以限定和使用各种数据结构和通讯信息。所述源代码可以是计算机可执行形式(例如,通过译码),或所述源代码可以转化(例如通过译码程序、汇编程序或编译程序)成计算机可执行形式。
计算机程序可以用任何形式(例如,源代码形式,计算机可执行形式,或中间形式)永久或暂时地安装在有形存储介质中,例如半导体存储装置(例如RAM、ROM、PROM、EEPROM或闪存可编程RAM)、磁存储装置(例如软盘或硬盘)、光存储装置(例如,CD-ROM或DVD-ROM)、PC卡(例如,PCMCIA卡)、或其他存储装置。计算机程序可以在利用各种通讯技术的任一种可发送到计算机的信号中以任何形式安装,所述通讯技术包括但决不限于模拟技术、数字技术、光学技术、无线技术(例如蓝牙)、网络技术、和互联网技术。所述计算机程序可以用作为带有伴随的印刷或电子文档的可移动存储介质(例如收缩包装软件)的任何形式分发,并与计算机系统一起预安装(例如,在系统ROM或硬盘上),或从通讯系统(例如因特网或万维网)上的服务器或电子公告板分发。
实行在本文中描述的所有或部分功能性的硬件逻辑(包括用于可编程逻辑器件的可编程逻辑)可以利用传统的手工方法设计,或可以利用各种工具例如计算机辅助设计(CAD)、硬件描述语言(例如VHDL或AHDL)、或PLD程序设计语言(例如PALASM、ABEL或CUPL)设计、捕获、模拟、或电子记录。硬件逻辑也可以结合在实行本发明实施方式的显示屏中,并且所述显示屏可以是分段显示屏、模拟显示屏、数字显示屏、CRT、LED屏、等离子体屏、液晶二极管屏等等。
所述可编程逻辑可以永久或暂时地安装在有形存储介质中,例如半导体存储装置(例如RAM、ROM、PROM、EEPROM或闪存可编程RAM)、磁存储装置(例如软盘或硬盘)、光存储装置(例如,CD-ROM或DVD-ROM)或其他存储装置。所述可编程逻辑可以在利用各种通讯技术的任一种可发送到计算机的信号中安装,所述通讯技术包括但决不限于模拟技术、数字技术、光学技术、无线技术(例如蓝牙)、网络技术、和互联网技术。所述可编程逻辑可以作为带有伴随的印刷或电子文档的可移动存储介质(例如收缩包装软件)分发,并与计算机系统一起预安装(例如,在系统ROM或硬盘上),或从通讯系统(例如因特网或万维网)上的服务器或电子公告板分发。
“包含”和“包括”当用于本说明书中时被认为是指存在所陈述的特征、整体、步骤或部分,但不排除存在或添加一种或多种其他特征、整体、步骤、部分或其组合。因此,除非上下文另外明确要求,在整个所述描述和权利要求书中,单词‘包含’、‘包括’等应以包括性意义解释而不是排他或穷尽的意义;就是说,以“包括但不限于”的意义。

Claims (24)

1.用ATR-FTIR光谱仪检测寄生虫血症的方法,所述方法包括:
(i)使用与样品接触的ATR-FTIR光谱仪的ATR基底传递渐逝IR光束,其中所述样品被干燥于所述ATR基底上;
(ii)检测从ATR基底透射的IR辐射,以产生所述样品的光谱;
(iii)处理所述光谱中的一个或多个信号,以鉴定任何寄生虫;和
(iv)使用所述光谱中的一个或多个信号确定所述样品的寄生虫血症水平。
2.根据权利要求1所述的方法,其中所述寄生虫血症水平≥100个寄生虫/μl样品。
3.根据权利要求1所述的方法,其中所述寄生虫血症水平≥50个寄生虫/μl样品。
4.根据权利要求1所述的方法,另外包括将所述光谱从远程位置提交给服务器。
5.根据权利要求4所述的方法,其中处理所述光谱中的一个或多个信号在服务器上进行。
6.根据权利要求4所述的方法,其中确定寄生虫血症水平在服务器上进行。
7.根据权利要求1所述的方法,其中所述方法包括将所述光谱转换为二阶导数,然后应用偏最小二乘回归模型,所述偏最小二乘回归模型的产生利用的是包含光谱标准品校准集的文库,所述标准品含有不同比率下的正常样品和感染样品的混合物。
8.根据权利要求7所述的方法,另外包括将所述光谱从远程位置提交给服务器,并且其中所述处理在所述服务器进行。
9.根据权利要求1所述的方法,其中信号的所述处理通过储存在计算机可读介质中的预定的指令集的处理器来执行。
10.根据权利要求1所述的方法,另外包括将样品在甲醇中固定。
11.根据权利要求10所述的方法,另外包括使用热源干燥所述样品。
12.根据权利要求1所述的方法,其中所述光谱中的一个或多个信号是光谱中处于2850、2854、2873、2904、2908、2942、2978、2982、2985、3012或3040cm-1处的一个或多个信号。
13.根据权利要求1所述的方法,其中所述光谱中的一个或多个信号包括在不同的寄生虫血症水平处的不同光谱。
14.根据权利要求1所述的方法,其中所述光谱中的一个或多个信号包括在2854、2904、2942或2982cm-1处的至少一个信号来定量10-30%之间的寄生虫血症水平。
15.根据权利要求1所述的方法,其中所述光谱中的一个或多个信号包括在2854、2904、2942和2982cm-1处的信号来定量10-30%之间的寄生虫血症水平。
16.根据权利要求1所述的方法,其中所述光谱中的一个或多个信号包括在2873、2908、2978或3012cm-1处的至少一个信号来定量0-5%之间的寄生虫血症水平。
17.根据权利要求1所述的方法,其中所述光谱中的一个或多个信号包括在2873、2908、2978和3012cm-1处的信号来定量0-5%之间的寄生虫血症水平。
18.根据权利要求1所述的方法,其中所述光谱中的一个或多个信号包括在2857、2942、2985或3040cm-1处的至少一个信号来定量0-1%之间的寄生虫血症水平。
19.根据权利要求1所述的方法,其中所述光谱中的一个或多个信号包括在2857、2942、2985和3040cm-1处的信号来检测任何寄生虫血症的存在。
20.一种方法,其包括:
使用处理器执行在非临时性计算机可读存储介质中储存的指令集,所述指令集包括使用用于不同感染水平的不同波数值或吸光度值以比较对于被感染样品是特征性的一个或多个光谱信号以便检测匹配和定量寄生虫血症水平的指令。
21.根据权利要求20所述的方法,其中所述一个或多个信号是在2850、2854、2873、2904、2908、2942、2978、2982、2985、3012或3040cm-1处的光谱带。
22.根据权利要求20所述的方法,其中所述一个或多个信号包括在不同寄生虫血症水平处的不同光谱。
23.一种用于诊断感染的分析系统,所述系统包括:
用于接收流体样品的ATR基底;
FTIR光谱仪,其被构建为使用所述ATR基底生成延伸到所述样品中的渐逝波;
检测器,其用于检测从ATR基底透射的IR辐射以产生信号;和
处理器,其被构建为处理所述信号以产生样品的FTIR光谱并使用用于不同感染水平的不同波数值来确定感染水平。
24.根据权利要求23所述的系统,其中所述处理器位于服务器中,并且所述ATR基底、FTIR光谱仪和检测器位于远离所述处理器的远程位置。
CN201911086082.5A 2014-02-05 2014-02-05 快速检测疟疾的方法和系统 Pending CN110987877A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911086082.5A CN110987877A (zh) 2014-02-05 2014-02-05 快速检测疟疾的方法和系统

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201911086082.5A CN110987877A (zh) 2014-02-05 2014-02-05 快速检测疟疾的方法和系统
PCT/AU2014/000080 WO2015117178A1 (en) 2014-02-05 2014-02-05 Method and system for rapid malaria detection
CN201480076825.XA CN106104258B (zh) 2014-02-05 2014-02-05 快速检测疟疾的系统

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201480076825.XA Division CN106104258B (zh) 2014-02-05 2014-02-05 快速检测疟疾的系统

Publications (1)

Publication Number Publication Date
CN110987877A true CN110987877A (zh) 2020-04-10

Family

ID=53777049

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201480076825.XA Expired - Fee Related CN106104258B (zh) 2014-02-05 2014-02-05 快速检测疟疾的系统
CN201911086082.5A Pending CN110987877A (zh) 2014-02-05 2014-02-05 快速检测疟疾的方法和系统

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201480076825.XA Expired - Fee Related CN106104258B (zh) 2014-02-05 2014-02-05 快速检测疟疾的系统

Country Status (6)

Country Link
US (2) US9983130B2 (zh)
EP (1) EP3102925A4 (zh)
CN (2) CN106104258B (zh)
AU (1) AU2014381308B2 (zh)
CA (1) CA2938772C (zh)
WO (1) WO2015117178A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9398869B2 (en) 2010-03-26 2016-07-26 University Of Virginia Patent Foundation Method, system, and computer program product for improving the accuracy of glucose sensors using insulin delivery observation in diabetes
US9983130B2 (en) 2014-02-05 2018-05-29 Monash University Method and system for rapid malaria detection
CA2965539A1 (en) 2014-10-24 2016-04-28 Monash University Method and system for detection of disease agents in blood

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6379920B1 (en) 1999-07-24 2002-04-30 Georgia Tech Research Corp. Spectroscopic diagnostics for bacteria in biologic sample
US6749565B2 (en) * 2000-07-08 2004-06-15 Victor Chudner Method for blood infrared spectroscopy diagnosing of inner organs pathology
US6748250B1 (en) 2001-04-27 2004-06-08 Medoptix, Inc. Method and system of monitoring a patient
EP1634061A4 (en) * 2003-04-30 2007-11-21 Univ Mcgill METHODS AND SYSTEM FOR MEASURING LACTATE MIRRORS IN VIVO
WO2006130921A1 (en) 2005-06-08 2006-12-14 Monash University Investigating biological cells using enhanced raman spectroscopy
GB0513421D0 (en) * 2005-06-30 2005-08-03 Glaxosmithkline Biolog Sa Vaccines
US8385997B2 (en) 2007-12-11 2013-02-26 Tokitae Llc Spectroscopic detection of malaria via the eye
EP2133478A3 (en) * 2008-02-27 2011-10-05 Jsm Healthcare Inc Apparatus for analyzing components of urine by using atr and method thereof
WO2009135197A2 (en) * 2008-05-02 2009-11-05 Sri International Optical microneedle-based spectrometer
WO2010048678A1 (en) 2008-10-31 2010-05-06 The University Of Sydney Classification of biological samples using spectroscopic analysis
US20120225019A1 (en) * 2009-09-16 2012-09-06 Emily Peak Dual Fluorescence Assay For Determining Viability Of Parasitic Or Non-Parasitic Worms
US20130137872A1 (en) * 2010-04-23 2013-05-30 Enos Kiremire Method of synthesizing a complex [cu(nns)cl] active against the malaria parasite plasmodium falciparum
US8941062B2 (en) * 2010-11-16 2015-01-27 1087 Systems, Inc. System for identifying and sorting living cells
US9671347B2 (en) 2011-04-08 2017-06-06 Nanyang Technological University Method of diagnosing malaria infection in a patient by surface enhanced resonance raman spectroscopy
EP2746750A1 (de) * 2012-12-22 2014-06-25 Zendia GmbH PoC-Testsystem und -verfahren mit mobiler Rechnereinheit
US9983130B2 (en) 2014-02-05 2018-05-29 Monash University Method and system for rapid malaria detection
GB201403376D0 (en) * 2014-02-26 2014-04-09 Univ Manchester A method of analysing a sample including a microorganism of interest
CA2965539A1 (en) 2014-10-24 2016-04-28 Monash University Method and system for detection of disease agents in blood

Also Published As

Publication number Publication date
CN106104258B (zh) 2019-11-29
US20180266948A1 (en) 2018-09-20
EP3102925A4 (en) 2017-08-16
WO2015117178A1 (en) 2015-08-13
AU2014381308B2 (en) 2019-08-22
CN106104258A (zh) 2016-11-09
US20170167976A1 (en) 2017-06-15
US9983130B2 (en) 2018-05-29
CA2938772A1 (en) 2015-08-13
CA2938772C (en) 2020-04-21
US10458914B2 (en) 2019-10-29
AU2014381308A1 (en) 2016-08-25
EP3102925A1 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
Khoshmanesh et al. Detection and quantification of early-stage malaria parasites in laboratory infected erythrocytes by attenuated total reflectance infrared spectroscopy and multivariate analysis
US10697955B2 (en) Method and system for detection of disease agents in blood
Perez-Guaita et al. Multimodal vibrational imaging of cells
US20180080760A1 (en) Method for analysing particles
Kochan et al. Infrared spectroscopy of blood
Perez-Guaita et al. High resolution FTIR imaging provides automated discrimination and detection of single malaria parasite infected erythrocytes on glass
US10458914B2 (en) Method and system for rapid parasite detection
Wood et al. Diagnosing malaria infected cells at the single cell level using focal plane array Fourier transform infrared imaging spectroscopy
JP2017203637A (ja) 腫瘍細胞検出方法及び腫瘍細胞検出装置
US20230194432A1 (en) Method of detecting the presence of a pathogen in a biological liquid
Adegoke et al. A near-infrared “matchbox size” spectrometer to detect and quantify malaria parasitemia
Zhang et al. Noncontact blood species identification method based on spatially resolved near-infrared transmission spectroscopy
Theint et al. Development of an optical biosensor for the detection of Trypanosoma evansi and Plasmodium berghei
Long et al. Waveband selection of reagent-free determination for thalassemia screening indicators using Fourier transform infrared spectroscopy with attenuated total reflection
Bian et al. Discrimination of human and nonhuman blood using Raman spectroscopy with self-reference algorithm
Verdonck et al. Label-free phenotyping of peripheral blood lymphocytes by infrared imaging
Girard et al. Raman spectroscopic analysis of skin as a diagnostic tool for Human African Trypanosomiasis
Duarte et al. Near-infrared Raman spectroscopy to detect anti-Toxoplasma gondii antibody in blood sera of domestic cats: quantitative analysis based on partial least-squares multivariate statistics
Ruther et al. Vibrational Spectroscopic Based Approach for Diagnosing Babesia bovis Infection
Gómez-de Anda et al. Feasibility study for the detection of Trichinella spiralis in a murine model using mid-Fourier transform infrared spectroscopy (MID-FTIR) with attenuated total reflectance (ATR) and soft independent modelling of class analogies (SIMCA)
Zhou et al. Different Raman spectral patterns of primary rat pancreatic β cells and insulinoma cells
CHRISTENSEN Applications of Vibrational Spectroscopy in the Fight Against Vector-Borne Diseases
Banas et al. Do we really need sub-micron resolution to analyse single cell molecular features through vibrational spectroscopy? A pilot study using Plasmodium falciparum-infected Human Erythrocytes
McReynolds Advanced multimodal methods in biomedicine: Raman spectroscopy and digital holographic microscopy
Santos et al. Clinical applications of spectroscopic techniques in conjunction with multivariate analysis in virus diagnosis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200410

WD01 Invention patent application deemed withdrawn after publication