CN110983279B - 一种高硬度低吸收氮化硅薄膜的制备方法 - Google Patents
一种高硬度低吸收氮化硅薄膜的制备方法 Download PDFInfo
- Publication number
- CN110983279B CN110983279B CN201911146631.3A CN201911146631A CN110983279B CN 110983279 B CN110983279 B CN 110983279B CN 201911146631 A CN201911146631 A CN 201911146631A CN 110983279 B CN110983279 B CN 110983279B
- Authority
- CN
- China
- Prior art keywords
- film
- preparation
- hardness
- ion source
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052581 Si3N4 Inorganic materials 0.000 title claims abstract description 25
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- 238000010521 absorption reaction Methods 0.000 title claims abstract description 16
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 title description 3
- 239000010408 film Substances 0.000 claims abstract description 79
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 24
- 238000000151 deposition Methods 0.000 claims abstract description 16
- 238000001659 ion-beam spectroscopy Methods 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 14
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 12
- 239000000758 substrate Substances 0.000 claims description 32
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 22
- 238000002834 transmittance Methods 0.000 claims description 14
- 239000005350 fused silica glass Substances 0.000 claims description 11
- 239000010453 quartz Substances 0.000 claims description 11
- 230000008033 biological extinction Effects 0.000 claims description 6
- 238000000411 transmission spectrum Methods 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 5
- 238000005259 measurement Methods 0.000 claims description 5
- 239000013077 target material Substances 0.000 claims description 4
- 239000010409 thin film Substances 0.000 claims description 4
- 238000007373 indentation Methods 0.000 claims description 3
- 230000008021 deposition Effects 0.000 abstract description 12
- 230000001681 protective effect Effects 0.000 abstract description 9
- 238000005516 engineering process Methods 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 3
- 239000012788 optical film Substances 0.000 abstract description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003331 infrared imaging Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000001931 thermography Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/46—Sputtering by ion beam produced by an external ion source
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
- C23C14/0652—Silicon nitride
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3563—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/59—Transmissivity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/40—Investigating hardness or rebound hardness
- G01N3/42—Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3563—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
- G01N2021/3568—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor applied to semiconductors, e.g. Silicon
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N2021/3595—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0014—Type of force applied
- G01N2203/0016—Tensile or compressive
- G01N2203/0019—Compressive
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
- G01N2203/0076—Hardness, compressibility or resistance to crushing
- G01N2203/0078—Hardness, compressibility or resistance to crushing using indentation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/026—Specifications of the specimen
- G01N2203/0262—Shape of the specimen
- G01N2203/0278—Thin specimens
- G01N2203/0282—Two dimensional, e.g. tapes, webs, sheets, strips, disks or membranes
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Immunology (AREA)
- General Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Physical Vapour Deposition (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明涉及一种高硬度低吸收Si3N4薄膜的制备方法,属于光学薄膜技术领域。本发明提供一种高硬度低吸收离子束溅射Si3N4薄膜的制备方法,通过采用双离子束溅射沉积技术,通过改变主离子源和辅助离子源的工艺参数,以及真空室和辅助离子源通入氮气的流量,可实现高硬度低吸收Si3N4薄膜的制备。结果表明,该方法将大大提高Si3N4薄膜的硬度和降低吸收损耗,作为最外层保护薄膜,对于高性能中波红外硬质保护薄膜窗口的制备具有重要的作用。本发明对于不同离子源参数制备Si3N4薄膜具有普适性。
Description
技术领域
本发明属于光学薄膜技术领域,具体涉及一种高硬度低吸收Si3N4薄膜的制备方法。
背景技术
随着红外技术的高速发展,红外制导武器的服役环境日益苛刻。红外窗口是红外热成像探测系统中的关键部件,位于红外成像系统的最前端。它是重要的结构/功能一体化部件,又是抗高速条件下的热力学冲击的薄弱环节。国外早在四十年代就开始了增透保护膜的研究和相关试验验证,但直到八十年代初国外才实现类金刚石保护膜(DLC膜)的沉积,试验表明保护膜对窗口表面的侵蚀耐受程度具有明显的提升。但DLC膜存在一定的吸收,在增透保护薄膜方面应用还存在一定的问题。
而由于作无定形态的Si3N4是一种重要的结构材料,它具有硬度高、弹性模量大,本身具有润滑性,表面摩擦系数小、耐磨损等特点,所以常被用作耐磨材料。同时它还具有耐高温、热膨胀系数小、导热系数大、抗热震性好,以及耐腐蚀、抗氧化等优点。所以Si3N4薄膜在硬质保护薄膜方面具有很大的应用前景。目前,制作氮化硅薄膜可以用化学气相沉积(CVD)、物理气相沉积(PVD)、离子束增强沉积 (IBED)、电子回旋共振等离子体化学气相沉积技术(ECR-PECVD) 以及射频和微波的等离子化学气相沉积(RF-PCVD和MW-PCVD) 等,但针对离子束溅射沉积技术制备Si3N4薄膜还鲜有报道。
综上所述,目前采用离子束溅射沉积技术制备Si3N4薄膜还未见报道。
发明内容
(一)要解决的技术问题
本发明要解决的技术问题是:如何实现高硬度低吸收Si3N4薄膜的制备。
(二)技术方案
为了解决上述技术问题,本发明提供了一种高硬度低吸收Si3N4薄膜的制备方法,包括以下步骤:
1)首先选择Si靶作为离子束溅射靶材;
2)其次采用离子束溅射沉积技术,在不同基底上制备Si3N4薄膜;
3)然后采用分光光度计和红外傅立叶光谱仪分别测量Si3N4薄膜的透射光谱;
4)基于透射光谱的反演方法,计算Si3N4薄膜的折射率和消光系数;
5)测量Si3N4薄膜的硬度。
优选地,步骤1中,选择熔融石英和Si基底作为Si3N4薄膜的沉积。
优选地,步骤2在制备时,选择镀膜真空室本体真空度为 m×10-6Torr,1≤m≤50,真空室氮气流量X为10≤X≤50,辅助离子源氮气流量Y为0~50sccm,主离子源工作参数为:工作电压U1为600V≤ U1≤1500V,工作电流I1为200mA≤I1≤900mA;辅助离子源工作参数为:工作电压U2为150V≤U2≤600V,工作电流I2为100mA≤I2≤400mA,在熔融石英和Si基底上制备Si3N4薄膜。
优选地,步骤2在制备时,选择镀膜真空室本体真空度为 4×10-6Torr,真空室氮气流量X为30sccm,辅助离子源氮气流量Y为 30sccm,主离子源工作参数:工作电压U1为1000V,工作电流I1为 450mA;辅助离子源工作参数:工作电压U2为300V,工作电流I2为200mA,在熔融石英和Si基底上制备Si3N4薄膜。
优选地,在熔融石英和Si基底上制备Si3N4薄膜时,膜层厚度为300nm。
优选地,步骤3中,采用分光光度计测量石英基底上Si3N4薄膜的可见光-近红外透过率曲线,测量范围为300nm-2500nm;采用红外傅立叶光谱仪测量Si基底上Si3N4薄膜的红外透过率曲线,测量范围为2500nm-20000nm。
优选地,步骤3中,采用Lambda900分光光度计测量石英基底上Si3N4薄膜的可见光-近红外透过率曲线。
优选地,步骤3中,采用PE红外傅立叶光谱仪测量Si基底上 Si3N4薄膜的红外透过率曲线。
优选地,步骤5中,采用纳米压痕法测量石英基底上Si3N4薄膜的硬度。
(三)有益效果
本发明提供一种高硬度低吸收离子束溅射Si3N4薄膜的制备方法,通过采用双离子束溅射沉积技术,通过改变主离子源和辅助离子源的工艺参数,以及真空室和辅助离子源通入氮气的流量,可实现高硬度低吸收Si3N4薄膜的制备。结果表明,该方法将大大提高Si3N4薄膜的硬度和降低吸收损耗,作为最外层保护薄膜,对于高性能中波红外硬质保护薄膜窗口的制备具有重要的作用。本发明对于不同离子源参数制备Si3N4薄膜具有普适性。
附图说明
图1为离子束溅射技术制备Si3N4薄膜工作示意图;
图2为石英基底上Si3N4薄膜的可见光-近红外透过率曲线图;
图3为Si基底上Si3N4薄膜的红外透过率曲线图;
图4为Si3N4薄膜的折射率曲线图;
图5为Si3N4薄膜的消光系数曲线图;
图6为Si3N4薄膜的硬度曲线图。
具体实施方式
为使本发明的目的、内容、和优点更加清楚,下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。
本发明提供了一种高硬度低吸收Si3N4薄膜的制备方法,包括以下步骤:
1)首先选择Si靶作为离子束溅射沉积靶材,选择熔融石英和Si 基底作为Si3N4薄膜的沉积基底;
2)采用双离子束溅射沉积技术,选择镀膜真空室本体真空度为 m×10-6Torr(1≤m≤50),真空室氮气流量为Xsccm(10≤X≤50),辅助离子源氮气流量为Y sccm(0≤Y≤50),主离子源工作参数:工作电压为U1(600V≤U1≤1500V),工作电流为I1(200mA≤ I1≤900mA);辅助离子源工作参数:工作电压为U2 (150V≤U2≤600V),工作电流为I2(100mA≤I2≤400mA),在熔融石英和Si基底上制备Si3N4薄膜;
3)采用分光光度计测量石英基底上Si3N4薄膜的可见光-近红外透过率曲线,采用红外傅立叶光谱仪测量Si基底上Si3N4薄膜的红外透过率曲线;
4)采用基于透射光谱的光谱反演计算方法精确计算Si3N4薄膜的折射率和消光系数;
5)采用纳米压痕法测量石英基底上Si3N4薄膜的硬度。
下面以高硬度低吸收离子束溅射Si3N4薄膜制备为实例,具体步骤如下:
1)首先选择Si靶作为离子束溅射沉积靶材,选择熔融石英和Si 基底作为Si3N4薄膜的沉积;
2)采用双离子束溅射沉积技术,制备Si3N4薄膜工作示意图如图 1所示。选择镀膜真空室本体真空度为4×10-6Torr,真空室氮气流量X为30sccm,辅助离子源氮气流量Y为30sccm,主离子源工作参数:工作电压U1为1000V,工作电流I1为450mA;辅助离子源工作参数:工作电压U2为300V,工作电流I2为 200mA,在熔融石英和Si基底上制备了Si3N4薄膜,膜层厚度为300nm左右;
3)采用Lambda900分光光度计测量石英基底上Si3N4薄膜的可见光-近红外透过率曲线,测量范围为300nm-2500nm,测量结果如图2所示;采用PE红外傅立叶光谱仪测量Si基底上Si3N4薄膜的红外透过率曲线,测量范围为2500nm-20000nm,测量结果如图3所示;
4)采用基于透射光谱的光谱反演计算方法精确计算了Si3N4薄膜的折射率、消光系数、沉积速率等光学常数,折射率曲线如图 4所示,消光系数曲线如图5所示,在4000nm处的折射率和消光系数分别为1.916和2×10-4;
5)采用纳米压痕法测量石英基底上Si3N4薄膜的硬度,硬度曲线如图6所示,硬度值为19.79Gpa。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。
Claims (1)
1.一种高硬度低吸收Si3N4薄膜的制备方法,其特征在于,包括以下步骤:
1)首先选择Si靶作为离子束溅射靶材;
2)其次采用离子束溅射沉积技术,在不同基底上制备Si3N4薄膜;
3)然后采用分光光度计和红外傅立叶光谱仪分别测量Si3N4薄膜的透射光谱;
4)基于透射光谱的反演方法,计算Si3N4薄膜的折射率和消光系数;
5)测量Si3N4薄膜的硬度;
步骤1中,选择熔融石英和Si基底作为Si3N4薄膜的沉积;
步骤2在制备时,选择镀膜真空室本体真空度为4×10-6Torr,真空室氮气流量X为30sccm,辅助离子源氮气流量Y为30sccm,主离子源工作参数:工作电压U1为1000V,工作电流I1为450mA;辅助离子源工作参数:工作电压U2为300V,工作电流I2为200mA,在熔融石英和Si基底上制备Si3N4薄膜;
在熔融石英和Si基底上制备Si3N4薄膜时,膜层厚度为300nm;
步骤3中,采用分光光度计测量石英基底上Si3N4薄膜的可见光-近红外透过率曲线,测量范围为300nm-2500nm;采用红外傅立叶光谱仪测量Si基底上Si3N4薄膜的红外透过率曲线,测量范围为2500nm-20000nm;
步骤3中,采用Lambda900分光光度计测量石英基底上Si3N4薄膜的可见光-近红外透过率曲线;
步骤3中,采用PE红外傅立叶光谱仪测量Si基底上Si3N4薄膜的红外透过率曲线;
步骤5中,采用纳米压痕法测量石英基底上Si3N4薄膜的硬度。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911146631.3A CN110983279B (zh) | 2019-11-21 | 2019-11-21 | 一种高硬度低吸收氮化硅薄膜的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911146631.3A CN110983279B (zh) | 2019-11-21 | 2019-11-21 | 一种高硬度低吸收氮化硅薄膜的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110983279A CN110983279A (zh) | 2020-04-10 |
CN110983279B true CN110983279B (zh) | 2022-04-01 |
Family
ID=70085472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911146631.3A Active CN110983279B (zh) | 2019-11-21 | 2019-11-21 | 一种高硬度低吸收氮化硅薄膜的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110983279B (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101074477A (zh) * | 2006-05-15 | 2007-11-21 | 弗拉基米尔·希里罗夫 | 在真空中涂覆氮化硅薄膜的方法 |
CN106498351A (zh) * | 2016-11-03 | 2017-03-15 | 天津津航技术物理研究所 | 一种提高离子束反应溅射法制备碳化锗薄膜牢固度的方法 |
-
2019
- 2019-11-21 CN CN201911146631.3A patent/CN110983279B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101074477A (zh) * | 2006-05-15 | 2007-11-21 | 弗拉基米尔·希里罗夫 | 在真空中涂覆氮化硅薄膜的方法 |
CN106498351A (zh) * | 2016-11-03 | 2017-03-15 | 天津津航技术物理研究所 | 一种提高离子束反应溅射法制备碳化锗薄膜牢固度的方法 |
Non-Patent Citations (1)
Title |
---|
SiOxNy和SiNx薄膜的结构和光致发光性质研究;成珏飞;《中国优秀硕士学位论文全文数据库(工程科技Ⅰ辑)》;20050315(第1期);第5-8、第20-21页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110983279A (zh) | 2020-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Clay et al. | Material properties and tribological performance of rf-PECVD deposited DLC coatings | |
Zhang et al. | A phenomenological approach for the Id/Ig ratio and sp3 fraction of magnetron sputtered aC films | |
Lifshitz | Diamond-like carbon—present status | |
Trava-Airoldi et al. | A comparison of DLC film properties obtained by rf PACVD, IBAD, and enhanced pulsed-DC PACVD | |
Kokaku et al. | Influence of exposure to an atmosphere of high relative humidity on tribological properties of diamondlike carbon films | |
CA2548782A1 (en) | Diamond films and methods of making diamond films | |
US20230373851A1 (en) | Functional coated article | |
Akita et al. | Comparison of deposition methods for ultra thin DLC overcoat film for MR head | |
Wang et al. | Microstructure and tribological properties of the aC: H films deposited by magnetron sputtering with CH4/Ar mixture | |
US20120164482A1 (en) | Coated article and method for making same | |
Jiang et al. | Chemical bonding and optical properties of germanium–carbon alloy films prepared by magnetron co-sputtering as a function of substrate temperature | |
Richter et al. | Substrate influence in Young's modulus determination of thin films by indentation methods: Cubic boron nitride as an example | |
Zajı́čková et al. | Correlation between SiOx content and properties of DLC: SiOx films prepared by PECVD | |
Wang et al. | The preparation and evaluation of graded multilayer ta-C films deposited by FCVA method | |
CN110983279B (zh) | 一种高硬度低吸收氮化硅薄膜的制备方法 | |
Kousaka et al. | Ultra-high-speed Coating of Si-containing aC: H Film at over 100μm/h | |
Hang et al. | Optimisation of diamond-like carbon films by unbalanced magnetron sputtering for infrared transmission enhancement | |
Lousa et al. | Effect of ion bombardment on the properties of B4C thin films deposited by RF sputtering | |
Ming-Dong et al. | Determination of thickness and optical constants of ZnO thin films prepared by filtered cathode vacuum arc deposition | |
Grenadyorov et al. | Effect of deposition conditions on optical properties of aC: H: SiOx films prepared by plasma-assisted chemical vapor deposition method | |
Zhang et al. | Synthesis and structure of nitrogenated tetrahedral amorphous carbon thin films prepared by a pulsed filtered vacuum arc deposition | |
Han et al. | Non‐hydrogenated amorphous germanium carbide with adjustable microstructure and properties: a potential anti‐reflection and protective coating for infrared windows | |
Sun et al. | Achieving ultra‐low friction of a‐C: H film grown on 9Cr18Mo steel for industrial application via programmable high power pulse magnetron sputtering | |
Yamamoto et al. | Synthesis of c-BN films by using a low-pressure inductively coupled BF3–He–N2–H2 plasma | |
Ahn et al. | BCN coatings by RF PACVD at low temperature |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |