CN110983279B - 一种高硬度低吸收氮化硅薄膜的制备方法 - Google Patents

一种高硬度低吸收氮化硅薄膜的制备方法 Download PDF

Info

Publication number
CN110983279B
CN110983279B CN201911146631.3A CN201911146631A CN110983279B CN 110983279 B CN110983279 B CN 110983279B CN 201911146631 A CN201911146631 A CN 201911146631A CN 110983279 B CN110983279 B CN 110983279B
Authority
CN
China
Prior art keywords
film
preparation
hardness
ion source
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911146631.3A
Other languages
English (en)
Other versions
CN110983279A (zh
Inventor
刘华松
姜玉刚
何家欢
王利栓
季一勤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Jinhang Institute of Technical Physics
Original Assignee
Tianjin Jinhang Institute of Technical Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Jinhang Institute of Technical Physics filed Critical Tianjin Jinhang Institute of Technical Physics
Priority to CN201911146631.3A priority Critical patent/CN110983279B/zh
Publication of CN110983279A publication Critical patent/CN110983279A/zh
Application granted granted Critical
Publication of CN110983279B publication Critical patent/CN110983279B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/46Sputtering by ion beam produced by an external ion source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • C23C14/0652Silicon nitride
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • G01N3/42Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • G01N2021/3568Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor applied to semiconductors, e.g. Silicon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0076Hardness, compressibility or resistance to crushing
    • G01N2203/0078Hardness, compressibility or resistance to crushing using indentation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/0278Thin specimens
    • G01N2203/0282Two dimensional, e.g. tapes, webs, sheets, strips, disks or membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明涉及一种高硬度低吸收Si3N4薄膜的制备方法,属于光学薄膜技术领域。本发明提供一种高硬度低吸收离子束溅射Si3N4薄膜的制备方法,通过采用双离子束溅射沉积技术,通过改变主离子源和辅助离子源的工艺参数,以及真空室和辅助离子源通入氮气的流量,可实现高硬度低吸收Si3N4薄膜的制备。结果表明,该方法将大大提高Si3N4薄膜的硬度和降低吸收损耗,作为最外层保护薄膜,对于高性能中波红外硬质保护薄膜窗口的制备具有重要的作用。本发明对于不同离子源参数制备Si3N4薄膜具有普适性。

Description

一种高硬度低吸收氮化硅薄膜的制备方法
技术领域
本发明属于光学薄膜技术领域,具体涉及一种高硬度低吸收Si3N4薄膜的制备方法。
背景技术
随着红外技术的高速发展,红外制导武器的服役环境日益苛刻。红外窗口是红外热成像探测系统中的关键部件,位于红外成像系统的最前端。它是重要的结构/功能一体化部件,又是抗高速条件下的热力学冲击的薄弱环节。国外早在四十年代就开始了增透保护膜的研究和相关试验验证,但直到八十年代初国外才实现类金刚石保护膜(DLC膜)的沉积,试验表明保护膜对窗口表面的侵蚀耐受程度具有明显的提升。但DLC膜存在一定的吸收,在增透保护薄膜方面应用还存在一定的问题。
而由于作无定形态的Si3N4是一种重要的结构材料,它具有硬度高、弹性模量大,本身具有润滑性,表面摩擦系数小、耐磨损等特点,所以常被用作耐磨材料。同时它还具有耐高温、热膨胀系数小、导热系数大、抗热震性好,以及耐腐蚀、抗氧化等优点。所以Si3N4薄膜在硬质保护薄膜方面具有很大的应用前景。目前,制作氮化硅薄膜可以用化学气相沉积(CVD)、物理气相沉积(PVD)、离子束增强沉积 (IBED)、电子回旋共振等离子体化学气相沉积技术(ECR-PECVD) 以及射频和微波的等离子化学气相沉积(RF-PCVD和MW-PCVD) 等,但针对离子束溅射沉积技术制备Si3N4薄膜还鲜有报道。
综上所述,目前采用离子束溅射沉积技术制备Si3N4薄膜还未见报道。
发明内容
(一)要解决的技术问题
本发明要解决的技术问题是:如何实现高硬度低吸收Si3N4薄膜的制备。
(二)技术方案
为了解决上述技术问题,本发明提供了一种高硬度低吸收Si3N4薄膜的制备方法,包括以下步骤:
1)首先选择Si靶作为离子束溅射靶材;
2)其次采用离子束溅射沉积技术,在不同基底上制备Si3N4薄膜;
3)然后采用分光光度计和红外傅立叶光谱仪分别测量Si3N4薄膜的透射光谱;
4)基于透射光谱的反演方法,计算Si3N4薄膜的折射率和消光系数;
5)测量Si3N4薄膜的硬度。
优选地,步骤1中,选择熔融石英和Si基底作为Si3N4薄膜的沉积。
优选地,步骤2在制备时,选择镀膜真空室本体真空度为 m×10-6Torr,1≤m≤50,真空室氮气流量X为10≤X≤50,辅助离子源氮气流量Y为0~50sccm,主离子源工作参数为:工作电压U1为600V≤ U1≤1500V,工作电流I1为200mA≤I1≤900mA;辅助离子源工作参数为:工作电压U2为150V≤U2≤600V,工作电流I2为100mA≤I2≤400mA,在熔融石英和Si基底上制备Si3N4薄膜。
优选地,步骤2在制备时,选择镀膜真空室本体真空度为 4×10-6Torr,真空室氮气流量X为30sccm,辅助离子源氮气流量Y为 30sccm,主离子源工作参数:工作电压U1为1000V,工作电流I1为 450mA;辅助离子源工作参数:工作电压U2为300V,工作电流I2为200mA,在熔融石英和Si基底上制备Si3N4薄膜。
优选地,在熔融石英和Si基底上制备Si3N4薄膜时,膜层厚度为300nm。
优选地,步骤3中,采用分光光度计测量石英基底上Si3N4薄膜的可见光-近红外透过率曲线,测量范围为300nm-2500nm;采用红外傅立叶光谱仪测量Si基底上Si3N4薄膜的红外透过率曲线,测量范围为2500nm-20000nm。
优选地,步骤3中,采用Lambda900分光光度计测量石英基底上Si3N4薄膜的可见光-近红外透过率曲线。
优选地,步骤3中,采用PE红外傅立叶光谱仪测量Si基底上 Si3N4薄膜的红外透过率曲线。
优选地,步骤5中,采用纳米压痕法测量石英基底上Si3N4薄膜的硬度。
(三)有益效果
本发明提供一种高硬度低吸收离子束溅射Si3N4薄膜的制备方法,通过采用双离子束溅射沉积技术,通过改变主离子源和辅助离子源的工艺参数,以及真空室和辅助离子源通入氮气的流量,可实现高硬度低吸收Si3N4薄膜的制备。结果表明,该方法将大大提高Si3N4薄膜的硬度和降低吸收损耗,作为最外层保护薄膜,对于高性能中波红外硬质保护薄膜窗口的制备具有重要的作用。本发明对于不同离子源参数制备Si3N4薄膜具有普适性。
附图说明
图1为离子束溅射技术制备Si3N4薄膜工作示意图;
图2为石英基底上Si3N4薄膜的可见光-近红外透过率曲线图;
图3为Si基底上Si3N4薄膜的红外透过率曲线图;
图4为Si3N4薄膜的折射率曲线图;
图5为Si3N4薄膜的消光系数曲线图;
图6为Si3N4薄膜的硬度曲线图。
具体实施方式
为使本发明的目的、内容、和优点更加清楚,下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。
本发明提供了一种高硬度低吸收Si3N4薄膜的制备方法,包括以下步骤:
1)首先选择Si靶作为离子束溅射沉积靶材,选择熔融石英和Si 基底作为Si3N4薄膜的沉积基底;
2)采用双离子束溅射沉积技术,选择镀膜真空室本体真空度为 m×10-6Torr(1≤m≤50),真空室氮气流量为Xsccm(10≤X≤50),辅助离子源氮气流量为Y sccm(0≤Y≤50),主离子源工作参数:工作电压为U1(600V≤U1≤1500V),工作电流为I1(200mA≤ I1≤900mA);辅助离子源工作参数:工作电压为U2 (150V≤U2≤600V),工作电流为I2(100mA≤I2≤400mA),在熔融石英和Si基底上制备Si3N4薄膜;
3)采用分光光度计测量石英基底上Si3N4薄膜的可见光-近红外透过率曲线,采用红外傅立叶光谱仪测量Si基底上Si3N4薄膜的红外透过率曲线;
4)采用基于透射光谱的光谱反演计算方法精确计算Si3N4薄膜的折射率和消光系数;
5)采用纳米压痕法测量石英基底上Si3N4薄膜的硬度。
下面以高硬度低吸收离子束溅射Si3N4薄膜制备为实例,具体步骤如下:
1)首先选择Si靶作为离子束溅射沉积靶材,选择熔融石英和Si 基底作为Si3N4薄膜的沉积;
2)采用双离子束溅射沉积技术,制备Si3N4薄膜工作示意图如图 1所示。选择镀膜真空室本体真空度为4×10-6Torr,真空室氮气流量X为30sccm,辅助离子源氮气流量Y为30sccm,主离子源工作参数:工作电压U1为1000V,工作电流I1为450mA;辅助离子源工作参数:工作电压U2为300V,工作电流I2为 200mA,在熔融石英和Si基底上制备了Si3N4薄膜,膜层厚度为300nm左右;
3)采用Lambda900分光光度计测量石英基底上Si3N4薄膜的可见光-近红外透过率曲线,测量范围为300nm-2500nm,测量结果如图2所示;采用PE红外傅立叶光谱仪测量Si基底上Si3N4薄膜的红外透过率曲线,测量范围为2500nm-20000nm,测量结果如图3所示;
4)采用基于透射光谱的光谱反演计算方法精确计算了Si3N4薄膜的折射率、消光系数、沉积速率等光学常数,折射率曲线如图 4所示,消光系数曲线如图5所示,在4000nm处的折射率和消光系数分别为1.916和2×10-4
5)采用纳米压痕法测量石英基底上Si3N4薄膜的硬度,硬度曲线如图6所示,硬度值为19.79Gpa。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (1)

1.一种高硬度低吸收Si3N4薄膜的制备方法,其特征在于,包括以下步骤:
1)首先选择Si靶作为离子束溅射靶材;
2)其次采用离子束溅射沉积技术,在不同基底上制备Si3N4薄膜;
3)然后采用分光光度计和红外傅立叶光谱仪分别测量Si3N4薄膜的透射光谱;
4)基于透射光谱的反演方法,计算Si3N4薄膜的折射率和消光系数;
5)测量Si3N4薄膜的硬度;
步骤1中,选择熔融石英和Si基底作为Si3N4薄膜的沉积;
步骤2在制备时,选择镀膜真空室本体真空度为4×10-6Torr,真空室氮气流量X为30sccm,辅助离子源氮气流量Y为30sccm,主离子源工作参数:工作电压U1为1000V,工作电流I1为450mA;辅助离子源工作参数:工作电压U2为300V,工作电流I2为200mA,在熔融石英和Si基底上制备Si3N4薄膜;
在熔融石英和Si基底上制备Si3N4薄膜时,膜层厚度为300nm;
步骤3中,采用分光光度计测量石英基底上Si3N4薄膜的可见光-近红外透过率曲线,测量范围为300nm-2500nm;采用红外傅立叶光谱仪测量Si基底上Si3N4薄膜的红外透过率曲线,测量范围为2500nm-20000nm;
步骤3中,采用Lambda900分光光度计测量石英基底上Si3N4薄膜的可见光-近红外透过率曲线;
步骤3中,采用PE红外傅立叶光谱仪测量Si基底上Si3N4薄膜的红外透过率曲线;
步骤5中,采用纳米压痕法测量石英基底上Si3N4薄膜的硬度。
CN201911146631.3A 2019-11-21 2019-11-21 一种高硬度低吸收氮化硅薄膜的制备方法 Active CN110983279B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911146631.3A CN110983279B (zh) 2019-11-21 2019-11-21 一种高硬度低吸收氮化硅薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911146631.3A CN110983279B (zh) 2019-11-21 2019-11-21 一种高硬度低吸收氮化硅薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN110983279A CN110983279A (zh) 2020-04-10
CN110983279B true CN110983279B (zh) 2022-04-01

Family

ID=70085472

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911146631.3A Active CN110983279B (zh) 2019-11-21 2019-11-21 一种高硬度低吸收氮化硅薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN110983279B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101074477A (zh) * 2006-05-15 2007-11-21 弗拉基米尔·希里罗夫 在真空中涂覆氮化硅薄膜的方法
CN106498351A (zh) * 2016-11-03 2017-03-15 天津津航技术物理研究所 一种提高离子束反应溅射法制备碳化锗薄膜牢固度的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101074477A (zh) * 2006-05-15 2007-11-21 弗拉基米尔·希里罗夫 在真空中涂覆氮化硅薄膜的方法
CN106498351A (zh) * 2016-11-03 2017-03-15 天津津航技术物理研究所 一种提高离子束反应溅射法制备碳化锗薄膜牢固度的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SiOxNy和SiNx薄膜的结构和光致发光性质研究;成珏飞;《中国优秀硕士学位论文全文数据库(工程科技Ⅰ辑)》;20050315(第1期);第5-8、第20-21页 *

Also Published As

Publication number Publication date
CN110983279A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
Clay et al. Material properties and tribological performance of rf-PECVD deposited DLC coatings
Zhang et al. A phenomenological approach for the Id/Ig ratio and sp3 fraction of magnetron sputtered aC films
Lifshitz Diamond-like carbon—present status
Trava-Airoldi et al. A comparison of DLC film properties obtained by rf PACVD, IBAD, and enhanced pulsed-DC PACVD
Kokaku et al. Influence of exposure to an atmosphere of high relative humidity on tribological properties of diamondlike carbon films
CA2548782A1 (en) Diamond films and methods of making diamond films
US20230373851A1 (en) Functional coated article
Akita et al. Comparison of deposition methods for ultra thin DLC overcoat film for MR head
Wang et al. Microstructure and tribological properties of the aC: H films deposited by magnetron sputtering with CH4/Ar mixture
US20120164482A1 (en) Coated article and method for making same
Jiang et al. Chemical bonding and optical properties of germanium–carbon alloy films prepared by magnetron co-sputtering as a function of substrate temperature
Richter et al. Substrate influence in Young's modulus determination of thin films by indentation methods: Cubic boron nitride as an example
Zajı́čková et al. Correlation between SiOx content and properties of DLC: SiOx films prepared by PECVD
Wang et al. The preparation and evaluation of graded multilayer ta-C films deposited by FCVA method
CN110983279B (zh) 一种高硬度低吸收氮化硅薄膜的制备方法
Kousaka et al. Ultra-high-speed Coating of Si-containing aC: H Film at over 100μm/h
Hang et al. Optimisation of diamond-like carbon films by unbalanced magnetron sputtering for infrared transmission enhancement
Lousa et al. Effect of ion bombardment on the properties of B4C thin films deposited by RF sputtering
Ming-Dong et al. Determination of thickness and optical constants of ZnO thin films prepared by filtered cathode vacuum arc deposition
Grenadyorov et al. Effect of deposition conditions on optical properties of aC: H: SiOx films prepared by plasma-assisted chemical vapor deposition method
Zhang et al. Synthesis and structure of nitrogenated tetrahedral amorphous carbon thin films prepared by a pulsed filtered vacuum arc deposition
Han et al. Non‐hydrogenated amorphous germanium carbide with adjustable microstructure and properties: a potential anti‐reflection and protective coating for infrared windows
Sun et al. Achieving ultra‐low friction of a‐C: H film grown on 9Cr18Mo steel for industrial application via programmable high power pulse magnetron sputtering
Yamamoto et al. Synthesis of c-BN films by using a low-pressure inductively coupled BF3–He–N2–H2 plasma
Ahn et al. BCN coatings by RF PACVD at low temperature

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant