CN110982128A - High-pressure-resistant self-lubricating sealing ring and preparation method thereof - Google Patents

High-pressure-resistant self-lubricating sealing ring and preparation method thereof Download PDF

Info

Publication number
CN110982128A
CN110982128A CN201911315554.XA CN201911315554A CN110982128A CN 110982128 A CN110982128 A CN 110982128A CN 201911315554 A CN201911315554 A CN 201911315554A CN 110982128 A CN110982128 A CN 110982128A
Authority
CN
China
Prior art keywords
walled carbon
parts
carbon nanotube
trimercapto
triazine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911315554.XA
Other languages
Chinese (zh)
Other versions
CN110982128B (en
Inventor
徐读世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Jinqi Rubber Plastic Co Ltd
Original Assignee
Henan Jinqi Rubber Plastic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Jinqi Rubber Plastic Co Ltd filed Critical Henan Jinqi Rubber Plastic Co Ltd
Priority to CN201911315554.XA priority Critical patent/CN110982128B/en
Publication of CN110982128A publication Critical patent/CN110982128A/en
Application granted granted Critical
Publication of CN110982128B publication Critical patent/CN110982128B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/06Pretreated ingredients and ingredients covered by the main groups C08K3/00 - C08K7/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sealing Material Composition (AREA)

Abstract

The invention discloses a high-pressure-resistant self-lubricating sealing ring, which comprises the following components in percentage by weight: 80-120 parts of natural rubber, 0.5-4 parts of reinforcing agent, 0.8-3.5 parts of vulcanizing agent, 0.5-1.8 parts of accelerator, 2-6 parts of anti-aging agent, 3-8 parts of zinc oxide and 0.6-1.6 parts of stearic acid. The preparation method comprises the following steps: the single-walled carbon nanotube is treated by strong acid to obtain a functional single-walled carbon nanotube containing hydroxyl and carboxyl, and is modified by trimercapto-s-triazine and dodecyl disodium phosphate to obtain a double-modified single-walled carbon nanotube; finally, the finished product is obtained by open milling and press molding of a plate vulcanizing machine. The invention has the advantages that: the single-walled carbon nanotube has excellent mechanical and lubricating properties, has good dispersibility and compatibility with natural rubber after being modified by trimercapto-s-triazine and disodium dodecyl phosphate, and ensures that the prepared sealing ring has excellent high pressure resistance and self-lubricating properties.

Description

High-pressure-resistant self-lubricating sealing ring and preparation method thereof
Technical Field
The invention belongs to the technical field of seal ring manufacturing, and particularly relates to a high-pressure-resistant self-lubricating seal ring. The invention also relates to a preparation method of the high-pressure-resistant self-lubricating type sealing ring.
Background
The conventional rubber seal ring has the problems that: the pressure resistance is poor, the product surface static friction coefficient is high, and the like, so the service life is short, the sealing ring needs to be frequently replaced, time and labor are wasted, and the resource waste is also caused. Aiming at the problems of poor pressure resistance and changeability of the rubber sealing ring, a high-strength material is generally added; the static friction coefficient of the surface of the sealing ring is changed, and a lubricant is added into a sealing material under the normal condition, but the static friction coefficient can be reduced, but the tensile strength and elasticity of the material are also reduced, the deformation coefficient is increased, and the service life of the sealing ring is directly influenced.
The carbon nano tube, especially the single-layer wall carbon nano tube with an ideal structure, has good mechanical properties including highest specific strength, good toughness and the like, and can be made into a composite material by other materials, so that the composite material can show good strength, elasticity, fatigue resistance and isotropy, and the performance of the composite material is greatly improved. The carbon nano tube has extremely high surface energy, so that the carbon nano tube is easy to agglomerate, the carbon nano tube is unevenly dispersed in a rubber matrix, and the problem is more obvious particularly when the carbon nano tube is blended by a mechanical method. In the existing preparation technology of the carbon nanotube/polymer composite material, the carbon nanotube is mostly dispersed in a liquid phase environment, even if the dispersion is realized by a solid phase mode, the consumption of the carbon nanotube is low, the strength of the obtained composite material is limited, and the composite material is not applied to certain high-pressure environments.
Disclosure of Invention
The invention provides a formula of a rubber sealing ring with remarkable high-pressure resistance and self-lubricating function and a preparation method thereof, aiming at overcoming the defects in the prior art.
The invention provides a formula of a high-pressure-resistant self-lubricating sealing ring, which comprises the following components in parts by weight: 80-120 parts of natural rubber, 0.5-4 parts of reinforcing agent, 0.8-3.5 parts of vulcanizing agent, 0.5-1.8 parts of accelerator, 2-6 parts of anti-aging agent, 3-8 parts of zinc oxide and 0.6-1.6 parts of stearic acid.
The reinforcing agent is a single-walled carbon nanotube modified by trimercapto-s-triazine and dodecyl disodium phosphate.
Specifically, the feed comprises the following components in parts by mass: 104 parts of natural rubber, 3.1 parts of reinforcing agent, 1.9 parts of vulcanizing agent, 1.5 parts of accelerator, 4.8 parts of anti-aging agent, 6 parts of zinc oxide and 1.2 parts of stearic acid.
The preparation of the single-walled carbon nanotube modified by trimercapto-s-triazine and dodecyl disodium phosphate comprises the following steps:
step 1: adding 50g of single-walled carbon nanotube into 500ml of concentrated nitric acid with the mass fraction of 68%, ultrasonically dispersing for 1h, then refluxing for 2h under stirring at 120 ℃, filtering the obtained suspension, repeating the operation, washing the acidified single-walled carbon nanotube with deionized water and ethanol for 3 times respectively, separating by using a centrifugal machine, and carrying out vacuum drying at 100 ℃ for 24h to obtain the functionalized single-walled carbon nanotube containing hydroxyl and carboxyl;
step 2: adding 0.5-3g of the functionalized single-walled carbon nanotube prepared in the step 1 and 0.05-0.2g of trimercapto-s-triazine into 500ml of toluene solvent4Performing ultrasonic reflux for 24 hours under the catalysis of (THF), filtering, washing and drying, and reacting carboxyl of the functionalized single-walled carbon nanotube with trimercapto-s-triazine to prepare the single-walled carbon nanotube containing trimercapto-s-triazine;
and step 3: and (3) adding 0.5-4.5g of the single-walled carbon nanotube containing trimercapto-s-triazine prepared in the step (2) and 0.5-4.5g of disodium dodecyl phosphate into 500ml of sodium hydroxide aqueous solution with the mass fraction of 1%, and performing ultrasonic filtration at 40 ℃ for 24h, washing and drying to obtain the single-walled carbon nanotube modified by trimercapto-s-triazine and disodium dodecyl phosphate.
The mass portion ratio of the natural rubber to the reinforcing agent is 100: 2.75.
the invention also provides a preparation method of the high-pressure-resistant self-lubricating sealing ring, which is characterized by comprising the following steps of:
step 1: adding 50g of single-walled carbon nanotubes into 500ml of concentrated nitric acid with the mass fraction of 68%, ultrasonically dispersing for 1h, then refluxing for 2h under stirring at 120 ℃, filtering the obtained suspension, and repeating the operation; washing the acidified single-walled carbon nanotubes with deionized water and ethanol for 3 times respectively, separating by a centrifuge, and vacuum-drying at 100 ℃ for 24 hours to obtain the functionalized single-walled carbon nanotubes containing hydroxyl and carboxyl;
step 2: adding 0.5-3g of the functionalized single-walled carbon nanotube prepared in the step 1 and 0.05-0 g of trimercapto-s-triazine into 500ml of toluene solvent.2gHfCl4Performing ultrasonic reflux for 24 hours under the catalysis of (THF), filtering, washing and drying, and reacting carboxyl of the functionalized single-walled carbon nanotube with trimercapto-s-triazine to prepare the single-walled carbon nanotube containing trimercapto-s-triazine;
and step 3: adding 0.5-4.5g of the single-walled carbon nanotube containing trimercapto-s-triazine prepared in the step 2 and 0.5-4.5g of dodecyl disodium phosphate into 500ml of sodium hydroxide aqueous solution with the mass fraction of 1%, and performing ultrasonic filtration for 24 hours at 40 ℃ to wash and dry to obtain the trimercapto-s-triazine and dodecyl disodium phosphate modified single-walled carbon nanotube;
and 4, step 4: cutting natural rubber into proper size, sequentially adding a reinforcing agent, a vulcanizing agent, an anti-aging agent, an accelerator, zinc oxide and stearic acid into an open mill at room temperature, open milling for 2h, and preparing a finished product on a flat plate vulcanizing machine by a mould pressing forming method at 120 ℃ and 6 MPa.
Compared with the prior art, the high-pressure-resistant self-lubricating sealing ring provided by the invention contains natural rubber which is an excellent elastomer and is very suitable for manufacturing the sealing ring; the single-walled carbon nanotube with an ideal structure has good mechanical property, is a solid lubricant as graphite, and has excellent lubricating property; after the trimercapto-s-triazine and the dodecyl disodium phosphate are modified, the introduced trimercapto-s-triazine increases the cross-linking and fusing capacity of the single-walled carbon nanotube with natural rubber in the vulcanization process; the introduced dodecane is a direct alkane which is similar to the chemical structure of natural rubber, can increase the compatibility of the single-walled carbon nanotube and the natural rubber, simultaneously reduces the surface energy of the single-walled carbon nanotube and improves the dispersibility. The mutual influence of the two substances synergistically promotes the uniform dispersion of the single-walled carbon nanotubes in the natural rubber and simultaneously improves the fusion capacity of the single-walled carbon nanotubes and the natural rubber, so that the use amount of the modified single-walled carbon nanotubes is obviously increased to reach 2.75% of the mass of the natural rubber, and the mechanical property and the wear resistance of the natural rubber are greatly improved. Therefore, the sealing ring added with the single-walled carbon nanotube modified by trimercapto-s-triazine and disodium dodecyl phosphate has high pressure resistance and self-lubricating effect.
Detailed Description
For a further understanding of the invention, reference will now be made to the preferred embodiments of the invention by way of example, and it is to be understood that the description is intended to further illustrate features and advantages of the invention, and not to limit the scope of the claims.
Example 1
110 parts of natural rubber, 2.6 parts of reinforcing agent, 1.9 parts of vulcanizing agent, 1.4 parts of accelerator, 5 parts of anti-aging agent, 7 parts of zinc oxide and 1.4 parts of stearic acid. The vulcanizing agent is sulfur, the accelerator is DM, and the anti-aging agent is anti-aging agent 6 PPD.
Step 1: adding 50g of single-walled carbon nanotubes into 500ml of concentrated nitric acid with the mass fraction of 68%, ultrasonically dispersing for 1h, then refluxing for 2h under stirring at 120 ℃, filtering the obtained suspension, and repeating the operation. And (3) washing the acidified single-walled carbon nanotubes with deionized water and ethanol for 3 times respectively, separating by using a centrifugal machine, and performing vacuum drying at 100 ℃ for 24 hours to obtain the functionalized single-walled carbon nanotubes containing hydroxyl and carboxyl.
Step 2: adding 3g of the functionalized single-walled carbon nanotube prepared in the step 1 and trimercapto-s-triazine into 500ml of toluene solvent and adding 0.2g of HfCl4And (THF) catalyzing, performing ultrasonic reflux for 24h, filtering, washing and drying, and reacting carboxyl of the functionalized single-walled carbon nanotube with trimercapto-s-triazine to obtain the single-walled carbon nanotube containing trimercapto-s-triazine.
And step 3: and (3) adding 4.5g of the single-walled carbon nanotube containing trimercapto-s-triazine prepared in the step (2) and 4.5g of disodium dodecyl phosphate into 500ml of a sodium hydroxide aqueous solution with the mass fraction of 1%, and performing ultrasonic filtration at 40 ℃ for 24h, washing and drying to obtain the trimercapto-s-triazine and disodium dodecyl phosphate modified single-walled carbon nanotube.
And 4, step 4: cutting natural rubber into proper size, sequentially adding a reinforcing agent, a vulcanizing agent, an anti-aging agent, an accelerator, zinc oxide and stearic acid into an open mill at room temperature, open milling for 2h, and then pressing and molding on a flat plate vulcanizing machine at 120 ℃ and 6MPa to prepare a finished product.
Example 2
80 parts of natural rubber, 0.5 part of reinforcing agent, 0.8 part of vulcanizing agent, 0.5 part of accelerator, 2 parts of anti-aging agent, 3 parts of zinc oxide and 0.6 part of stearic acid. The vulcanizing agent is sulfur, the accelerator is DM, and the anti-aging agent is anti-aging agent 6 PPD.
Step 1: adding 50g of single-walled carbon nanotubes into 500ml of concentrated nitric acid with the mass fraction of 68%, ultrasonically dispersing for 1h, then refluxing for 2h under stirring at 120 ℃, filtering the obtained suspension, and repeating the operation. And (3) washing the acidified single-walled carbon nanotubes with deionized water and ethanol for 3 times respectively, separating by using a centrifugal machine, and performing vacuum drying at 100 ℃ for 24 hours to obtain the functionalized single-walled carbon nanotubes containing hydroxyl and carboxyl.
Step 2: adding 0.5g of the functionalized single-walled carbon nanotube prepared in the step 1 and 0.01g of trimercapto-s-triazine into 500ml of toluene solvent in 0.01g of HfCl4And (THF) catalyzing, performing ultrasonic reflux for 24h, filtering, washing and drying, and reacting carboxyl of the functionalized single-walled carbon nanotube with trimercapto-s-triazine to obtain the single-walled carbon nanotube containing trimercapto-s-triazine.
And step 3: and (3) adding 0.5g of the single-walled carbon nanotube containing trimercapto-s-triazine prepared in the step (2) and 0.5g of disodium dodecyl phosphate into 500ml of a sodium hydroxide aqueous solution with the mass fraction of 1%, and performing ultrasonic filtration at 40 ℃ for 24h, washing and drying to obtain the trimercapto-s-triazine and disodium dodecyl phosphate modified single-walled carbon nanotube.
And 4, step 4: cutting natural rubber into proper size, sequentially adding a reinforcing agent, a vulcanizing agent, an anti-aging agent, an accelerator, zinc oxide and stearic acid into an open mill at room temperature, open milling for 2h, and then pressing and molding on a flat plate vulcanizing machine at 120 ℃ and 6MPa to prepare a finished product.
Example 3
120 parts of natural rubber, 4 parts of reinforcing agent, 3.5 parts of vulcanizing agent, 1.8 parts of accelerator, 6 parts of anti-aging agent, 8 parts of zinc oxide and 1.6 parts of stearic acid. The vulcanizing agent is sulfur, the accelerator is DM, and the anti-aging agent is anti-aging agent 6 PPD.
Step 1: adding 50g of single-walled carbon nanotubes into 500ml of concentrated nitric acid with the mass fraction of 68%, ultrasonically dispersing for 1h, then refluxing for 2h under stirring at 120 ℃, filtering the obtained suspension, and repeating the operation. And (3) washing the acidified single-walled carbon nanotubes with deionized water and ethanol for 3 times respectively, separating by using a centrifugal machine, and performing vacuum drying at 100 ℃ for 24 hours to obtain the functionalized single-walled carbon nanotubes containing hydroxyl and carboxyl.
Step 2: adding 1.5g of the functionalized single-walled carbon nanotube prepared in the step 1 and trimercapto-s-triazine into 500ml of toluene solvent and adding 0.03g of HfCl4And (THF) catalyzing, performing ultrasonic reflux for 24h, filtering, washing and drying, and reacting carboxyl of the functionalized single-walled carbon nanotube with trimercapto-s-triazine to obtain the single-walled carbon nanotube containing trimercapto-s-triazine.
And step 3: and (3) adding 2.75g of the single-walled carbon nanotube containing trimercapto-s-triazine prepared in the step (2) and 2.75g of disodium dodecyl phosphate into 500ml of a sodium hydroxide aqueous solution with the mass fraction of 1%, and performing ultrasonic filtration at 40 ℃ for 24h, washing and drying to obtain the trimercapto-s-triazine and disodium dodecyl phosphate modified single-walled carbon nanotube.
And 4, step 4: cutting natural rubber into proper size, sequentially adding a reinforcing agent, a vulcanizing agent, an anti-aging agent, an accelerator, zinc oxide and stearic acid into an open mill at room temperature, open milling for 2h, and then pressing and molding on a flat plate vulcanizing machine at 120 ℃ and 6MPa to prepare a finished product.
Example 4
90 parts of natural rubber, 1.2 parts of reinforcing agent, 1.3 parts of vulcanizing agent, 0.8 part of accelerator, 2.9 parts of anti-aging agent, 4 parts of zinc oxide and 0.8 part of stearic acid. The vulcanizing agent is sulfur, the accelerator is DM, and the anti-aging agent is anti-aging agent 6 PPD.
Step 1: adding 50g of single-walled carbon nanotubes into 500ml of concentrated nitric acid with the mass fraction of 68%, ultrasonically dispersing for 1h, then refluxing for 2h under stirring at 120 ℃, filtering the obtained suspension, and repeating the operation. And (3) washing the acidified single-walled carbon nanotubes with deionized water and ethanol for 3 times respectively, separating by using a centrifugal machine, and performing vacuum drying at 100 ℃ for 24 hours to obtain the functionalized single-walled carbon nanotubes containing hydroxyl and carboxyl.
Step 2: adding 2.5g of the functionalized single-walled carbon nanotube prepared in the step 1 and trimercapto-s-triazine into 500ml of toluene solvent and adding 0.13g of HfCl4Performing ultrasonic reflux for 24 hours under the catalysis of (THF), filtering, washing and drying, and reacting carboxyl of the functionalized single-walled carbon nanotube with trimercapto-s-triazine to obtain the product containing trimercaptoS-triazine based single-walled carbon nanotubes.
And step 3: and (3) adding 4.5g of the single-walled carbon nanotube containing trimercapto-s-triazine prepared in the step (2) and 4.5g of disodium dodecyl phosphate into 500ml of a sodium hydroxide aqueous solution with the mass fraction of 1%, and performing ultrasonic filtration at 40 ℃ for 24h, washing and drying to obtain the trimercapto-s-triazine and disodium dodecyl phosphate modified single-walled carbon nanotube.
And 4, step 4: cutting natural rubber into proper size, sequentially adding a reinforcing agent, a vulcanizing agent, an anti-aging agent, an accelerator, zinc oxide and stearic acid into an open mill at room temperature, open milling for 2h, and then pressing and molding on a flat plate vulcanizing machine at 120 ℃ and 6MPa to prepare a finished product.
Example 5
100 parts of natural rubber, 1.9 parts of reinforcing agent, 1.9 parts of vulcanizing agent, 1.1 parts of accelerator, 3.9 parts of anti-aging agent, 5 parts of zinc oxide and 1 part of stearic acid. The vulcanizing agent is sulfur, the accelerator is DM, and the anti-aging agent is anti-aging agent 6 PPD.
Step 1: adding 50g of single-walled carbon nanotubes into 500ml of concentrated nitric acid with the mass fraction of 68%, ultrasonically dispersing for 1h, then refluxing for 2h under stirring at 120 ℃, filtering the obtained suspension, and repeating the operation. And (3) washing the acidified single-walled carbon nanotubes with deionized water and ethanol for 3 times respectively, separating by using a centrifugal machine, and performing vacuum drying at 100 ℃ for 24 hours to obtain the functionalized single-walled carbon nanotubes containing hydroxyl and carboxyl.
Step 2: adding 2g of the functionalized single-walled carbon nanotube prepared in the step 1 and trimercapto-s-triazine into 500ml of toluene solvent and adding 0.1g of HfCl4And (THF) catalyzing, performing ultrasonic reflux for 24h, filtering, washing and drying, and reacting carboxyl of the functionalized single-walled carbon nanotube with trimercapto-s-triazine to obtain the single-walled carbon nanotube containing trimercapto-s-triazine.
And step 3: and (3) adding 3.4g of the single-walled carbon nanotube containing trimercapto-s-triazine prepared in the step (2) and 3 ml of disodium dodecyl phosphate into 500ml of sodium hydroxide aqueous solution with the mass fraction of 1%, and performing ultrasonic filtration at 40 ℃ for 24h, washing and drying to obtain the trimercapto-s-triazine and disodium dodecyl phosphate modified single-walled carbon nanotube.
And 4, step 4: cutting natural rubber into proper size, sequentially adding a reinforcing agent, a vulcanizing agent, an anti-aging agent, an accelerator, zinc oxide and stearic acid into an open mill at room temperature, open milling for 2h, and then pressing and molding on a flat plate vulcanizing machine at 120 ℃ and 6MPa to prepare a finished product.
TABLE 1 performance of seal rings in different examples
Sample (I) Compressive strength (MPa) Coefficient of static friction
Example 1 56.42 0.19
Example 2 31.44 0.39
Example 3 52.03 0.23
Example 4 45.38 0.28
Example 5 48.16 0.25
Comparative example 1
110 parts of natural rubber, 2.6 parts of reinforcing agent, 1.9 parts of vulcanizing agent, 1.4 parts of accelerator, 5 parts of anti-aging agent, 7 parts of zinc oxide and 1.4 parts of stearic acid.
The reinforcing agent is a single-walled carbon nanotube, the vulcanizing agent is sulfur, the accelerator is DM, and the anti-aging agent is anti-aging agent 6 PPD.
The preparation method comprises the following steps: cutting natural rubber into proper size, sequentially adding a reinforcing agent, a vulcanizing agent, an anti-aging agent, an accelerator, zinc oxide and stearic acid into an open mill at room temperature, open milling for 2h, and preparing a finished product on a flat plate vulcanizing machine by a mould pressing forming method at 120 ℃ and 6 MPa.
In the comparative example, the natural rubber and other components are unchanged in parts by mass, the performance of the sealing ring prepared by changing the parts by mass of the reinforcing agent is different, and experimental data are as follows:
TABLE 2 sealing ring performance of different mass ratios of natural rubber and reinforcing agent in comparative example 1
Natural rubber: reinforcing agent Compressive strength (MPa) Coefficient of static friction
100:0.5 9.32 0.59
100:0.6 8.27 0.64
100:0.7 7.55 0.69
100:0.8 6.63 0.72
100:0.9 5.15 0.75
The unmodified single-walled carbon nanotube is used in a small amount in rubber due to poor dispersibility, and the performance of a sealing ring prepared from the single-walled carbon nanotube is poor.
Comparative example 2
110 parts of natural rubber, 2.6 parts of reinforcing agent, 1.9 parts of vulcanizing agent, 1.4 parts of accelerator, 5 parts of anti-aging agent, 7 parts of zinc oxide and 1.4 parts of stearic acid.
The reinforcing agent is a single-walled carbon nanotube modified by trimercapto-s-triazine, the vulcanizing agent is sulfur, the accelerator is DM, and the anti-aging agent is anti-aging agent 6 PPD.
Step 1: adding 50g of single-walled carbon nanotubes into 500ml of concentrated nitric acid with the mass fraction of 68%, ultrasonically dispersing for 1h, then refluxing for 2h under stirring at 120 ℃, filtering the obtained suspension, and repeating the operation. And (3) washing the acidified single-walled carbon nanotubes with deionized water and ethanol for 3 times respectively, separating by using a centrifugal machine, and performing vacuum drying at 100 ℃ for 24 hours to obtain the functionalized single-walled carbon nanotubes containing hydroxyl and carboxyl.
Step 2: adding 3g of the functionalized single-walled carbon nanotube prepared in the step 1 and trimercapto-s-triazine into 500ml of toluene solvent and adding 0.05-0.2g of HfCl4And (THF) catalyzing, performing ultrasonic reflux for 24h, filtering, washing and drying, and reacting carboxyl of the functionalized single-walled carbon nanotube with trimercapto-s-triazine to obtain the single-walled carbon nanotube containing trimercapto-s-triazine.
And step 3: cutting natural rubber into proper size, sequentially adding a reinforcing agent, a vulcanizing agent, an anti-aging agent, an accelerator, zinc oxide and stearic acid into an open mill at room temperature, open milling for 2h, and preparing a finished product on a flat plate vulcanizing machine by a mould pressing forming method at 120 ℃ and 6 MPa.
In the comparative example, the natural rubber and other components are unchanged in parts by mass, the performance of the sealing ring prepared by changing the parts by mass of the reinforcing agent is different, and experimental data are as follows:
TABLE 3 performance of seal rings of comparative example 2 with different mass ratios of natural rubber and reinforcing agent
Figure BDA0002325731980000091
Figure BDA0002325731980000101
The optimal using amount of the single-walled carbon nanotube modified by trimercapto-s-triazine is 2% of the mass of the natural rubber, and when the using amount is more than 2%, the aggregation of the single-walled carbon nanotube can be caused to generate adverse effects.
Comparative example 3
110 parts of natural rubber, 2.6 parts of reinforcing agent, 1.9 parts of vulcanizing agent, 1.4 parts of accelerator, 5 parts of anti-aging agent, 7 parts of zinc oxide and 1.4 parts of stearic acid.
The reinforcing agent is a single-walled carbon nanotube modified by disodium dodecyl phosphate, the vulcanizing agent is sulfur, the accelerator is DM, and the anti-aging agent is anti-aging agent 6 PPD.
Step 1: adding 50g of single-walled carbon nanotubes into 500ml of concentrated nitric acid with the mass fraction of 68%, ultrasonically dispersing for 1h, then refluxing for 2h under stirring at 120 ℃, filtering the obtained suspension, and repeating the operation. And (3) washing the acidified single-walled carbon nanotubes with deionized water and ethanol for 3 times respectively, separating by using a centrifugal machine, and performing vacuum drying at 100 ℃ for 24 hours to obtain the functionalized single-walled carbon nanotubes containing hydroxyl and carboxyl.
Step 2: and (2) adding 4.5g of the functionalized single-walled carbon nanotube prepared in the step (1) and 4.5g of disodium dodecyl phosphate into 500ml of a 1% sodium hydroxide aqueous solution, and performing ultrasonic filtration at 40 ℃ for 24 hours, washing and drying to obtain the disodium dodecyl phosphate modified single-walled carbon nanotube.
And step 3: cutting natural rubber into proper size, sequentially adding a reinforcing agent, a vulcanizing agent, an anti-aging agent, an accelerator, zinc oxide and stearic acid into an open mill at room temperature, open milling for 2h, and preparing a finished product on a flat plate vulcanizing machine by a mould pressing forming method at 120 ℃ and 6 MPa.
In the comparative example, the natural rubber and other components are unchanged in parts by mass, the performance of the sealing ring prepared by changing the parts by mass of the reinforcing agent is different, and experimental data are as follows:
TABLE 4 sealing ring performance of different mass ratios of natural rubber and reinforcing agent in comparative example 3
Figure BDA0002325731980000102
Figure BDA0002325731980000111
The optimal dosage of the single-walled carbon nanotube modified by the disodium dodecyl phosphate is 2 percent of the mass of the natural rubber, and when the dosage is more than 2 percent, the single-walled carbon nanotube can be aggregated to generate adverse effects.
On the basis that the natural rubber and other components in the formula in example 1 are not changed in parts by mass, the performance of the sealing ring prepared by only changing the mass of the reinforcing agent is different, and experimental data are as follows:
TABLE 5 sealing ring performance of different natural rubber and reinforcing agent mass ratios in example 1
Natural rubber: reinforcing agent Compressive strength (MPa) Coefficient of static friction
100:0.50 30.32 0.40
100:1.25 44.51 0.29
100:2.00 50.63 0.24
100:2.75 59.80 0.18
100:3.50 50.15 0.24
The rubber comprises the following components in parts by mass: reinforcing agent 100: 2.75, the natural rubber and the reinforcing agent have the best synergistic effect under the interaction, the natural rubber has the best dispersion and fusion capability, and the natural rubber has the best compression resistance and the lowest static friction coefficient. Too high reinforcing agent dosage can lead to uneven dispersion and aggregation of the reinforcing agent, reduce crosslinking density, cause the rubber matrix to easily form cavitation effect under the action of external force and reduce compression resistance and self-lubricating capacity. The dispersing ability of the single-walled carbon nanotube double-modified by trimercapto-s-triazine and dodecane in natural rubber is obviously improved, and the using amount of the single-walled carbon nanotube can be increased to 2.75% of the quality of the natural rubber.
It was determined that 1g of single-walled carbon nanotubes reacted with up to 0.06g of trimercapto-s-triazine when reacted with trimercapto-s-triazine alone. When reacted with disodium dodecyl phosphate alone, 1g of single-walled carbon nanotubes was reacted with up to 0.09g of disodium dodecyl phosphate.
In example 1, the mass parts of the natural rubber and other components are unchanged, the mass part of the reinforcing agent is adjusted to be 2.75% of the mass of the natural rubber, the influence of the change of the amounts of trimercapto-s-triazine and disodium dodecyl phosphate on the performance of the sealing ring in the preparation process of the modified single-walled carbon nanotube is examined, and the experimental data are as follows:
TABLE 6 sealing ring performance of trimercapto-s-triazine and disodium dodecyl phosphate at different dosages
Figure BDA0002325731980000121
From the experimental data, the compression resistance and the self-lubricating capacity of the sealing ring prepared from the modified single-walled carbon nanotube and the natural rubber are increased along with the increase of the using amount of trimercapto-s-triazine or disodium dodecyl phosphate in the modified single-walled carbon nanotube; in the preparation process of the modified single-walled carbon nanotube, the performance of the sealing ring is best when the using amounts of trimercapto-s-triazine and disodium dodecyl phosphate are not the maximum, but when the mass parts are as follows: trimercapto-s-triazine: when the disodium dodecyl phosphate is 1:0.05:0.08, the compression resistance and the self-lubricating performance of the sealing ring are optimal, and the synergic dispersion and the compatibility effect with natural rubber of trimercapto-s-triazine and dodecane introduced into the modified single-walled carbon nanotube are best under the proportion.

Claims (6)

1. The high-pressure-resistant self-lubricating sealing ring is characterized by comprising the following components in parts by mass: 80-120 parts of natural rubber, 0.5-4 parts of reinforcing agent, 0.8-3.5 parts of vulcanizing agent, 0.5-1.8 parts of accelerator, 2-6 parts of anti-aging agent, 3-8 parts of zinc oxide and 0.6-1.6 parts of stearic acid;
the reinforcing agent is a single-walled carbon nanotube modified by trimercapto-s-triazine and dodecyl disodium phosphate.
2. The high pressure resistant self-lubricating seal ring according to claim 1,
the paint comprises the following components in parts by mass: 104 parts of natural rubber, 3.1 parts of reinforcing agent, 1.9 parts of vulcanizing agent, 1.5 parts of accelerator, 4.8 parts of anti-aging agent, 6 parts of zinc oxide and 1.2 parts of stearic acid.
3. The high pressure resistant self-lubricating type sealing ring according to claim 1 or 2, wherein the preparation of the single-walled carbon nanotube modified by trimercapto-s-triazine and disodium dodecyl phosphate comprises the following steps:
step 1: adding 50g of single-walled carbon nanotube into 500ml of concentrated nitric acid with the mass fraction of 68%, ultrasonically dispersing for 1h, then refluxing for 2h under stirring at 120 ℃, filtering the obtained suspension, repeating the operation, washing the acidified single-walled carbon nanotube with deionized water and ethanol for 3 times respectively, separating by using a centrifugal machine, and carrying out vacuum drying at 100 ℃ for 24h to obtain the functionalized single-walled carbon nanotube containing hydroxyl and carboxyl;
step 2: adding 0.5-3g of the functionalized single-walled carbon nanotube prepared in the step 1 and 0.05-0.2g of trimercapto-s-triazine into 500ml of toluene solvent4Performing ultrasonic reflux for 24 hours under the catalysis of (THF), filtering, washing and drying, and reacting carboxyl of the functionalized single-walled carbon nanotube with trimercapto-s-triazine to prepare the single-walled carbon nanotube containing trimercapto-s-triazine;
and step 3: and (3) adding 0.5-4.5g of the single-walled carbon nanotube containing trimercapto-s-triazine prepared in the step (2) and 0.5-4.5g of disodium dodecyl phosphate into 500ml of sodium hydroxide aqueous solution with the mass fraction of 1%, and performing ultrasonic filtration at 40 ℃ for 24h, washing and drying to obtain the single-walled carbon nanotube modified by trimercapto-s-triazine and disodium dodecyl phosphate.
4. The high-pressure-resistant self-lubricating sealing ring according to claim 3, wherein the mass part ratio of the natural rubber to the reinforcing agent is 100: 2.75.
5. the high pressure resistant self-lubricating type seal ring according to claim 3, wherein in the step, the mass ratio of the single-walled carbon nanotube, the trimercapto-s-triazine and the disodium dodecyl phosphate is 1:0.05: 0.08.
6. the method for preparing a high pressure resistant self-lubricating seal ring according to claim 1 or 2, characterized by comprising the following steps:
step 1: adding 50g of single-walled carbon nanotubes into 500ml of concentrated nitric acid with the mass fraction of 68%, ultrasonically dispersing for 1h, then refluxing for 2h under stirring at 120 ℃, filtering the obtained suspension, and repeating the operation; washing the acidified single-walled carbon nanotubes with deionized water and ethanol for 3 times respectively, separating by a centrifuge, and vacuum-drying at 100 ℃ for 24 hours to obtain the functionalized single-walled carbon nanotubes containing hydroxyl and carboxyl;
step 2: adding 0.5-3g of the functionalized single-walled carbon nanotube prepared in the step 1 and 0.05-0.2g of trimercapto-s-triazine into 500ml of toluene solvent4Performing ultrasonic reflux for 24 hours under the catalysis of (THF), filtering, washing and drying, and reacting carboxyl of the functionalized single-walled carbon nanotube with trimercapto-s-triazine to prepare the single-walled carbon nanotube containing trimercapto-s-triazine;
and step 3: adding 0.5-4.5g of the single-walled carbon nanotube containing trimercapto-s-triazine prepared in the step 2 and 0.5-4.5g of dodecyl disodium phosphate into 500ml of sodium hydroxide aqueous solution with the mass fraction of 1%, and performing ultrasonic filtration for 24 hours at 40 ℃ to wash and dry to obtain the trimercapto-s-triazine and dodecyl disodium phosphate modified single-walled carbon nanotube;
and 4, step 4: cutting natural rubber into proper size, sequentially adding a reinforcing agent, a vulcanizing agent, an anti-aging agent, an accelerator, zinc oxide and stearic acid into an open mill at room temperature, open milling for 2h, and preparing a finished product on a flat plate vulcanizing machine by a mould pressing forming method at 120 ℃ and 6 MPa.
CN201911315554.XA 2019-12-19 2019-12-19 High-pressure-resistant self-lubricating sealing ring and preparation method thereof Active CN110982128B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911315554.XA CN110982128B (en) 2019-12-19 2019-12-19 High-pressure-resistant self-lubricating sealing ring and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911315554.XA CN110982128B (en) 2019-12-19 2019-12-19 High-pressure-resistant self-lubricating sealing ring and preparation method thereof

Publications (2)

Publication Number Publication Date
CN110982128A true CN110982128A (en) 2020-04-10
CN110982128B CN110982128B (en) 2022-01-14

Family

ID=70095861

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911315554.XA Active CN110982128B (en) 2019-12-19 2019-12-19 High-pressure-resistant self-lubricating sealing ring and preparation method thereof

Country Status (1)

Country Link
CN (1) CN110982128B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111925574A (en) * 2020-08-18 2020-11-13 濮阳市恒信橡塑有限公司 High-pressure sealing ring and preparation method thereof
CN116787866A (en) * 2023-05-31 2023-09-22 金塑企业集团(上海)有限公司 High-strength polypropylene composite pipeline and preparation process thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102924763A (en) * 2012-11-07 2013-02-13 北京化工大学 Preparation method of high-modulus low-heat carbon nano tube/ rubber composite material
CN104650400A (en) * 2013-11-25 2015-05-27 山东大展纳米材料有限公司 Cyclopentadiene-modified carbon nanotube/rubber composite material and preparation method thereof
WO2018057685A1 (en) * 2016-09-23 2018-03-29 Baker Hughes, A Ge Company, Llc Wear resistant and high temperature resistant elastomer nanocomposites
CN109369999A (en) * 2018-11-23 2019-02-22 王晓培 A kind of waste Crumb rubber-Cu settles modified MWCNTs composite conductive rubber and preparation method thereof
CN109627516A (en) * 2018-11-21 2019-04-16 宁波旭泰橡胶工业有限公司 A kind of sealing ring

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102924763A (en) * 2012-11-07 2013-02-13 北京化工大学 Preparation method of high-modulus low-heat carbon nano tube/ rubber composite material
CN104650400A (en) * 2013-11-25 2015-05-27 山东大展纳米材料有限公司 Cyclopentadiene-modified carbon nanotube/rubber composite material and preparation method thereof
WO2018057685A1 (en) * 2016-09-23 2018-03-29 Baker Hughes, A Ge Company, Llc Wear resistant and high temperature resistant elastomer nanocomposites
CN109627516A (en) * 2018-11-21 2019-04-16 宁波旭泰橡胶工业有限公司 A kind of sealing ring
CN109369999A (en) * 2018-11-23 2019-02-22 王晓培 A kind of waste Crumb rubber-Cu settles modified MWCNTs composite conductive rubber and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111925574A (en) * 2020-08-18 2020-11-13 濮阳市恒信橡塑有限公司 High-pressure sealing ring and preparation method thereof
CN116787866A (en) * 2023-05-31 2023-09-22 金塑企业集团(上海)有限公司 High-strength polypropylene composite pipeline and preparation process thereof
CN116787866B (en) * 2023-05-31 2024-04-02 金塑企业集团(上海)有限公司 High-strength polypropylene composite pipeline and preparation process thereof

Also Published As

Publication number Publication date
CN110982128B (en) 2022-01-14

Similar Documents

Publication Publication Date Title
CN110982128B (en) High-pressure-resistant self-lubricating sealing ring and preparation method thereof
WO2015090138A1 (en) Inorganic/lignose type polymer composite nanoparticles, preparation method therefor and application thereof
CN105504763B (en) Whisker reinforcement polyether-ether-ketone composite material and preparation method thereof
CN110092917B (en) Lignin metal salt and preparation method and application thereof
CN108424563B (en) High-performance rubber composite material containing Kevlar nanofibers and preparation method thereof
CN101525447A (en) Lignin-modified kaolin and application thereof as rubber reinforcing agent
CN105037865A (en) Modified scrap rubber powder as well as preparation method and application thereof
WO2019157767A1 (en) Nanocrystalline cellulose (ncc) reinforced rubber material and preparation method therefor
CN106519363B (en) Hydrogenated nitrile rubber composition
CN116693955A (en) Corrosion-resistant bushing rubber composite material and preparation method thereof
CN103554559B (en) A kind of preparation method utilizing hydroxyethyl methylacrylate rubber modified graft copolymer white carbon black to strengthen native rubber composite material
CN1687270A (en) Method for preparing nano composite coating of urushiol acetal epoxy resin/TiO2
CN103709741A (en) CNT (Carbon Nano Tube)/nylon6 composite material and preparation method thereof
CN103554560A (en) Method for preparing unsaturated fatty acid zinc salt reinforced natural rubber in in-situ reaction
CN103205036A (en) Low-temperature accumulator capsule and preparation method thereof
CN104830081A (en) Pulverization modified lignin, preparation method and applications thereof
CN101914231B (en) Washing machine rubber water sealing material and preparation method thereof
CN114539615B (en) Graphene/magnesium silicate composite material, preparation method thereof and application thereof in EVA (ethylene-vinyl acetate) and rubber composite foam material
CN105017702A (en) High-density rubber sealing gasket containing nano chromium diboride and preparation method of gasket
Xu et al. Preparation of sulfonated bamboo charcoal-chitosan (sBC-CS) hybrid and its application in the reinforcement of natural rubber
CN114479184A (en) Preparation method of high-dispersion zinc oxide
CN103102516B (en) Castaway phosphorus slag-natural rubber composite and preparation method thereof
CN113430831A (en) High-temperature-resistant universal sizing agent for water-based carbon fibers, and preparation method and application thereof
CN113024971A (en) Preparation method of waste biomass PVC composite pipe
CN108165161B (en) High-performance flexible anti-friction coating and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant