CN110963087B - Multi-mode complex-process control method for space station solar wing - Google Patents

Multi-mode complex-process control method for space station solar wing Download PDF

Info

Publication number
CN110963087B
CN110963087B CN201911094942.XA CN201911094942A CN110963087B CN 110963087 B CN110963087 B CN 110963087B CN 201911094942 A CN201911094942 A CN 201911094942A CN 110963087 B CN110963087 B CN 110963087B
Authority
CN
China
Prior art keywords
mode
solar wing
servo
tracking
instruction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911094942.XA
Other languages
Chinese (zh)
Other versions
CN110963087A (en
Inventor
付培华
岑启锋
樊弢
慕蓉欣
丁承华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Aerospace Control Technology Institute
Original Assignee
Shanghai Aerospace Control Technology Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Aerospace Control Technology Institute filed Critical Shanghai Aerospace Control Technology Institute
Priority to CN201911094942.XA priority Critical patent/CN110963087B/en
Publication of CN110963087A publication Critical patent/CN110963087A/en
Application granted granted Critical
Publication of CN110963087B publication Critical patent/CN110963087B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/42Arrangements or adaptations of power supply systems
    • B64G1/44Arrangements or adaptations of power supply systems using radiation, e.g. deployable solar arrays

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

The invention discloses a multi-mode complex-flow control method for a space station solar wing, which is used for configuring working modes of the space station solar wing, wherein the working modes comprise five working modes of stopping, starting, tracking, servo and zeroing; and the switching among a plurality of modes of stopping to starting, stopping to servo, stopping to return to zero, starting to servo, starting to return to zero, tracking to servo, tracking to return to zero, servo to return to zero and the like can be realized. The solar wing of the space station experimental cabin can flexibly switch various control modes during the sun capturing, so that the solar wing of the space station can capture solar energy more effectively, and meanwhile, the space station cabin body is not greatly interfered.

Description

Multi-mode complex-process control method for space station solar wing
Technical Field
The invention relates to the solar wing control technology in the field of space, in particular to a multi-mode complex-process control method for a solar wing of a space station.
Background
The space station is a large space science project, and the solar wing of the space station, especially the solar wings of the two experiment cabins, has the characteristics of single wing span of about 30m, large size, large inertia, large flexibility and the like. The control of the solar wing of the experimental cabin of the space station is different from the control of the solar wing of the previous satellite and other spacecrafts, and the rotation mode and the control flow are very complex. The solar wing of the experimental cabin rotates around the alpha direction with the cabin body as a central axis, the real-time sun-oriented capture of sunlight by the solar wing needs to be completed, the requirements of control precision and speed are met during capture, too large interference to the cabin body of the space station cannot be generated, and the type and switching mode of working modes, speed, acceleration control and the like during sun-oriented are different from those of the solar wing control of the traditional spacecraft. Therefore, for the stable control of the solar wing of the space station experiment cabin, the prior spacecraft solar wing control technology cannot meet the current control requirement.
Disclosure of Invention
The invention aims to provide a multi-mode complex-process control method for a space station solar wing, which is used for realizing stable control of the multi-mode complex processes of starting, tracking, servo, zeroing, stopping and the like of the space station solar wing on the day.
In order to achieve the purpose, the invention provides a multi-mode complex-process control method for a space station solar wing, which comprises the following steps:
configuring the working modes of the solar wing of the space station, wherein the working modes comprise five working modes of stopping, starting, tracking, servo and zeroing; in the stalling mode, the solar wing is in an uncontrolled stalling state; in the starting mode, the solar wing is in an acceleration starting process; in the tracking mode, the solar wing is in a tracking state on the sun; in the servo mode, the solar wing reaches any angle position of 0-360 degrees according to the designated angle; in the return-to-zero mode, the solar wing reaches a return-to-zero state of 0 degree or 90 degrees;
when the solar wing is in a stalling mode, the solar wing can receive a starting instruction, a zeroing instruction and a servo instruction and can respectively enter the starting mode, the zeroing mode and the servo mode according to a preset program;
when the solar wing is in a starting mode, a stalling instruction, a tracking instruction, a zeroing instruction and a servo instruction can be received, and the stalling mode, the tracking mode, the zeroing mode and the servo mode can be respectively entered according to a preset program;
when the solar wing is in the tracking mode, the solar wing can receive a stalling instruction, a return-to-zero instruction and a servo instruction, and can respectively enter the stalling mode, the return-to-zero mode and the servo mode according to a preset program;
when the solar wing is in the servo mode, the control system can receive a stalling instruction and a zeroing instruction and can respectively enter the stalling mode and the zeroing mode according to a preset program;
when the sun wing is in the return-to-zero mode, the stall command and the servo command can be received, and the stall mode and the servo mode can be respectively entered according to a preset program.
According to the control method of the solar wing of the multi-mode complex-flow space station, when the solar wing is in the stall mode, the tracking command can be received, the solar wing enters the start mode before the stall mode is switched to the tracking mode, and when the speed of the solar wing is enabled to reach the speed required by the tracking mode through the start mode, the solar wing enters the tracking mode.
Compared with the prior art, the invention has the following beneficial effects:
based on the control method provided by the invention, the solar wing of the experimental cabin of the space station can autonomously complete the functions of sun-to-day trajectory planning, starting, tracking, servo, zeroing, stalling and the like according to the current position, speed and received control instructions, and the switching among various modes is strictly limited. Further, in order to realize stable control of sun orientation, the solar wing of the space station experiment cabin can call different control modes according to instructions at different positions and different speeds, and the solar wing can be switched among multiple modes of stopping to start, stopping to servo, stopping to zero, starting to servo, starting to zero, tracking to servo, tracking to zero, servo to zero and the like. The solar wing of the space station experimental cabin can be flexibly switched among a plurality of control modes when the sun is oriented, so that the solar wing of the space station can capture solar energy more effectively, and meanwhile, the space station cabin body is not greatly interfered.
Drawings
Fig. 1 is a schematic diagram of a control method of a space station solar wing with a multi-mode complex process according to the invention.
Detailed Description
The invention will be further described by the following specific examples in conjunction with the drawings, which are provided for illustration only and are not intended to limit the scope of the invention.
The control method of the solar wing of the multi-mode complex process space station is mainly characterized in that the solar wing is configured with 5 working modes as shown in figure 1, and strict conversion relations exist among the various modes. The solar wing of the space station is provided with five working modes of stopping, starting, tracking, servo and zeroing. Wherein, in the stalling mode, the solar wing is in an uncontrolled stalling state; in the starting mode, the solar wing is in an acceleration starting process and belongs to a capturing stage of the sun; in the tracking mode, the solar wing is in a tracking state on the sun; in the servo mode, the solar wing can reach any angle position of 0-360 degrees according to the designated angle; in the return-to-zero mode, the solar wing can reach a return-to-zero state of 0 degrees or 90 degrees.
When the solar wing is in the stalling mode, the starting command, the zeroing command and the servo command can be received, and the starting mode, the zeroing mode and the servo mode can be respectively entered according to a preset program. Meanwhile, the solar wing can also receive a tracking instruction when in the stall mode, the solar wing needs to enter the start mode before the stall mode is switched to the tracking mode, when the speed of the solar wing reaches the speed required by the tracking mode through the start mode, a stable start mark is received, then the solar wing enters the working process of the tracking mode, and then the solar wing is in the tracking state of the sun.
When the solar wing is in the startup mode, a stall command, a tracking command, a return-to-zero command, and a servo command may be received. After receiving the instruction, the solar wing can respectively enter a stop mode, a tracking mode, a zero-returning mode and a servo mode from a starting mode according to a preset program.
When the sun wing is in the tracking mode, stall commands, return to zero commands, and servo commands may be received. After receiving the instruction, the solar wing can enter a stalling mode, a return-to-zero mode and a servo mode from a tracking mode according to a preset program.
When the sun wing is in the servo mode, a stall command and a return to zero command may be received. After receiving the instruction, the solar wing can respectively enter a stalling mode and a return-to-zero mode from a servo mode according to a preset program.
When the sun wing is in the return-to-zero mode, stall commands and servo commands may be received. After receiving the instruction, the solar wing can respectively enter a stalling mode and a servo mode from a zeroing mode according to a preset program.
In conclusion, the control method provided by the invention can realize flexible switching of a plurality of control modes when the solar wing of the experimental cabin of the space station orients the sun, so that the solar wing of the space station can capture solar energy more effectively, and meanwhile, the space station cabin body is not interfered too much.
While the present invention has been described in detail with reference to the preferred embodiments, it should be understood that the above description should not be taken as limiting the invention. Various modifications and alterations to this invention will become apparent to those skilled in the art upon reading the foregoing description. Accordingly, the scope of the invention should be determined from the following claims.

Claims (2)

1. A control method of a multi-mode space station solar wing with a complex flow is characterized by comprising the following steps:
configuring the working modes of the solar wing of the space station, wherein the working modes comprise five working modes of stopping, starting, tracking, servo and zeroing; in the stalling mode, the solar wing is in an uncontrolled stalling state; in the starting mode, the solar wing is in an acceleration starting process; in the tracking mode, the solar wing is in a tracking state on the sun;
in the servo mode, the solar wing reaches any angle position of 0-360 degrees according to the designated angle; in the return-to-zero mode, the solar wing reaches a return-to-zero state of 0 degree or 90 degrees;
when the solar wing is in a stalling mode, the solar wing can receive a starting instruction, a zeroing instruction and a servo instruction and can respectively enter the starting mode, the zeroing mode and the servo mode according to a preset program;
when the solar wing is in a starting mode, a stalling instruction, a tracking instruction, a zeroing instruction and a servo instruction can be received, and the stalling mode, the tracking mode, the zeroing mode and the servo mode can be respectively entered according to a preset program;
when the solar wing is in the tracking mode, the solar wing can receive a stalling instruction, a return-to-zero instruction and a servo instruction, and can respectively enter the stalling mode, the return-to-zero mode and the servo mode according to a preset program;
when the solar wing is in the servo mode, the control system can receive a stalling instruction and a zeroing instruction and can respectively enter the stalling mode and the zeroing mode according to a preset program;
when the sun wing is in the return-to-zero mode, the stall command and the servo command can be received, and the stall mode and the servo mode can be respectively entered according to a preset program.
2. The method as claimed in claim 1, wherein the sun wing is in a stall mode, and further capable of receiving a tracking command, before the stall mode is switched to the tracking mode, the sun wing is first in a start mode, and when the sun wing is in the start mode, the sun wing reaches a speed required by the tracking mode, the sun wing enters the tracking mode.
CN201911094942.XA 2019-11-11 2019-11-11 Multi-mode complex-process control method for space station solar wing Active CN110963087B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911094942.XA CN110963087B (en) 2019-11-11 2019-11-11 Multi-mode complex-process control method for space station solar wing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911094942.XA CN110963087B (en) 2019-11-11 2019-11-11 Multi-mode complex-process control method for space station solar wing

Publications (2)

Publication Number Publication Date
CN110963087A CN110963087A (en) 2020-04-07
CN110963087B true CN110963087B (en) 2021-10-29

Family

ID=70030429

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911094942.XA Active CN110963087B (en) 2019-11-11 2019-11-11 Multi-mode complex-process control method for space station solar wing

Country Status (1)

Country Link
CN (1) CN110963087B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0436425A1 (en) * 1989-12-29 1991-07-10 AEROSPATIALE Société Nationale Industrielle Attitude control system provided by solar sails for a satellite stabilized around three axes
CN102004492A (en) * 2010-10-11 2011-04-06 北京控制工程研究所 Non-sun-synchronous orbit satellite double-shaft sailboard control method
CN105620794A (en) * 2016-02-05 2016-06-01 上海微小卫星工程中心 Reliable method for controlling solar panel to autonomously track sun
CN105819004A (en) * 2016-04-21 2016-08-03 上海微小卫星工程中心 Solar array control method and system of satellite and satellite
CN106697334A (en) * 2016-11-29 2017-05-24 上海卫星工程研究所 Driving control method for satellite solar wing sailboard
CN106970573A (en) * 2017-05-22 2017-07-21 上海航天控制技术研究所 A kind of spacecraft solar wing drive control system of permanent magnet synchronous motor
EP3406532A1 (en) * 2017-05-23 2018-11-28 Space Systems/Loral, LLC A method for orienting an earth-orbiting spacecraft

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6021979A (en) * 1993-07-19 2000-02-08 Hughes Electronics Corporation Sun-referenced safe-hold control for momentum biased satellites
US7925426B2 (en) * 2005-11-17 2011-04-12 Motility Systems Power management systems and devices
US7823836B2 (en) * 2006-12-04 2010-11-02 The Boeing Company Optimal sun safe attitude for satellite ground tracking
CN101332874B (en) * 2008-08-07 2010-06-16 航天东方红卫星有限公司 Autonomous hierarchical process control guiding method for satellite system
CN101435704B (en) * 2008-12-04 2010-06-16 哈尔滨工业大学 Star tracking method of star sensor under high dynamic state
CN201698025U (en) * 2010-07-02 2011-01-05 成都捷康特科技有限公司 GPS antitheft tracking system for solar panel
CN103135572A (en) * 2011-11-30 2013-06-05 西安博昱新能源有限公司 Sun tracking and control system
FR3013685B1 (en) * 2013-11-25 2017-05-19 Astrium Sas METHOD AND DEVICE FOR CONTROLLING A SUN ACQUISITION PHASE BY A SPATIAL DEVICE
CN104181941B (en) * 2014-09-02 2017-03-08 上海新跃仪表厂 A kind of windsurfing bidirection control method for adapting to inclined plane satellite

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0436425A1 (en) * 1989-12-29 1991-07-10 AEROSPATIALE Société Nationale Industrielle Attitude control system provided by solar sails for a satellite stabilized around three axes
CN102004492A (en) * 2010-10-11 2011-04-06 北京控制工程研究所 Non-sun-synchronous orbit satellite double-shaft sailboard control method
CN105620794A (en) * 2016-02-05 2016-06-01 上海微小卫星工程中心 Reliable method for controlling solar panel to autonomously track sun
CN105819004A (en) * 2016-04-21 2016-08-03 上海微小卫星工程中心 Solar array control method and system of satellite and satellite
CN106697334A (en) * 2016-11-29 2017-05-24 上海卫星工程研究所 Driving control method for satellite solar wing sailboard
CN106970573A (en) * 2017-05-22 2017-07-21 上海航天控制技术研究所 A kind of spacecraft solar wing drive control system of permanent magnet synchronous motor
EP3406532A1 (en) * 2017-05-23 2018-11-28 Space Systems/Loral, LLC A method for orienting an earth-orbiting spacecraft

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
倾斜轨道航天器太阳翼对日跟踪方法探究;王颖,顾荃莹;《航天器工程》;20090515;第18卷(第3期);全文 *

Also Published As

Publication number Publication date
CN110963087A (en) 2020-04-07

Similar Documents

Publication Publication Date Title
CN104181941A (en) Double-direction solar panel control method applicable to inclined orbit satellite
CN108516106B (en) Angular momentum unloading method and system in orbit transfer process of full-electric propulsion satellite
CN106864774B (en) Method and system for controlling satellite to be oriented from any attitude to sun
CN104249816A (en) Non-cooperative target flying-around hovering pose rail cooperative control method
CN105539884A (en) Satellite yaw controlling and guiding method
CN105819004A (en) Solar array control method and system of satellite and satellite
CN109283932A (en) Four-rotor aircraft attitude control method based on integral backstepping sliding mode
CN107600463B (en) A kind of agility small satellite attitude fast reserve control method
CN108511908A (en) A kind of satellite antenna automatic following control system and method inhibiting function with phase
CN106314729A (en) Underwater joint search and rescue robot and system and working method thereof
CN103279036A (en) Satellite attitude rapid maneuver switching control method
CN111176313A (en) Sun orientation control method for single-degree-of-freedom solar sailboard of inclined orbit satellite
CN112061424B (en) Maneuvering process energy angle dynamic tracking method based on fusion target attitude
CN110963087B (en) Multi-mode complex-process control method for space station solar wing
CN102880059B (en) Yawing maneuvering control method based on sinusoidal yawing guidance principle
CN112937919B (en) Low-orbit satellite double-freedom-degree solar wing control method
CN108958252A (en) A kind of power buoy flight tracking control method based on course-line deviation distance
CN108427429B (en) Spacecraft visual axis maneuvering control method considering dynamic pointing constraint
CN108839824A (en) A kind of mixing executing agency momentum optimum management method based on cooperative game
CN110703588B (en) Space station solar wing reliable redundancy control system and method based on multi-instruction input
CN109032158B (en) Head-to-day-tail-to-day alternating continuous yaw attitude control method for linear programming
CN113830332B (en) Ignition attitude establishment and dynamic tracking method for electric propulsion orbit transfer
CN109002575A (en) A kind of composite rotor craft transition flight scheme control distribution method
CN110162070A (en) Three-axis attitude Motion trajectory system and method under end free boundary constraint
CN211253084U (en) Drive control circuit of space active sun wing spreading mechanism

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant