CN110962635A - 一种三电平与可调lcc谐振无线充电系统 - Google Patents

一种三电平与可调lcc谐振无线充电系统 Download PDF

Info

Publication number
CN110962635A
CN110962635A CN201911318313.0A CN201911318313A CN110962635A CN 110962635 A CN110962635 A CN 110962635A CN 201911318313 A CN201911318313 A CN 201911318313A CN 110962635 A CN110962635 A CN 110962635A
Authority
CN
China
Prior art keywords
vehicle
ground
capacitor
coupled
adjustable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911318313.0A
Other languages
English (en)
Inventor
陈锋
杨国勋
罗嗣锦
寇秋林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Wanan Yichuang Electronic Technology Co ltd
Original Assignee
Zhejiang Wanan Yichuang Electronic Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Wanan Yichuang Electronic Technology Co ltd filed Critical Zhejiang Wanan Yichuang Electronic Technology Co ltd
Priority to CN201911318313.0A priority Critical patent/CN110962635A/zh
Publication of CN110962635A publication Critical patent/CN110962635A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明公开了一种三电平与可调LCC谐振网络无线充电系统,包括地面单元和车载单元,地面单元包括依次耦接的三电平电路、地面可调LCC谐振网络和地面发射单元以及耦接三电平电路和地面可调LCC谐振网络的地面控制单元;车载单元包括依次耦接的车载接收单元、车载可调LCC谐振网络、同步整流电路以及耦接车载可调LCC谐振网络和同步整流电路的车载控制单元。地面/车载可调LCC谐振网络包括基于功率管调节其容值的可变电容,地面/车载控制单元通过控制功率管的占空比改变可变电容的容值,使地面/车载单元工作在磁耦合谐振状态。本发明保证电动汽车在磁耦合无线充电过程中,线圈偏移量、输入电压和负载变化较大情况下,高效充电,降低能量转换损失。

Description

一种三电平与可调LCC谐振无线充电系统
技术领域
本发明涉及无线充电领域,尤其涉及一种三电平与可调LCC谐振无线充电系统。
背景技术
随着能源与环境问题日益严峻,电动汽车以环保节能的优势,被人们广泛接受并使用。电动汽车的无线充电系统因安全、便捷的优势,逐渐引入大众的视线。使电动汽车无线充电系统的车载单元和地面单元均工作在磁耦合谐振的状态下,对于提高无线充电系统的抗偏移能力以及提高无线电能传输效率具有现实意义。而且当无线充电系统的输入电源为大功率电源,无线充电系统中所采用的常用功率管会烧坏,用承受更大电压的功率管,所承受的电流小,如果使用大电流功率管,价格比常用的功率管贵4-10倍,成本太高,无法在市场上获得竞争力,而且采用的常用电路无法实现零电压开通功率管,功率管承受较大的电压应力。
发明内容
本发明的目的是提供一种三电平与可调LCC谐振无线充电系统,根据负载的变化、输入电压的波动和地面到车载线圈偏移量的变化,调节地面、车载补偿网络参数实现磁耦合谐振高效充电,并且当外部输入电源为大功率电源时,可通过三电平电路实现降压倍流功能,可实现零电压开通功率管,减少功率管的电压应力,本发明所采用的电路所需成本低,性能好,控制算法简单,对于无线充电系统大规模应用具有现实意义。
本发明采取如下技术方案实现:
一种三电平与可调LCC谐振无线充电系统,包括地面单元和车载单元,地面单元包括依次耦接的三电平电路、地面可调LCC谐振网络和地面发射单元,以及耦接三电平电路和地面可调LCC谐振网络的地面控制单元,三电平电路用于耦接外部电源取电并对外部电源进行降压倍流转换,车载单元包括依次耦接的车载接收单元、车载可调LCC谐振网络、同步整流电路,以及耦接车载可调LCC谐振网络和同步整流电路的车载控制单元,同步整流电路用于耦接负载电池充电,地面/车载可调LCC谐振网络包括至少一个基于功率管调节其容值的可变电容,地面控制单元基于外部电源、负载电池的电压和线圈偏移量的变化,车载控制单元基于负载电池的电压变化和线圈偏移量的变化,地面/车载控制单元通过控制地面/车载可调LCC谐振网络功率管的占空比改变可变电容的容值,进而调节地面/车载可调LCC谐振网络的容抗使地面/车载单元工作在磁耦合谐振状态。
通过地面/车载控制单元调节车载可调LCC谐振网络中功率管的占空比,调节车载可调LCC谐振网络中可变电容的容值,从而调节容抗值,使地面/车载单元阻抗匹配,地面/车载单元工作在磁耦合谐振状态,地面控制单元调节三电平电路功率管的导通和关断,外部输入的电源经过三电平电路后输出电压减小一半,输出电流增大一倍,并可对三电平电路的移相角进行调节。
进一步的,地面可调LCC谐振网络包括电感Lp1、电容Cp1、可变电容Cp2和功率管Qp1、Qp2,电感Lp1的一端和电容Cp1的一端耦接地面发射单元的一个输入端,电感Lp1的另一端耦接三电平电路的一个输出端,电容Cp1的另一端耦接可变电容Cp2的一端和功率管Qp1的漏极,可变电容Cp2的另一端和功率管Qp2的漏极耦接三电平电路的另一个输出端和地面发射单元的另一个输入端,功率管Qp1和Qp2的源极耦接,功率管Qp1和Qp2的栅极耦接地面控制单元。
地面控制单元根据线圈偏移距离变化、外部电源电压波动和负载变化引起的阻抗变化,调节功率管Qp1和Qp2的占空比,从而调节可变电容Cp2的容值,实现车载单元阻抗匹配,使地面单元工作在谐振状态。
进一步的,车载可调LCC谐振网络包括电感Ls1、电容Cs1、可变电容Cs2和功率管Qs1和Qs2,电感Ls1的一端和电容Cs1的一端耦接车载接收单元的一个输出端,电感Ls1的另一端耦接同步整流电路的一个输入端,电容Cs1的另一端耦接可变电容Cs2的一端和功率管Qs1的漏极,可变电容Cs2的另一端和功率管Qs2的漏极耦接车载接收单元的另一个输出端和同步整流电路的另一个输入端,功率管Qs1和Qs2的源极耦接,功率管Qs1和Qs2的栅极用于耦接车载控制单元。
车载控制单元根据线圈偏移距离变化和负载变化引起的阻抗变化,调节功率管Qs1和Qs2的占空比,从而调节可变电容Cs2的容值,实现车载单元阻抗匹配,使车载单元工作在谐振状态。
进一步的,地面发射单元包括地面线圈和地面补偿网络,地面补偿网络包括串接于地面线圈两端的电容Cp3和Cp4;地面控制单元调节地面可调LCC谐振网络的Cs2的容值,使得:
Figure BDA0002326467270000031
其中,ω=2πf,f为谐振频率;ωLp1为谐振电感Lp1的阻抗;
Figure BDA0002326467270000032
为电容Cp1和Cp2串联后的阻抗;ωLp为地面线圈的阻抗;
Figure BDA0002326467270000033
为地面线圈阻抗减去电容Cp3和Cp4串联后的阻抗。
进一步的,车载接收单元包括车载线圈和车载补偿网络,车载补偿网络包括串接于车载线圈两端的电容Cs3和Cs4;车载控制单元调节车载可调LCC谐振网络的容抗,使得:
Figure BDA0002326467270000034
其中,ω=2πf,f为谐振频率;ωLs1为谐振电感Ls1的阻抗;
Figure BDA0002326467270000041
为电容Cs1和Cs2串联后的阻抗;ωLs为车载线圈的阻抗;
Figure BDA0002326467270000042
为车载线圈阻抗减去电容Cs3和Cs4串联后的阻抗。
进一步的,无线充电系统中地面发射单元的地面线圈由多股利兹线串联或并联方式,环绕在圆形或方形绝缘盘中,地面线圈可根据不同场合调整其大小,选择不同材质的绝缘方式绕制。
进一步的,无线充电系统中车载接收单元的车载线圈由多股利兹线串联或并联方式,环绕在圆形或方形绝缘盘中,车载线圈可根据不同场合调整其大小,选择不同材质的绝缘方式绕制。
进一步的,无线充电系统中的三电平电路,包括功率管Q1~Q4、电容C1~C4、电容Cs、二极管Df1~Df2和电容Cd1~Cd2,功率管Q1~Q4内部集成二极管分别为D1~D4,功率管Q1的漏极、电容C1的一端和电容Cd1的一端耦接外部电源的正极,功率管Q1的源极、功率管Q2的漏极、电容C1的另一端、电容C2的一端和电容Cs的一端耦接二极管Df1的负极,功率管Q2的源极、功率管Q3的漏极、电容C2的另一端和电容C3的一端耦接地面可调LCC谐振网络的一个输入端,功率管Q3的源极、功率管Q4的漏极、电容C3的另一端、电容C4的一端和电容Cs的另一端耦接二极管Df2的正极,功率管Q4的源极、电容C4的另一端和电容Cd2的一端耦接耦接外部电源的负极,电容Cd1另一端、电容Cd2的另一端、二极管Df1的正极和二极管Df2的负极耦接地面可调LCC谐振网络的另一输入端,功率管Q1~Q4的栅极耦接地面控制单元,地面控制单元通过调节功率管Q1~Q4的导通和关断来调节所述三电平电路移相角、输出电压和输出电流。
进一步的,无线充电系统中的三电平电路中的电容Cd1和Cd2分别由三个电解电容并联组成。
进一步的,无线充电系统中的同步整流电路,包括功率管Qs3、Qs4,电感Ls2、Ls3和电容Ce1,电感Ls2的一端和功率管Qs3的漏极耦接车载可调LCC谐振网络的一个输出端,电感Ls2的另一端耦接电感Ls3的一端和电容Ce1的一端,用于耦接负载电池的正极,功率管Qs3的源极耦接功率管Qs4的源极和电容Ce1的另一端,用于耦接负载电池的负极,功率管Qs4的漏极和电感Ls3的另一端耦接车载可调LCC谐振网络的另一个输出端,功率管Q3和Q4的栅极耦接车载控制单元。
本发明具有如下技术优点或有益效果:
本方案中的地面控制单元根据负载的变化、线圈偏移量的变化和输入电源的波动,通过调节地面可调LCC补偿网络功率管的占空比调节可变电容的大小,进而调整地面单元的阻抗,使地面单元工作在谐振的状态,车载控制单元根据线圈偏移距离变化和负载变化引起的阻抗变化,通过调节车载可调LCC谐振网络功率管的占空比调整电容的大小,进而调整车载单元的阻抗,使车载单元工作在谐振状态。两个单元协同工作,使整个无线充电系统实现磁耦合谐振高效充电,从而使能量转换损失大大降低。并且当外部输入电源为较高电压时,可通过三电平电路实现降压倍流功能和零电压开通功率管,减少功率管的电压应力。本发明所采用的电路所需成本低,性能好,控制算法简单,对于无线充电系统大规模商业应用具有现实意义。
附图说明
图1为本发明的模块组成和连接关系示意图。
图2为本发明的地面单元实施例的电路原理图。
图3为本发明的车载单元实施例的电路原理图。
具体实施方式
为了便于本领域人员更好的理解本发明,下面结合附图和具体实施例对本发明做进一步详细说明,下述仅是示例性的,不限定本发明的保护范围。
如图1所示,地面单元包括依次耦接的三电平电路、地面可调LCC谐振网络地面发射单元,以及分别与三电平电路和地面可调LCC谐振网络耦接的地面控制单元。车载单元包括依次耦接的车载接收单元、车载可调LCC谐振网络、同步整流电路,以及分别与同步整流电路和车载可调LCC谐振网络耦接的车载控制单元。地面发射单元包括地面线圈和地面补偿网络,车载接收单元包括车载线圈和车载补偿网络。地面线圈和车载线圈之间应用磁耦合谐振式原理实现能量传输。
三电平电路的输入端耦接外部输入的直流电源,地面控制单元控制三电平电路的功率管的导通和关段,将直流电压变换为周期变化的方波电压,地面发射单元在方波电压的激励下,形成近似正弦波的电流,并将输出电压减小一半,输出电流增大一倍,地面控制单元控制地面可调LCC补偿网络的功率管的占空比,调节地面可调LCC补偿网络中阻抗,使地面单元阻抗匹配,电流形成高频的谐振电流,高频谐振电流产生交变电磁场,车载接收单元感应高频交流电压,能量从地面端传递给车载端,车载接收单元在高频交流电压的激励下形成高频电流,车载控制单元控制车载可调LCC补偿网络的功率管的占空比,调节车载可调LCC补偿网络中阻抗,使车载单元阻抗匹配,形成高频的谐振电流,电流通过同步整流电路将高频谐振电流转换为直流电,为电动汽车电池充电。
下面结合附图2和附图3所示的具体实施例对本发明的地面和车载LCC谐振参数可调无线充电系统进行进一步详细说明。
本实施例中的三电平电路包括功率管Q1~Q4、电容C1~C4、电容Cs、二极管Df1~Df2和分别由3颗滤波电容并联的电容Cd1~Cd2,功率管Q1~Q4内部集成二极管分别为D1~D4,所述功率管Q1的漏极、电容C1的一端和电容Cd1的一端耦接外部电源的正极,功率管Q1的源极、功率管Q2的漏极、电容C1的另一端、电容C2的一端和电容Cs的一端耦接二极管Df1的负极,功率管Q2的源极、功率管Q3的漏极、电容C2的另一端和电容C3的一端耦接地面可调LCC谐振网络的一个输入端,功率管Q3的源极、功率管Q4的漏极、电容C3的另一端、电容C4的一端和电容Cs的另一端耦接二极管Df2的正极,功率管Q4的源极、电容C4的另一端和电容Cd2的一端耦接耦接外部电源的负极,电容Cd1另一端、电容Cd2的另一端、二极管Df1的正极和二极管Df2的负极耦接地面可调LCC谐振网络的另一输入端,所述功率管Q1~Q4的栅极耦接地面控制单元,地面控制单元通过调节功率管Q1~Q4的导通和关断来调节三电平电路移相角、输出电压和输出电流。优选的,本实施例功率管Q1、Q2、Q3、Q4采用NTHL065N65S3F,电容C1、C2、C3、C4电容为吸收电容1uF/630V,电容CS采用1uF/630V,二极管Df1~Df2为STTH30ACS06W,电容Cd1~Cd2为560uF/450V。
本实施例中地面可调LCC谐振网络,包括电感Lp1、电容Cp1、电容Cp2和功率管Qp1、Qp2,电感Lp1的一端耦接三电平电路的功率管Q2的源极和功率管Q3的漏极,电感Lp1的另一端耦接耦接电容Cp1的一端和地面发射单元的Cp3的一端,电容Cp1的另一端耦接电容Cp2的一端和功率管Qp1的漏极,电容Cp2的另一端耦接功率管Qp2的漏极、地面发射单元的电容Cp4的一端和三电平电路二极管Df2的阴极和三电平电路二极管Df1的阳极,功率管Qp1和Qp2的源极耦接,功率管Qp1和Qp2的栅极用于耦接地面控制单元,地面可调LCC谐振网络根据输出负载变化、线圈偏移的距离和外部输入电源的波动,通过地面控制单元调节功率管Qp1、功率管Qp2的占空比,控制其导通时间的长短,间接调节电容Cp2电容值大小,使电感Lp1、电容Cp1、Cp2谐振在最佳状态,使电路中的感抗ωLp1和容抗的
Figure BDA0002326467270000071
相等。优选的,本实施例中功率管Qp1、Qp2采用SPW55N80C3FKSA1,地面可调LCC谐振网络的电感Lp1为20uH,电容Cp1为390nF,可调电容Cp2为330nF。
本实施例中地面发射单元包括地面补偿网络和地面线圈,地面补偿网络包括电容Cp3和电容Cp4,电容Cp3一端耦接地面线圈Lp的一端,Lp的另一端耦接电容Cp4的一端,电容Cp3的另一端耦接地面LCC谐振网络的电感Lp1的一端,电容Cp4的另一端耦接地面LCC谐振网络的电容Cp2的一端的,其中电容Cp3和Cp4和地面线圈Lp串联,组成串联补偿网络,用于补偿地面线圈Lp受负载变化而改变的阻抗。优选的,本实施例中电容Cp3、Cp4为100nF,地面线圈Lp的电感为47uH。为了使地面单元谐振阻抗相等,需满足
Figure BDA0002326467270000081
作为优选实施方案,地面线圈由多股利兹线串联或并联方式,环绕在圆形或方形绝缘盘中,地面线圈根据不同场合调整其大小,选择不同材质的绝缘方式绕制。
本实施例中车载接收单元包括车载补偿网络和车载线圈,车载补偿网络包括电容Cs3、Cs4,电容Cs3一端耦接车载线圈Ls的一端,电感Ls的另一端耦接电容Cs4的一端,电容Cs3的另一端耦接车载LCC谐振网络的电感Ls1的一端,电容Cs4的另一端耦接地面LCC谐振网络的电容Cs2的一端的,其中电容Cs3和Cs4和车载线圈Ls串联,组成串联补偿网络,用于补偿车载线圈Lp在负载变化时而改变的阻抗。优选的,本实施例中电容Cs3、Cs4为47nF,车载线圈Ls的电感为120uH。
作为优选实施方案,车载线圈由多股利兹线串联或并联方式,环绕在圆形或方形绝缘盘中,车载线圈根据不同场合调整其大小,选择不同材质的绝缘方式绕制。
本实施例中的车载可调LCC谐振网络包括电感Ls1、电容Cs1、Cs2和功率管Qs1、Qs2,电感Ls1的一端耦接车载接收单元的电容Cs3和电容Cs1的一端,电感Ls1的另一端耦接同步整流电路的电感Ls2的一端和功率管Qs3的漏极,电容Cs1的另一端耦接功率管Qs1的漏极和电容Cs2的一端,功率管Qs1的源极与功率管Qs2的源极连接,电容Cs2的另一端和功率管Qs2的漏极耦接车载补偿网络的电容Cs4和同步整流电路的Ls3的一端,功率管Qs1和Qs2的栅极耦接车载控制单元。当车载单元负载发生变化时,通过车载控制单元调节功率管Qs1和Qs2的占空比,控制其导通时间的长短,间接调节电容Cs2的电容值大小。使电路中的谐振阻抗相等,即
Figure BDA0002326467270000091
优选的,本实施例中功率管Qs1、Qs2采用SPW55N80C3FKSA1,车载可调LCC谐振网络的电感Ls1为10uH,电容Cs1为680nF,电容Cs2为470nF。
本实施例中的同步整流电路,包括功率管Qs3、Qs4,储能电感Ls2、Ls3和电容Ce1,通过车载控制单元调节功率管Qs3、Qs4的占空比,储能电感Ls2、Ls3、电容Ce1滤波,输出直流电给负载电池B1充电。优选的,本实施例中功率管Qs3、Qs4采用IPW65R045C7,电感Ls2、Ls3为220uH,滤波电容Ce1采用6颗470uH/500V并联。
电动汽车无线充电规定的固定频率为85KHz,地面线圈和车载线圈的谐振频率均固定在85KHz,当电动车的锂电池电量较少时,充电电流较大,通过地面/车载控制单元,调节地面/车载可调LCC谐振网络的占空比,从而增大可变电容值,使地面/车载单元的输出功率较大,当电动车的锂电池的充满电后所需的充电电流很小,通过地面/车载控制单元,调节地面/车载可调LCC谐振网络的占空比,减小地面/车载可调LCC谐振网络的可变电容值,减小地面/车载单元的输出功率,电动汽车电池充电的过程负载是变化的,在电动汽车电池电量较小或者是电量充足这两种状态下,地面/车载单元均工作在谐振状态,无线充电系统保持较高传输效率。当外部输入电源为大功率电源时,地面控制单元控制三电平电路功率管调节三电平移相角,并将输出电压减小一半,输出电流增加一倍,并可实现零电压开通功率管,减少功率管的电压应力,。
设电动汽车前后移动的方向为X轴方向,电动汽车左右平移的方向为Y轴方向,与X轴和Y轴垂直的方向为Z轴方向。
作为实施例的一种方式,当地面线圈和车载线圈偏移量在X轴、和Y轴方向为0mm,Z轴方向为150mm,电动汽车电池充电的直流电压为390V,根据实验室测试结果,传输能量效率约为92%。
作为实施例的另一种方式,当地面线圈和车载线圈偏移量在X轴、和Y轴方向为0mm,Z轴方向为210mm,电动汽车电池充电的直流电压为420V,地面/车载控制单元根据线圈偏移距离和充电负载的变化,对地面/车载可调LCC谐振网络的功率管占空比进行调节,使地面单元和车载单元均处于磁耦合谐振状态,根据实验室测试结果,传输能量效率约为91%。
通过以上数据可以看出,本实施例中的无线充电系统在偏移距离变大、外部输入电压波动、负载变化较大的情况下,通过对地面/车载可调LCC谐振网络的电容容值进行调节,使地面/车载单元工作在阻抗匹配的谐振状态,无线系统仍保持磁耦合谐振高效充电,降低能量转换损耗。外部输入大功率电源时,采用本实施例中的无线充电系统的三电平电路可将输出电压减小一半,输出电流增加一倍,实现零电压开通功率管,减少功率管的电压应力。本发明所采用的电路所需成本低,性能好,控制算法简单,可实现大规模应用。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (10)

1.一种三电平与可调LCC谐振无线充电系统,其特征是:包括地面单元和车载单元,所述地面单元包括依次耦接的三电平电路、地面可调LCC谐振网络和地面发射单元,以及耦接所述三电平电路和地面可调LCC谐振网络的地面控制单元,所述三电平电路用于耦接外部电源并对外部电源进行降压倍流转换,所述车载单元包括依次耦接的车载接收单元、车载可调LCC谐振网络、同步整流电路,以及耦接车载可调LCC谐振网络和同步整流电路的车载控制单元,所述同步整流电路用于耦接负载电池充电,所述地面/车载可调LCC谐振网络包括至少一个基于功率管调节其容值的可变电容,所述地面/车载控制单元基于充电过程中的参量变化,通过控制所述地面/车载可调LCC谐振网络功率管的占空比改变所述可变电容的容值,进而调节地面/车载可调LCC谐振网络的容抗使地面/车载单元工作在磁耦合谐振状态,其中所述充电过程中的参量变化包括外部电源、负载电池的电压和/或线圈偏移量的变化。
2.根据权利要求1所述的无线充电系统,其特征是:所述地面可调LCC谐振网络包括电感Lp1、电容Cp1、可变电容Cp2和功率管Qp1、Qp2,电感Lp1的一端和电容Cp1的一端耦接地面发射单元的一个输入端,电感Lp1的另一端耦接三电平电路的一个输出端,电容Cp1的另一端耦接可变电容Cp2的一端和功率管Qp1的漏极,可变电容Cp2的另一端和功率管Qp2的漏极耦接三电平电路的另一个输出端和地面发射单元的另一个输入端,功率管Qp1和Qp2的源极耦接,功率管Qp1和Qp2的栅极耦接地面控制单元。
3.根据权利要求1所述的无线充电系统,其特征是:所述车载可调LCC谐振网络包括电感Ls1、电容Cs1、可变电容Cs2和功率管Qs1、Qs2;电感Ls1的一端和电容Cs1的一端耦接车载接收单元的一个输出端,电感Ls1的另一端耦接同步整流电路的一个输入端,电容Cs1的另一端耦接可变电容Cs2的一端和功率管Qs1的漏极,可变电容Cs2的另一端和功率管Qs2的漏极耦接车载接收单元的另一个输出端和同步整流电路的另一个输入端,功率管Qs1和Qs2的源极耦接,功率管Qs1和Qs2的栅极耦接车载控制单元。
4.根据权利要求2所述的无线充电系统,其特征是:所述地面发射单元包括地面线圈和地面补偿网络,所述地面补偿网络包括串接于地面线圈两端的电容Cp3和Cp4;所述地面控制单元基于外部电源的电压、负载电池的电压和线圈偏移量变化调节地面可调LCC谐振网络的容抗,使得:
Figure FDA0002326467260000021
其中,ω=2πf,f为谐振频率;ωLp1为电感Lp1的阻抗;
Figure FDA0002326467260000022
为电容Cp1和Cp2串联后的阻抗;ωLp为地面线圈的阻抗;
Figure FDA0002326467260000023
为地面线圈阻抗减去电容Cp3和Cp4串联后的阻抗。
5.根据权利要求3所述的无线充电系统,其特征是:所述车载接收单元包括车载线圈和车载补偿网络,所述车载补偿网络包括串接于车载线圈两端的电容Cs3和Cs4;所述车载控制单元基于负载电池的电压变化调节车载可调LCC谐振网络的容抗,使得:
Figure FDA0002326467260000024
其中,ω=2πf,f为谐振频率;ωLs1为电感Ls1的阻抗;
Figure FDA0002326467260000025
为电容Cs1和Cs2串联后的阻抗;ωLs为车载线圈的阻抗;
Figure FDA0002326467260000026
为车载线圈阻抗减去电容Cs3和Cs4串联后的阻抗。
6.根据权利要求4所述的无线充电系统,其特征在于:所述地面线圈由多股利兹线串联或并联,环绕在圆形或方形绝缘盘中。
7.根据权利要求5所述的无线充电系统,其特征在于:所述车载线圈由多股利兹线串联或并联,环绕在圆形或方形绝缘盘中。
8.根据权利要求1-7任一项所述的无线充电系统,其特征是:所述三电平电路包括功率管Q1~Q4、电容C1~C4、电容Cs、二极管Df1~Df2和电容Cd1~Cd2,所述功率管Q1~Q4内部集成二极管分别为D1~D4,所述功率管Q1的漏极、电容C1的一端和电容Cd1的一端耦接外部电源的正极,功率管Q1的源极、功率管Q2的漏极、电容C1的另一端、电容C2的一端和电容Cs的一端耦接二极管Df1的负极,功率管Q2的源极、功率管Q3的漏极、电容C2的另一端和电容C3的一端耦接地面可调LCC谐振网络的一个输入端,功率管Q3的源极、功率管Q4的漏极、电容C3的另一端、电容C4的一端和电容Cs的另一端耦接二极管Df2的正极,功率管Q4的源极、电容C4的另一端和电容Cd2的一端耦接耦接外部电源的负极,电容Cd1另一端、电容Cd2的另一端、二极管Df1的正极和二极管Df2的负极耦接地面可调LCC谐振网络的另一输入端,所述功率管Q1~Q4的栅极耦接地面控制单元,所述地面控制单元通过调节功率管Q1~Q4的导通和关断来调节所述三电平电路移相角、输出电压和输出电流。
9.根据权利要求8所述的无线充电系统,其特征在于:所述电容Cd1和Cd2,分别由3个电解电容并联组成。
10.根据权利要求8所述的无线充电系统,其特征在于:所述同步整流电路包括功率管Qs3、Qs4,电感Ls2、Ls3和电容Ce1,电感Ls2的一端和功率管Qs3的漏极耦接车载可调LCC谐振网络的一个输出端,电感Ls2的另一端耦接电感Ls3的一端和电容Ce1的一端,用于耦接负载电池的正极;功率管Qs3的源极耦接功率管Qs4的源极和电容Ce1的另一端,用于耦接负载电池的负极,功率管Qs4的漏极和电感Ls3的另一端耦接车载可调LCC谐振网络的另一个输出端,所述功率管Qs3和Qs4的栅极耦接车载控制单元。
CN201911318313.0A 2019-12-19 2019-12-19 一种三电平与可调lcc谐振无线充电系统 Pending CN110962635A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911318313.0A CN110962635A (zh) 2019-12-19 2019-12-19 一种三电平与可调lcc谐振无线充电系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911318313.0A CN110962635A (zh) 2019-12-19 2019-12-19 一种三电平与可调lcc谐振无线充电系统

Publications (1)

Publication Number Publication Date
CN110962635A true CN110962635A (zh) 2020-04-07

Family

ID=70035278

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911318313.0A Pending CN110962635A (zh) 2019-12-19 2019-12-19 一种三电平与可调lcc谐振无线充电系统

Country Status (1)

Country Link
CN (1) CN110962635A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111931361A (zh) * 2020-07-28 2020-11-13 金陵科技学院 一种馈电电参量可调的多发射单接收wpt优化方法
CN112204844A (zh) * 2020-07-15 2021-01-08 英诺赛科(珠海)科技有限公司 电子电路和具有所述电子电路的半导体装置
CN113206553A (zh) * 2021-05-20 2021-08-03 上海交通大学 无线输电系统及其发射电路和接收电路

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112204844A (zh) * 2020-07-15 2021-01-08 英诺赛科(珠海)科技有限公司 电子电路和具有所述电子电路的半导体装置
CN112204844B (zh) * 2020-07-15 2023-12-19 英诺赛科(珠海)科技有限公司 电子电路和具有所述电子电路的半导体装置
CN111931361A (zh) * 2020-07-28 2020-11-13 金陵科技学院 一种馈电电参量可调的多发射单接收wpt优化方法
CN113206553A (zh) * 2021-05-20 2021-08-03 上海交通大学 无线输电系统及其发射电路和接收电路

Similar Documents

Publication Publication Date Title
US11901760B2 (en) Receive end and transmit end of wireless charging system, method, electrical terminal, and system
US11404965B2 (en) DC-DC converter, on-board charger, and electric vehicle
CN105186646B (zh) 一种用于动态无线充电的装置及其参数获取方法
CN110971015A (zh) 一种地面和车载可调lcc谐振无线充电系统
CN104779672B (zh) 一种适用于电池性负载的无线充电系统
CN110962635A (zh) 一种三电平与可调lcc谐振无线充电系统
CN109728624A (zh) 车载充放电系统
CN104467017A (zh) 一种基于高频磁耦合的多端口光伏储能混合发电系统
CN108964469B (zh) 一种并串联结构的全桥双llc谐振变换器
CN204992720U (zh) 一种无线充电装置
CN111740509B (zh) 基于调压控制的无线充电方法及系统
CN104218813A (zh) 电感电容复合利用的级联型谐振dc-dc变换电路
CN202424546U (zh) 高稳定度特高压直流高压发生器
CN110912280A (zh) 基于双向倍压电路的无线电能传输系统
CN106712319B (zh) 一种电动汽车磁共振式无线充电电路及其控制方法
CN112003387B (zh) 一种基于改进型s/s补偿网络的恒压恒流无线充电系统
CN105751915A (zh) 光伏储能直流快充桩
CN211942992U (zh) 一种三电平与可调lcc谐振无线充电系统
CN110149052B (zh) 一种用于电池充电的谐振电路拓扑结构
CN112421734A (zh) 一种单级式高阶补偿恒流恒压无线充电装置及方法
CN207510243U (zh) 一种新型电动汽车磁共振式无线充电电路
WO2023226317A1 (zh) 维也纳整流器的控制方法及系统
CN114825663B (zh) 一种sp型双输出单独可调无线电能传输系统及其控制方法
CN211151629U (zh) 一种地面和车载可调lcc谐振无线充电系统
CN112737021B (zh) 一种基于Class-E电路的负载无关型无线充电电路及控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: Floor 2, building 1, No. 211, Chuanda Road, Pudong New Area, Shanghai, 201200

Applicant after: Shanghai Wanji Electronic Technology Co.,Ltd.

Address before: No. 188, Zhongyang Road, Diankou Town, Zhuji City, Shaoxing City, Zhejiang Province

Applicant before: ZHEJIANG WANAN YICHUANG ELECTRONIC TECHNOLOGY Co.,Ltd.

CB02 Change of applicant information
CB02 Change of applicant information

Country or region after: China

Address after: 311305, Building 1, 101, 201, 301, Binhe Wealth Factory, No. 88 Binhe Road, Qingshanhu Street, Lin'an District, Hangzhou City, Zhejiang Province (self declared)

Applicant after: Yichuang Zhilian (Zhejiang) Electronic Technology Co.,Ltd.

Address before: Floor 2, building 1, No. 211, Chuanda Road, Pudong New Area, Shanghai, 201200

Applicant before: Shanghai Wanji Electronic Technology Co.,Ltd.

Country or region before: China

CB02 Change of applicant information