CN110962340A - 一种光固化3d打印编织网状海藻酸钠水凝胶血管支架的制备方法 - Google Patents
一种光固化3d打印编织网状海藻酸钠水凝胶血管支架的制备方法 Download PDFInfo
- Publication number
- CN110962340A CN110962340A CN201911312528.1A CN201911312528A CN110962340A CN 110962340 A CN110962340 A CN 110962340A CN 201911312528 A CN201911312528 A CN 201911312528A CN 110962340 A CN110962340 A CN 110962340A
- Authority
- CN
- China
- Prior art keywords
- sodium alginate
- printing
- woven mesh
- photocuring
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/124—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/379—Handling of additively manufactured objects, e.g. using robots
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/386—Data acquisition or data processing for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/386—Data acquisition or data processing for additive manufacturing
- B29C64/393—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
- B33Y50/02—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/753—Medical equipment; Accessories therefor
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
- Robotics (AREA)
- Materials For Medical Uses (AREA)
- Prostheses (AREA)
Abstract
一种光固化3D打印编织网状海藻酸钠水凝胶血管支架的制备方法属于医疗器械制备及3D打印技术领域,具有成型速度快,成型型精度高,成本低廉的优势。本发明的组合物为:溶胶状海藻酸钠溶、少量丙烯酸酯低聚物作为光固化预聚物,藻蛋白酸钠等其它助剂。使用Rhino软件设计孔隙率可控的编织网状血管支架模型,将模型导入切片软件中进行切片设置后进行打印,将逐层打印完成后海藻酸钠水凝胶成型体置于去离子水中浸泡,去除未反应的浆料后进行冷冻真空干燥,得到干燥的具有编织网状结构的海藻酸钠水凝胶血管支架。
Description
技术领域
本发明属于医疗器械制备技术领域,尤其涉及一种基于光固化3D打印技术制备具有可控孔隙率的编织网状海藻酸钠水凝胶血管支架的方法。
背景技术
3D打印技术是一种以数字模型文件为基础,将金属、陶瓷、有机物等材料通过熔融、烧结、粘接、固化等方式由二维平面逐层堆积形成三维实体的快速成型技术。将3D打印技术应用到医学领域,特别是人体个性化植入物中,更加突显了3D打印技术小批量个性化定制的优点。每个患者都能够依据自身和病患条件,个性化定制三维模型制造骨支架、血管支架等。根据其中光固化快速成型DLP(Digital Light Processing)3D打印技术为复杂结构形状的成型提供了有效的解决方案,其制造周期短,成本低,可实现多种材料的复杂构型,为制备具有复杂形状的血管支架开拓了新思路。
随着人们生活节奏加快、不良生活习惯的增加,患心血管疾病的人越来越多,以闭塞性血管疾病为代表的心血管疾病严重影响人们的生活,并且死亡率日益上升。人工血管支架植入技术目前已被广泛应用于心血管疾病的治疗,通过在病变段植入支架以达到支撑狭窄闭塞段血管,保持管腔血流通畅的目的。传统的不可降解金属支架作为一种异物易引发炎症和支架内形成血栓。而生物降解性支架,细胞相容性好,降解速率可控,异物反应及新生内膜现象均可得到抑制。本申请即以具有生物可降解性的海藻酸钠原料,通过光固化成型(DLP)3D打印技术制备柔润、具有可控孔隙率的编织网状海藻酸钠水凝胶血管支架,相比与一般形态的血管支架,编织网状结构具有更好的韧性和支撑效果。
发明内容
结合DLP 3D打印技术和上述目前血管支架存在的技术问题,本发明提供了一种基于光固化成型(DLP)3D打印技术制备的具有可控孔隙率的编织网状海藻酸钠水凝胶血管支架的方法。
本发明是通过以下技术方案实现的:
一、使用Rhino三维建模软件进行编织网状模型的绘制
使用Rhino建模软件配合Grasshopper参数化插件设计圆柱状编织网结构,使水平方向线段波谷与竖直方向线段波谷重合,完成编织网状结构雏形。通过改变圆柱直径、编织网线数量、编织网线直径参数化调控编织网状模型,使模型适于不同的应用场合。将处理完的模型转化换为STL格式后导入切片软件中完成切片过程。
二、配制适于光固化3D打印的海藻酸钠水凝胶浆料
(1)配制海藻酸钠溶液
先将粒径在50um以下10g-30g海藻酸钠粉末溶于100g去离子水中,于60-80℃温度下进行加热溶解,海藻酸钠粉末完全溶解后得到粘稠的溶胶状海藻酸钠溶液。
三、对BESK-DLP 3D打印机进行基台调平、光源检测、模型导入、打印工作。
使用的打印设备为BESK-DLP3D打印机,采用用405nm波长的激光光源,DMD(数字微镜)芯片。首先,将打印机平台调整至默认位置,之后安装树脂槽,用水平仪测试并调整树脂槽与打印平台的水平一致,调整完毕后用螺丝固定,随后设置平台以1mm的精度缓慢下降,当平台接近树脂槽时暂停并在槽上方垫入一张B5打印纸,同时将精度调整为0.1mm,再次下降直到抽动纸张感觉有明显阻力时,设定此位置为初始打印位置(Z轴=0),平台调平完毕。点击程序内的光源检测,设置时间为5s,观察曝光图案与设定一致且无明显瑕疵后,完成光源检测。导入STL格式的模型,设置切片厚度设置为0.01mm,在预先配制好的溶胶状海藻酸钠溶液按其质量为混合浆料终浓度的80wt%,按比重中加入10wt%的丙烯酸酯作为光固化预聚物,加入5wt%的聚乙二醇(PEG)作为分散剂,3wt%的藻蛋白酸钠作为悬浮剂,2wt%二苯基-(2,4,6-三甲基苯甲酰)氧磷(TPO)作为光引发剂,对混合浆料进行搅拌,转速设置为100r/min,时间设置为10min,完成浆料配制;确保打印过程中模型能够稳定固化在平台,提升打印稳定性。全部参数设置完成后,将浆料放入树脂槽中开始打印。得到预设编织网状结构的海藻酸钠水凝胶成型体。
还可以设置暂停,设置暂停时,每打印完一层平台上移200mm是为了随时观察打印过程,因为只有平台上移了,才能看到模型有没有固化在打印平台上。暂停时设置平台向上移动量为200mm。暂停后看完了,点继续打印,它就移动回原位继续打印了。
四、打印后处理
将打印后取出的编织网状结构海藻酸钠水凝胶成型体置于去离子水中浸泡以去除未反应的单体和光引发剂,每6h换一次水,2天后进行冷冻真空干燥,得到干燥的编织网状结构的海藻酸钠水凝胶成型体。
对制备的3D打印海藻酸钠水凝胶支架进行CCK-8细胞培养后体外相容性证明大部分细胞能够保持存活状态,细胞很少死亡,表明支架对细胞无毒性作用,细胞存活率在90%以上。本发明具有以下创新性:
(1)本发明是一种利用DLP光固化3D打印技术制备编织网状结构的海藻酸钠水凝胶血管支架。通过建模软件参数化设计圆柱状编织网结构,使编织网状结构圆柱直径、编织网线数量、编织网线直径可参数化调控,使模型适于不同的血管支架应用场合。相比与一般形态的血管支架,编织网状结构具有更好的韧性和支撑效果。
(2)本发明自制配方的海藻酸钠/丙烯酸脂/光引发剂复合打印浆料,具有性质稳定、流动性好、光固化活性高的特点,打印成型率高,可实现精细复杂结构血管支架的制备。
(3)本发明提出了基于DLP光固化3D打印技术制备形态大小及结构疏密可控的编织网状结构的海藻酸钠水凝胶成型血管支架的浆料配制及打印工艺参数,制备了力学性能良好、温润可降解、可参数化调控的编织网状结构海藻酸钠水凝胶血管支架。
附图说明
图1是光固化3D打印编织网状结构海藻酸钠水凝胶的制备工艺流程图
图2是通过Rhino设计出的不同孔隙率不同直径大小的编织网状结构血管支架。
图3是根据本发明工艺流程所打印出的编织网状结构海藻酸钠水凝胶血管支架。
具体实施方式
实施例一:
1.使用Rhino建模软件配合Grasshopper参数化插件设计圆柱状编织网结构,使水平方向线段波谷与竖直方向线段波谷重合,完成编织网状结构雏形。通过改变圆柱直径、编织网线数量、编织网线直径参数化调控编织网状模型,使模型适于不同的应用场合。将处理完的模型转化换为STL格式后导入切片软件中完成切片过程。
2.配制光固化海藻酸钠浆料,在预先配制有的溶胶状海藻酸钠溶液中加入10wt%的丙烯酸类单体作为光固化成型剂,加入5wt%的聚乙二醇(PEG)作为分散剂,3wt%的藻蛋白酸钠作为悬浮剂,2wt%二苯基-(2,4,6-三甲基苯甲酰)氧磷(TPO)作为光引发剂,对混合浆料进行搅拌,转速设置为100r/min,时间设置为10min。
3.首先将打印模型数据导入到与打印机配套设计的Q3DP软件中,调整切片参数并对模型进行切片,之后调节基板与底面树脂槽平行并确定最佳的起始位置,以保证首层固化效果良好,确认首层打印效果良好后开始正常打印。
4.打印后处理,将打印后取出的编织网状结构海藻酸钠水凝胶成型体置于去离子水中浸泡以去除未反应的单体和光引发剂,每6h换一次水,2天后进行冷冻真空干燥,得到干燥的编织网状结构的海藻酸钠水凝胶成型体。最后对编织网状结构海藻酸钠水凝胶血管支架进行力学性能、体外细胞活性等测试。
Claims (3)
1.一种光固化3D打印编织网状海藻酸钠水凝胶血管支架的制备方法,其特征在于,该制备方法包括以下步骤:
步骤一:通过Rhino建模软件和Grasshopper参数化插件设计圆柱状编织网结构,使水平方向线段波谷与竖直方向线段波谷重合,完成编织网状结构雏形;通过改变圆柱直径、编织网线数量、编织网线直径参数化调控,完成相互交织的编织网状模型;
步骤二:先将粒径在50μm以下10g-30g海藻酸钠粉末溶于100g去离子水中,于60-80℃温度下进行加热溶解,海藻酸钠粉末完全溶解后得到溶胶状海藻酸钠溶液;
步骤三:在预先配制好的溶胶状海藻酸钠溶液按其质量为混合浆料终浓度的80wt%,按比重中加入10wt%的丙烯酸酯作为光固化预聚物,加入5wt%的聚乙二醇(PEG)作为分散剂,3wt%的藻蛋白酸钠作为悬浮剂,2wt%二苯基-(2,4,6-三甲基苯甲酰)氧磷(TPO)作为光引发剂,对混合浆料进行搅拌,转速设置为100r/min,时间设置为10min,完成浆料配制;
步骤四:将STL格式的模型导入到切片软件,设置切片厚度设置为0.01mm,设置模型切片参数初始层曝光时间为60s,第二至十层单层曝光时间为30s,第十层之后单层曝光时间7s;每层曝光后灭灯一次,每次灭灯时间4s,全部参数设置完成后,将浆料放入树脂槽中开始逐层打印,得到预设编织网状结构的海藻酸钠水凝胶成型体;
步骤五:将打印后取出的编织网状结构海藻酸钠水凝胶成型体置于去离子水中浸泡以去除未反应的单体和光引发剂,每6h换一次水,2天后进行冷冻真空干燥,得到干燥的编织网状结构的海藻酸钠水凝胶成型体。
2.根据权利要求1所述的一种基于DLP光固化3D打印技术制备编织网状海藻酸钠水凝胶血管支架的制备方法,其特征在于:步骤一中所使用的三维建模软件是Rhino及其参数化插件Grasshopper参数化建模编织网状血管支架结构。
3.根据权利要求1中所述的一种基于DLP光固化3D打印技术制备编织网状海藻酸钠水凝胶血管支架的制备方法,其特征在于:步骤二中所使用的粉体材料为粒径尺寸为50-100μm海藻酸钠粉末,于60-80℃温度下溶于去离子水中,加入10wt%的丙烯酸类单体作为光固化成型剂,加入5wt%的聚乙二醇(PEG)作为分散剂,3wt%的藻蛋白酸钠作为悬浮剂,2wt%二苯基-(2,4,6-三甲基苯甲酰)氧磷(TPO)作为光引发剂,完成光固化3D打印海藻酸钠水凝胶浆料的配制。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911312528.1A CN110962340A (zh) | 2019-12-18 | 2019-12-18 | 一种光固化3d打印编织网状海藻酸钠水凝胶血管支架的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911312528.1A CN110962340A (zh) | 2019-12-18 | 2019-12-18 | 一种光固化3d打印编织网状海藻酸钠水凝胶血管支架的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110962340A true CN110962340A (zh) | 2020-04-07 |
Family
ID=70035131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911312528.1A Pending CN110962340A (zh) | 2019-12-18 | 2019-12-18 | 一种光固化3d打印编织网状海藻酸钠水凝胶血管支架的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110962340A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113681890A (zh) * | 2021-09-02 | 2021-11-23 | 北京理工大学 | 一种面向血管支架的lcd光固化3d打印设备及打印方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005055800A2 (en) * | 2003-12-15 | 2005-06-23 | Technion Research & Development Foundation Ltd. | Therapeutic drug-eluting endoluminal covering |
CN105121132A (zh) * | 2012-09-24 | 2015-12-02 | 阿特里斯有限公司 | 用于在支架形成中使用的管及其制备方法 |
CN106552287A (zh) * | 2016-12-02 | 2017-04-05 | 上海其胜生物制剂有限公司 | 基于3d打印技术的羟丁基壳聚糖智能水凝胶支架及其制备方法 |
CN108340573A (zh) * | 2017-01-24 | 2018-07-31 | 四川大学 | 3d打印材料、神经修复导管及其制备方法 |
CN109774119A (zh) * | 2019-03-26 | 2019-05-21 | 杭州电子科技大学 | 一种基于微液滴喷墨式凝胶化血管支架3d打印方法 |
-
2019
- 2019-12-18 CN CN201911312528.1A patent/CN110962340A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005055800A2 (en) * | 2003-12-15 | 2005-06-23 | Technion Research & Development Foundation Ltd. | Therapeutic drug-eluting endoluminal covering |
CN105121132A (zh) * | 2012-09-24 | 2015-12-02 | 阿特里斯有限公司 | 用于在支架形成中使用的管及其制备方法 |
CN106552287A (zh) * | 2016-12-02 | 2017-04-05 | 上海其胜生物制剂有限公司 | 基于3d打印技术的羟丁基壳聚糖智能水凝胶支架及其制备方法 |
CN108340573A (zh) * | 2017-01-24 | 2018-07-31 | 四川大学 | 3d打印材料、神经修复导管及其制备方法 |
CN109774119A (zh) * | 2019-03-26 | 2019-05-21 | 杭州电子科技大学 | 一种基于微液滴喷墨式凝胶化血管支架3d打印方法 |
Non-Patent Citations (3)
Title |
---|
徐光柱 杨继全 何鹏: "《3D打印硬件构成与调试》", 30 September 2018, 南京师范大学出版社 * |
许蓁: "《BIM应用·设计》", 31 July 2016, 同济大学出版社 * |
谭海涛 赵劲民 黄文华: "《3D骨科学》", 30 September 2016, 广西科学技术出版社 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113681890A (zh) * | 2021-09-02 | 2021-11-23 | 北京理工大学 | 一种面向血管支架的lcd光固化3d打印设备及打印方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Madrid et al. | Advances in additive manufacturing for bone tissue engineering scaffolds | |
Lai et al. | 3D printing in biomedical engineering: Processes, materials, and applications | |
Kang et al. | Development of an indirect stereolithography technology for scaffold fabrication with a wide range of biomaterial selectivity | |
US6849223B2 (en) | Fabrication of a polymeric prosthetic implant | |
Dhariwala et al. | Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography | |
Singh et al. | Advances in bioprinting using additive manufacturing | |
Top et al. | Computer-aided design and additive manufacturing of bone scaffolds for tissue engineering: state of the art | |
CN102430151B (zh) | 组织工程骨软骨复合支架及其一体化光固化成型方法 | |
EP1975596A2 (en) | Anatomically compliant AAA model and the method of manufacture for In vitro simulated device testing | |
Soleymani et al. | 3D and 4D printing hydroxyapatite-based scaffolds for bone tissue engineering and regeneration | |
EP2456473A1 (en) | Biomedical device, method for manufacturing the same and use thereof | |
CN109846718A (zh) | 一种牙胶尖复合材料及其dlp打印应用 | |
CN110962340A (zh) | 一种光固化3d打印编织网状海藻酸钠水凝胶血管支架的制备方法 | |
An et al. | 3D Printing | |
Hart et al. | 3D and 4D printing of biomaterials and biocomposites, bioinspired composites, and related transformers | |
Zhang et al. | Intelligent biomaterials for micro and nanoscale 3D printing | |
CN103171153A (zh) | 气动挤出沉积成型多孔生物骨支架工艺方法 | |
Zhu et al. | Design and fused deposition modeling of triply periodic minimal surface scaffolds with channels and hydrogel for breast reconstruction | |
Oliaei et al. | 6. Stereolithography and its applications | |
CN107007888B (zh) | 一种基于光固化3d打印技术个体化定制型的二氧化锆多孔生物骨修复支架及其制备方法 | |
CN105147423B (zh) | 一种三维复合多孔结构组织工程支架的制备方法 | |
Yadegari et al. | Specific considerations in scaffold design for oral tissue engineering | |
Melchels | Preparation of advanced porous structures by stereolithography for application in tissue engineering | |
CN109910131A (zh) | 一种增强型硅酸盐多孔陶瓷支架的浆料及成形方法 | |
Crețu et al. | Computerized techniques used for 3d printing in proshodontics. a systematic review |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200407 |