CN110956588B - Image high-precision geometric correction method based on shortest distance of encrypted points - Google Patents
Image high-precision geometric correction method based on shortest distance of encrypted points Download PDFInfo
- Publication number
- CN110956588B CN110956588B CN201910898761.6A CN201910898761A CN110956588B CN 110956588 B CN110956588 B CN 110956588B CN 201910898761 A CN201910898761 A CN 201910898761A CN 110956588 B CN110956588 B CN 110956588B
- Authority
- CN
- China
- Prior art keywords
- image
- point
- coordinate
- coordinates
- encrypted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000012937 correction Methods 0.000 title claims abstract description 19
- 238000012952 Resampling Methods 0.000 claims abstract description 8
- 238000003384 imaging method Methods 0.000 claims description 15
- 230000009466 transformation Effects 0.000 claims description 8
- 239000011159 matrix material Substances 0.000 claims description 6
- 238000012545 processing Methods 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/80—Geometric correction
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Image Processing (AREA)
Abstract
Description
技术领域technical field
本发明涉及影像几何纠正技术领域,尤其是直接法几何纠正,涉及一种基于加密点最短 距离的影像高精度几何纠正方法。The invention relates to the technical field of image geometric correction, in particular to the direct method geometric correction, and relates to an image high-precision geometric correction method based on the shortest distance of encrypted points.
背景技术Background technique
采用线阵摆扫成像的光学传感器可适用于有红外波段的情况,成像视场角大,影像覆盖 范围宽,例如海洋卫星水色扫描仪,一天就可以覆盖全球一次,在动态监测方面具有很大优 势。然而其几何成像模型比线阵推扫成像更复杂,主要由于:线阵推扫时,每行像素同时成 像,因此具有相同的轨道、姿态等参数;而线阵摆扫时,每行的各个像素在不同时刻成像, 具有不同的轨道姿态参数。这导致后续几何处理方式不同:线阵推扫时,可以通过建立与共 线方程模型等价的有理多项式模型实现高效率的间接法几何纠正;而线阵摆扫时,只能通过 一般的直接法或直接法与局部近似的间接法相结合的方式进行几何纠正。无论是采用一般的 直接法纠正,还是直接法与局部近似的间接法相结合的方式进行纠正,都存在精度不够的问 题。Optical sensors using linear array pendulum-scan imaging can be applied to the infrared band, with a large imaging field of view and a wide range of image coverage. For example, a marine satellite aqua scanner can cover the world once a day, and has great advantages in dynamic monitoring. Advantage. However, its geometric imaging model is more complicated than linear array push-broom imaging, mainly because: during linear array push-broom, each row of pixels is imaged at the same time, so it has the same orbit, attitude and other parameters; Pixels are imaged at different times and have different orbital pose parameters. This leads to different subsequent geometric processing methods: when linear array push-broom is used, efficient indirect method geometric correction can be achieved by establishing a rational polynomial model equivalent to the collinear equation model; while linear array swing sweep can only be achieved by the general direct method Or the direct method and the indirect method of local approximation are combined for geometric correction. Whether it is corrected by the general direct method or the combination of the direct method and the indirect method of local approximation, there is a problem of insufficient precision.
发明内容SUMMARY OF THE INVENTION
为解决上述现有技术的问题,本发明提出一种基于加密点最短距离的影像高精度几何纠 正方法。In order to solve the above-mentioned problems of the prior art, the present invention proposes a high-precision geometric correction method for images based on the shortest distance of encrypted points.
本发明的技术方案提供一种基于加密点最短距离的影像高精度几何纠正方法,包括以下 步骤:The technical scheme of the present invention provides a kind of image high-precision geometric correction method based on the shortest distance of the encrypted point, comprising the following steps:
1)首先根据坐标正算函数确定物方坐标,再根据物方坐标范围和重采样间隔,确定纠正后 影像上每个像素的物方坐标,提取原始影像上的1个像素对应于纠正后影像上像素数的最大 值并记为N;1) First, determine the object coordinates according to the coordinate positive calculation function, and then determine the object coordinates of each pixel on the corrected image according to the object coordinate range and resampling interval, and extract 1 pixel on the original image corresponding to the corrected image. The maximum value of the number of pixels above is recorded as N;
2)设几何纠正控制精度为e个像素,将原始影像的每个像素加密成[N/e]×[N/e]的点,利用坐 标正算函数求出加密点(sx,sy)的物方坐标(lon,lat),其中[]表示向上取整;2) Set the geometric correction control accuracy to e pixels, encrypt each pixel of the original image into a point of [N/e]×[N/e], and use the coordinate positive calculation function to obtain the encrypted point (sx, sy). Object coordinates (lon,lat), where [] means rounded up;
逐个计算加密点在纠正后的影像上的图像坐标(X,Y),求出最邻近的整像素位置(X0,Y0);Calculate the image coordinates (X, Y) of the encrypted points on the corrected image one by one, and find the nearest integer pixel position (X0, Y0);
对于纠正后图像上各整像素位置(X0,Y0),如果发现有多个对应加密点坐标,则通过比较距离 误差确定对应关系;For each integer pixel position (X0, Y0) on the corrected image, if it is found that there are multiple corresponding encrypted point coordinates, the corresponding relationship is determined by comparing the distance error;
3)对纠正后图像的每个点,根据所处位置(X0,Y0)的对应加密点坐标,从原始影像内插灰度, 得到完整的输出图像。3) For each point of the corrected image, according to the coordinates of the corresponding encrypted point at the position (X0, Y0), the grayscale is interpolated from the original image to obtain a complete output image.
而且,所述坐标正算函数如下,Moreover, the coordinate positive calculation function is as follows,
已知某点P的像方坐标为(s,l),根据相机指向角模型,求得P点在相机坐标系下的三 维矢量为vcam=[xC(s) y(s) 1]′,其中a0,a1,a2,b0,b1,b2是相机指向角模型系数,It is known that the image coordinate of a certain point P is (s, l). According to the camera pointing angle model, the three-dimensional vector of point P in the camera coordinate system is obtained as v cam =[x C (s) y(s) 1] ′, where a 0 , a 1 , a 2 , b 0 , b 1 , b 2 are the camera pointing angle model coefficients,
根据线阵摆扫成像原理,求得该P点的成像时刻为T=Tl0+Δt×s,其中Tl0为第l行第0列像素的成像时刻,Δt为每列像素的曝光时间间隔,根据T内插得到卫星的位置 [XT YTZT]′、速度和姿态,求得T时刻从J2000坐标系到WGS84转换矩阵、从本体坐标系 到J2000坐标系的转换矩阵RT,RGFFB;According to the principle of linear sweep imaging, the imaging time of the P point is obtained as T=Tl 0 +Δt×s, where Tl 0 is the imaging time of the pixel in the 1st row and the 0th column, and Δt is the exposure time interval of each column of pixels , obtain the satellite's position [X T Y T Z T ]', velocity and attitude according to T interpolation, and obtain the transformation matrix R T from the J2000 coordinate system to the WGS84 coordinate system and from the body coordinate system to the J2000 coordinate system at the time T , RGFFB ;
设RBS是从相机坐标系到本体坐标系的转换矩阵,则从像方坐标(s,l)到物方坐标矢量 vobj=[X Y Z]′的坐标正算函数如下,Assuming that R BS is the transformation matrix from the camera coordinate system to the body coordinate system, the coordinate positive calculation function from the image coordinate (s, l) to the object coordinate vector v obj = [XYZ]' is as follows,
物方坐标(X,Y,Z)同时也满足WGS84椭球方程,The object coordinates (X, Y, Z) also satisfy the WGS84 ellipsoid equation,
其中,A,B为WGS84椭球的长半轴和短半轴(已知常数),H为物方坐标(X,Y,Z)在WGS84椭球面上的高程。Among them, A and B are the major and minor semi-axes (known constants) of the WGS84 ellipsoid, and H is the elevation of the object coordinate (X, Y, Z) on the WGS84 ellipsoid.
而且,计算N的实现如下,Moreover, the implementation of computing N is as follows,
对于原始影像上两个相邻整数点,对应的物方坐标分别为(Xs,Ys),(Xt,Yt),设纠正后影像 的重采样间隔为GSD,则这两个点在纠正后影像上的像素距离为求出所有d的最大值,并向上取整得到N。For two adjacent integer points on the original image, the corresponding object coordinates are (Xs, Ys), (Xt, Yt), respectively. If the resampling interval of the corrected image is GSD, then the two points in the corrected image The pixel distance on is Find the maximum value of all d and round up to get N.
而且,根据加密点(sx,sy)的物方坐标(lon,lat),计算加密点在纠正后影像上的影像坐标 (TX,TY)如下,Moreover, according to the object coordinates (lon, lat) of the encrypted point (sx, sy), the image coordinates (TX, TY) of the encrypted point on the corrected image are calculated as follows,
TX=(lon-Xmin)/GSD,TY=(Ymax-lat)/GSDTX=(lon-Xmin)/GSD, TY=(Ymax-lat)/GSD
其中,(Xmin,Ymax)是输出的纠正后影像的左上角点的物方坐标。Among them, (Xmin, Ymax) is the object coordinate of the upper left corner of the output corrected image.
而且,采用图像分块方式并行执行步骤1)~3)。Furthermore, steps 1) to 3) are executed in parallel in an image block manner.
和现有技术相比,本发明提出的方法几何纠正精度可控,支持通过并行计算的方式实现 快速处理,还可广泛应用于任意已知坐标正算函数的坐标反算问题,例如航空、航天的线阵 推扫方式成像也适用,航空线阵摆扫方式也适用,面阵成像方式也适用。Compared with the prior art, the method proposed in the present invention has controllable geometric correction accuracy, supports rapid processing through parallel computing, and can also be widely applied to coordinate inverse calculation problems of any known coordinate forward calculation function, such as aviation and aerospace. The linear array push-broom imaging method is also applicable, the aviation linear array swing scanning method is also applicable, and the area array imaging method is also applicable.
附图说明Description of drawings
图1为本发明实施例流程示意图。FIG. 1 is a schematic flowchart of an embodiment of the present invention.
具体实施方式Detailed ways
为了更好地理解本发明的技术方案,下面结合附图和实施例对本发明做进一步的详细说 明。In order to better understand the technical solutions of the present invention, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments.
参见图1,本发明实施例提出一种基于加密点最短距离的影像高精度几何纠正方法,包 括以下步骤:Referring to Fig. 1, an embodiment of the present invention proposes a high-precision geometric correction method for images based on the shortest distance of encrypted points, comprising the following steps:
1)首先根据坐标正算函数确定原始影像的物方坐标范围,再根据物方坐标范围和重采样间隔 (为预设的值,通常是原始影像中心点对应的地面分辨率),确定纠正后影像上每个像素 的物方坐标,以及计算原始影像上的1个像素对应于纠正后影像上像素数的最大值并记为 N(向上取整)。1) First determine the object coordinate range of the original image according to the coordinate positive calculation function, and then according to the object coordinate range and resampling interval (which is a preset value, usually the ground resolution corresponding to the center point of the original image), determine the corrected image. The object coordinate of each pixel on the image, and the calculated 1 pixel on the original image corresponds to the maximum number of pixels on the corrected image and is recorded as N (rounded up).
所述坐标正算函数如下:The coordinate positive calculation function is as follows:
已知某点P的像方坐标为(s,l),根据相机指向角模型,求得P点在相机坐标系下的三 维矢量为vcam=[xC(s) y(s) 1]′,其中a0,a1,a2,b0,b1,b2是相机指向角模型系数(已知)。It is known that the image coordinate of a certain point P is (s, l). According to the camera pointing angle model, the three-dimensional vector of point P in the camera coordinate system is obtained as v cam =[x C (s) y(s) 1] ', where a 0 , a 1 , a 2 , b 0 , b 1 , b 2 are camera pointing angle model coefficients (known).
根据线阵摆扫成像原理,求得该P点的成像时刻为T=Tl0+Δt×s,其中Tl0为第l行第0列像素的成像时刻,Δt为每列像素的曝光时间间隔。根据T可内插得到卫星的位置 [XTYT Zr]′、速度、姿态等参数,从而求得T时刻从J2000坐标系到WGS84转换矩阵、从 本体坐标系到J2000坐标系的转换矩阵RT,RGFFB。According to the principle of linear sweep imaging, the imaging time of the P point is obtained as T=Tl 0 +Δt×s, where Tl 0 is the imaging time of the pixel in the 1st row and the 0th column, and Δt is the exposure time interval of each column of pixels . According to T, the satellite's position [X T Y T Z r ]', speed, attitude and other parameters can be interpolated, so as to obtain the transformation matrix from the J2000 coordinate system to the WGS84 coordinate system and from the body coordinate system to the J2000 coordinate system at the time of T R T , R GFFB .
再设RBS是从相机坐标系到本体坐标系的转换矩阵(已知值),则从像方坐标(s,l)到物 方坐标矢量vobj=[X Y Z]′的坐标正算函数如下:Let R BS be the transformation matrix (known value) from the camera coordinate system to the body coordinate system, then the coordinate positive calculation function from the image coordinate (s, l) to the object coordinate vector v obj = [XYZ]' is as follows :
因物方坐标(X,Y,Z)同时也满足WGS84椭球方程:Because the object coordinates (X, Y, Z) also satisfy the WGS84 ellipsoid equation:
其中A,B为WGS84椭球的长半轴和短半轴(已知常数),H为物方坐标(X,Y,Z)在WGS84椭球面上的高程。Where A and B are the major and minor semi-axes of the WGS84 ellipsoid (known constants), and H is the elevation of the object coordinate (X, Y, Z) on the WGS84 ellipsoid.
根据以上坐标正算函数,从像方坐标(s,l)求解物方坐标(X,Y,Z)的过程如下:According to the above coordinate positive calculation function, the process of solving the object coordinate (X, Y, Z) from the image coordinate (s, l) is as follows:
a)先假设高程H=0,令a) First assume that the elevation H = 0, let
将公式2中的三个未知数(XYZ)表示成关于待求参数m的线性表达式:The three unknowns (XYZ) in Equation 2 are expressed as linear expressions about the parameter m to be solved:
将(公式4)代入(公式3),求解关于m的一元二次方程,(舍去较大值)得到m。 再将m代入(公式2)解出物方坐标(X,Y,Z)。Substitute (Formula 4) into (Formula 3), solve the quadratic equation of one variable about m, (remove the larger value) to obtain m. Then substitute m into (Formula 2) to solve the object coordinate (X, Y, Z).
b)再根据已知的DEM,由物方坐标(X,Y,Z)内插,得到更精确的高程H,重复上述 过程1),解算出更精确的物方坐标(X,Y,Z)。b) According to the known DEM, interpolate from the object coordinates (X, Y, Z) to obtain a more accurate elevation H, repeat the above process 1), and solve the more accurate object coordinates (X, Y, Z) ).
c)当物方坐标(X,Y,Z)相邻两次计算结果相差小于预设的阈值时,停止迭代。具体实 施时,可根据精度需要预设阈值。c) Stop iteration when the difference between two adjacent calculation results of object coordinates (X, Y, Z) is less than a preset threshold. During specific implementation, the threshold value can be preset according to the need of precision.
计算原始影像的物方坐标范围实现如下:The object coordinate range of the original image is calculated as follows:
已知原始影像大小,设原始影像宽w、高h,将四个角点坐标(0,0),(w-1,0),(0,h-1),(w-1,h-1)分别代入坐标正变换函数,求得对应的四个角点的物方坐标 (X1,Y1),(X2,Y2),(X3,Y3),(X4,Y4),求出四个角点的最大、最小坐标范围 (Xmin~Xmax,Ymin~Ymax),即为原始影像的物方坐标范围。Knowing the size of the original image, set the original image width w and height h, the four corner coordinates (0, 0), (w-1, 0), (0, h-1), (w-1, h- 1) Substitute into the coordinate positive transformation function respectively, and obtain the object coordinates (X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4) of the corresponding four corner points, and find the four corners The maximum and minimum coordinate ranges (Xmin~Xmax, Ymin~Ymax) of the point are the object coordinate range of the original image.
计算N的实现如下:The implementation of computing N is as follows:
对于原始影像上两个相邻整数点,设像素坐标分别为(sx,sy),(sx+1,sy),或(sx,sy),(sx,sy+1),(其中0≤sx<w-1,0≤sy<h-1),其对应的物方坐标分别为 (Xs,Ys),(Xt,Yt),设纠正后影像的重采样间隔为GSD,则这两个点在纠正后影像上的像素 距离为按此对于原始影像上所有相邻整数点分别求出 像素距离d后,求出所有d的最大值,并向上取整得到N。For two adjacent integer points on the original image, let the pixel coordinates be (sx, sy), (sx+1, sy), or (sx, sy), (sx, sy+1), (where 0≤sx <w-1, 0≤sy<h-1), the corresponding object coordinates are (Xs, Ys), (Xt, Yt), respectively. If the resampling interval of the corrected image is GSD, then these two points The pixel distance on the corrected image is According to this, after the pixel distance d is calculated for all adjacent integer points on the original image, the maximum value of all d is calculated, and N is obtained by rounding up.
2)设预设的几何纠正控制精度为e个像素(其中0<e<1,如e=0.2),则先将原始影像的每个 像素加密成[N/e]×[N/e]的点(其中[]表示向上取整),利用坐标正算函数求出原始影像上的 每个加密点(sx,sy)的物方坐标(lon,lat);从而计算各加密点在纠正后的影像上的影像坐标 (TX,TY),并求出最邻近的整像素位置(TX0,TY0),并计算距离误差基于最短距离原则,确定各整像素位置(TX0,TY0)相应的加密点原始影像坐标,即对于纠正后图像上某整像素位置(X0,Y0),如果若发现有多个对应加密点坐标,则通过比较距离误差确定对应关系,最终得到原始坐标查找表和相应误差表。2) Set the preset geometric correction control accuracy to e pixels (where 0<e<1, such as e=0.2), then encrypt each pixel of the original image into [N/e]×[N/e] (where [ ] means rounding up), use the coordinate positive calculation function to obtain the object coordinates (lon, lat) of each encrypted point (sx, sy) on the original image; The image coordinates (TX, TY) on the image, and find the nearest integer pixel position (TX0, TY0), and calculate the distance error Based on the shortest distance principle, determine the original image coordinates of the encrypted point corresponding to each integer pixel position (TX0, TY0), that is, for a certain integer pixel position (X0, Y0) on the corrected image, if there are multiple corresponding encrypted point coordinates, Then, the corresponding relationship is determined by comparing the distance errors, and finally the original coordinate look-up table and the corresponding error table are obtained.
实施例加密点操作实现如下:The implementation of the encryption point operation of the embodiment is as follows:
对原始影像进行内插,假设原始影像上有四个整像素点(sx,sy),(sx+1,sy),(sx,sy+ 1),(sx+1,sy+1),采用5×5加密后,总共有25个加密点,加密点的像方坐标分别为:Interpolate the original image, assuming that there are four integer pixels (sx, sy), (sx+1, sy), (sx, sy+ 1), (sx+1, sy+1) on the original image, using 5 After ×5 encryption, there are a total of 25 encrypted points, and the image coordinates of the encrypted points are:
(sx,sy),(sx+0.25,sy),(sx+0.5,sy),(sx+0.75,sy),(sx+1,sy), (sx,sy+0.25),(sx+0.25,sy+0.25),(sx+0.5,sy+0.25),(sx+0.75,sy+0.25),(sx+1,sy +0.25),(sx,sy+0.5),(sx+0.25,sy+0.5),(sx+0.5,sy+0.5),(sx+0.75,sy+0.5),(sx+1,sy+0.5)(sx,sy+0.75),(sx+0.25,sy+0.75),(sx+0.5,sy+0.75),(sx+0.75,sy+0.75),(sx+1,sy +0.75), (sx,sy+1),(sx+0.25,sy+1),(sx+0.5,sy+1),(sx+0.75,sy+1),(sx+1,sy+1)(sx, sy), (sx+0.25, sy), (sx+0.5, sy), (sx+0.75, sy), (sx+1, sy), (sx, sy+0.25), (sx+0.25 , sy+0.25), (sx+0.5, sy+0.25), (sx+0.75, sy+0.25), (sx+1, sy+0.25), (sx, sy+0.5), (sx+0.25, sy +0.5), (sx+0.5, sy+0.5), (sx+0.75, sy+0.5), (sx+1, sy+0.5) (sx, sy+0.75), (sx+0.25, sy+0.75) , (sx+0.5, sy+0.75), (sx+0.75, sy+0.75), (sx+1, sy+0.75), (sx, sy+1), (sx+0.25, sy+1), ( sx+0.5, sy+1), (sx+0.75, sy+1), (sx+1, sy+1)
加密点对应的二维物方坐标(lon,lat)仍然采用之前的坐标正变换函数计算。The two-dimensional object coordinate (lon, lat) corresponding to the encrypted point is still calculated using the previous positive coordinate transformation function.
计算加密点在纠正后影像上的影像坐标(TX,TY)如下:Calculate the image coordinates (TX, TY) of the encrypted point on the corrected image as follows:
TX=(lon-Xmin)/GSD,TY=(Ymax-lat)/GSDTX=(lon-Xmin)/GSD, TY=(Ymax-lat)/GSD
其中,in,
(Xmin,Ymax)是输出的纠正后影像的左上角点的物方坐标,即lon的最小值,lat的最大 值;(Xmin, Ymax) is the object coordinate of the upper left corner of the output corrected image, that is, the minimum value of lon and the maximum value of lat;
(lon,lat)是输出的纠正后影像上的加密点的物方坐标,一般横轴向东为正,纵轴向北为 正;(lon, lat) is the object coordinate of the encrypted point on the output corrected image, generally the east of the horizontal axis is positive, and the north of the vertical axis is positive;
(TX,TY)是输出的纠正后影像上的加密点的影像坐标,一般横轴向右为正,纵轴向下为 正,左上角点为影像坐标系的原点。(TX, TY) are the image coordinates of the encrypted point on the output corrected image. Generally, the horizontal axis is positive to the right, the vertical axis is positive downward, and the upper left corner is the origin of the image coordinate system.
求出加密点在纠正后影像上最邻近的整像素位置(TX0,TY0):Find the nearest integer pixel position (TX0, TY0) of the encrypted point on the corrected image:
TX0=[TX],TY0=[TY],这里[]表示取最接近的整数TX0=[TX], TY0=[TY], where [] means to take the nearest integer
采用以上方式进行循环,可对原始影像上的每个加密点(sx,sy),都得到其在纠正后影像上 最邻近的整像素位置(TX0,TY0)以及距离误差err。By looping through the above method, for each encrypted point (sx, sy) on the original image, the nearest integer pixel position (TX0, TY0) and the distance error err on the corrected image can be obtained.
反过来,在纠正后影像上整像素位置(TX0,TY0)处,逐个记录加密点的原始影像坐标(sx,sy), 同时记录距离误差err。Conversely, at the integer pixel position (TX0, TY0) on the corrected image, the original image coordinates (sx, sy) of the encrypted points are recorded one by one, and the distance error err is recorded at the same time.
由于加密点之间距离很小,相邻的加密点计算得到的在纠正后影像上的最邻近整像素位置 可能是同一个坐标值(TX0,TY0),此时,需要对比距离误差err:Since the distance between the encryption points is very small, the nearest integer pixel position on the corrected image calculated by the adjacent encryption points may be the same coordinate value (TX0, TY0). At this time, it is necessary to compare the distance error err:
具体实施时,可给纠正后影像预先分配空间Q,并初始化一个特定的值,例如-9999,-999999, 等不可能出现的数值,表示该空间尚未赋值。各个加密点并行计算对应的纠正后影像上整像 素位置(TX0,TY0)和距离误差err,并给预先分配的空间Q的整像素位置(TX0,TY0)赋值(sx,sy)。 赋值时,若发现整像素位置(TX0,TY0)处已经有了之前得到的对应加密点影像坐标(sx,sy), 则比较距离误差err,基于最短距离原则,用距离误差较小的加密点影像坐标代替距离误差较 大的加密点影像坐标;当距离误差大小完全相同时,则任取其一,具体实施时也可考虑记录 两个加密点坐标的平均值。最终得到原始坐标查找表和误差表。In specific implementation, space Q can be pre-allocated to the corrected image, and a specific value, such as -9999, -999999, etc., which are impossible to appear, can be initialized, indicating that the space has not been assigned. Each encrypted point calculates the corresponding integer pixel position (TX0, TY0) and distance error err on the corresponding corrected image in parallel, and assigns (sx, sy) to the integer pixel position (TX0, TY0) of the pre-allocated space Q. When assigning value, if it is found that the corresponding encrypted point image coordinates (sx, sy) obtained before are already at the integer pixel position (TX0, TY0), then compare the distance error err, and use the encrypted point with the smaller distance error based on the shortest distance principle. The image coordinates are used to replace the image coordinates of the encrypted point with a large distance error; when the distance error is exactly the same, either one can be chosen, and the average value of the coordinates of the two encrypted points can also be recorded during the specific implementation. Finally, the original coordinate lookup table and error table are obtained.
3)对纠正后影像的每个点,根据其所处位置(TX0,TY0),根据2)所确定相应的加密点影像 坐标(sx,sy)从原始影像内插灰度,得到完整的输出影像,即纠正后影像,该影像的几何定 位精度从误差表得到体现。3) For each point of the corrected image, according to its position (TX0, TY0), and according to the corresponding encrypted point image coordinates (sx, sy) determined in 2), the grayscale is interpolated from the original image to obtain a complete output. The image, that is, the corrected image, the geometric positioning accuracy of the image is reflected from the error table.
具体实施时,可利用常用的灰度重采样方法,例如最邻近法、双线性插值法,双三次卷积 法。During specific implementation, commonly used grayscale resampling methods, such as the nearest neighbor method, bilinear interpolation method, and bicubic convolution method, can be used.
具体实施时,可采用软件方式实现流程的自动运行。因为是从像方到物方的,可以通过 对原始影像进行分块,以各块影像并行处理的方式实现。例如,在图像分块后,对各块并行 执行步骤1)~3)。运行流程的装置也应当在本发明的保护范围内。During specific implementation, the automatic operation of the process can be realized by means of software. Because it is from the image side to the object side, it can be realized by dividing the original image into blocks and processing each block of images in parallel. For example, after the image is divided into blocks, steps 1) to 3) are performed in parallel for each block. Devices that run the process should also fall within the scope of the present invention.
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技 术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代。The specific embodiments described herein are merely illustrative of the spirit of the invention. Those skilled in the art to which the present invention pertains can make various modifications or additions to the described specific embodiments or substitute in similar manners.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910898761.6A CN110956588B (en) | 2019-09-23 | 2019-09-23 | Image high-precision geometric correction method based on shortest distance of encrypted points |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910898761.6A CN110956588B (en) | 2019-09-23 | 2019-09-23 | Image high-precision geometric correction method based on shortest distance of encrypted points |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110956588A CN110956588A (en) | 2020-04-03 |
CN110956588B true CN110956588B (en) | 2022-08-05 |
Family
ID=69975441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910898761.6A Active CN110956588B (en) | 2019-09-23 | 2019-09-23 | Image high-precision geometric correction method based on shortest distance of encrypted points |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110956588B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102592256A (en) * | 2011-12-28 | 2012-07-18 | 辽宁师范大学 | Digital image watermark detection method based on support vector machine correction |
CN103778610A (en) * | 2014-01-24 | 2014-05-07 | 武汉大学 | Geometric pretreatment method for vertical rail swing images of satellite-borne linear array sensor |
CN104299228A (en) * | 2014-09-23 | 2015-01-21 | 中国人民解放军信息工程大学 | Remote-sensing image dense matching method based on accurate point location prediction model |
CN104766328A (en) * | 2015-04-16 | 2015-07-08 | 武汉大学 | Remote-sensing image Bowtie effect correction method based on path tracing |
CN105091906A (en) * | 2015-06-30 | 2015-11-25 | 武汉大学 | High-resolution optical push-broom satellite steady-state reimaging sensor calibration method and system |
CN105513018A (en) * | 2015-11-26 | 2016-04-20 | 航天恒星科技有限公司 | Geometric correction method and apparatus for spaceborne whisk-broom imaging |
-
2019
- 2019-09-23 CN CN201910898761.6A patent/CN110956588B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102592256A (en) * | 2011-12-28 | 2012-07-18 | 辽宁师范大学 | Digital image watermark detection method based on support vector machine correction |
CN103778610A (en) * | 2014-01-24 | 2014-05-07 | 武汉大学 | Geometric pretreatment method for vertical rail swing images of satellite-borne linear array sensor |
CN104299228A (en) * | 2014-09-23 | 2015-01-21 | 中国人民解放军信息工程大学 | Remote-sensing image dense matching method based on accurate point location prediction model |
CN104766328A (en) * | 2015-04-16 | 2015-07-08 | 武汉大学 | Remote-sensing image Bowtie effect correction method based on path tracing |
CN105091906A (en) * | 2015-06-30 | 2015-11-25 | 武汉大学 | High-resolution optical push-broom satellite steady-state reimaging sensor calibration method and system |
CN105513018A (en) * | 2015-11-26 | 2016-04-20 | 航天恒星科技有限公司 | Geometric correction method and apparatus for spaceborne whisk-broom imaging |
Non-Patent Citations (4)
Title |
---|
"资源三号"卫星在轨几何定标及精度评估;李德仁等;《航天返回与遥感》;20120630;第33卷(第3期);第1-6页 * |
Algorithms research of airborne long linear multi-elements whisk broom remote sensing image geometric correction;Bin Xu等;《Applied Optics and Photonics China (AOPC2015)》;20151008;第1-9页 * |
Correction of ZY-3 image distortion caused by satellite jitter via virtual steady reimaging using attitude data;MiWang等;《ISPRS Journal of Photogrammetry and Remote Sensing》;20160930;第119卷;第108-123页 * |
一种面向红外摆扫成像的几何校正方法;丁一帆等;《遥感信息》;20181031;第33卷(第5期);第76-81页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110956588A (en) | 2020-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107024683B (en) | Method and system for direct orthorectification of SAR image based on DEM | |
CN108592884B (en) | A kind of general linear array satellite core line image generating method | |
CN112258418A (en) | Image distortion correction method, device, electronic equipment and storage medium | |
CN110738707A (en) | Distortion correction method, device, equipment and storage medium for cameras | |
CN107705329A (en) | High-resolution optical satellite based on geometrical constraint stares Image registration method | |
JP2007248216A (en) | Ortho-correction apparatus and method for synthetic aperture radar image | |
JP6316330B2 (en) | Homography correction | |
WO2015007065A1 (en) | Method for reducing image fuzzy degree of tdi-ccd camera | |
CN105387846A (en) | Normal incidence correcting method and system for satellite images | |
US11244431B2 (en) | Image processing | |
CN100523726C (en) | Linear array push-broom type image optimum scanning line search method based on object space projection geometrical constraint | |
JP2021086616A (en) | Method for extracting effective region of fisheye image based on random sampling consistency | |
CN104103057A (en) | Method for fast generating panorama by fish eye image | |
CN115423696B (en) | A parallel generation method for remote sensing orthophotos with adaptive thread parameters | |
CN110956588B (en) | Image high-precision geometric correction method based on shortest distance of encrypted points | |
CN108898565B (en) | Inverse Transform Method for Restoring Geometric Distortion of TDI CCD Camera Swing-scan Imaging Image | |
CN107516291B (en) | Night scene image ortho-rectification processing method | |
CN111161186A (en) | Push-broom remote sensor channel registration method and device | |
CN111862332B (en) | Correction method and system for fitting errors of general imaging model of satellite image | |
CN102509275B (en) | Resample method for remote sensing image composited based on image element imaging areas | |
CN107367722A (en) | A kind of SAS movement compensation method of reduction DPC method accumulated errors | |
KR102250687B1 (en) | 2D Lidar-based Full 3D measurement method for 3D VR and Apparatus Therefor | |
JP4925112B2 (en) | Free viewpoint image generation method | |
JP4523422B2 (en) | Satellite image position correction device | |
Singh et al. | Sensor fusion of structure-from-motion, bathymetric 3D, and beacon-based navigation modalities |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240109 Address after: No. 120, Haixiang Middle Road, Fengcheng Street, Haiyang City, Yantai City, Shandong Province, 265100 Patentee after: Land sea space (Yantai) Information Technology Co.,Ltd. Address before: 430072 Hubei Province, Wuhan city Wuchang District of Wuhan University Luojiashan Patentee before: WUHAN University |