CN110955025B - 摄像光学镜头 - Google Patents
摄像光学镜头 Download PDFInfo
- Publication number
- CN110955025B CN110955025B CN201911340710.8A CN201911340710A CN110955025B CN 110955025 B CN110955025 B CN 110955025B CN 201911340710 A CN201911340710 A CN 201911340710A CN 110955025 B CN110955025 B CN 110955025B
- Authority
- CN
- China
- Prior art keywords
- lens
- image
- curvature
- radius
- ttl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/06—Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
本发明涉及光学镜头领域,公开了一种摄像光学镜头,该摄像光学镜头自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,第六透镜,第七透镜,以及第八透镜;且满足下列关系式:0.60≤f1/f≤1.90;f2≤0.00;8.20≤(R5+R6)/(R5‑R6)≤28.00。本发明的摄像光学镜头具有大光圈、广角化和超薄等良好的光学性能。
Description
技术领域
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
背景技术
近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导体器件(Complementary Metal-Oxide Semiconductor Sensor,CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。
为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式或四片式透镜结构。并且,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且系统对成像品质的要求不断提高的情况下,八片式透镜结构逐渐出现在镜头设计当中。迫切需求具有优秀的光学特征、超薄的广角摄像光学镜头。
发明内容
针对上述问题,本发明的目的在于提供一种摄像光学镜头,能在获得高成像性能的同时,满足大光圈、超薄化和广角化的要求。
为解决上述技术问题,本发明的实施方式提供了一种摄像光学镜头,所述摄像光学镜头,自物侧至像侧依序包含:所述摄像光学镜头,自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,第六透镜,第七透镜,以及第八透镜;
所述摄像光学镜头的焦距为f,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,满足下列关系式:
0.60≤f1/f≤1.90;
f2≤0.00;
8.20≤(R5+R6)/(R5-R6)≤28.00。
优选的,所述第二透镜的轴上厚度为d3,所述第二透镜的像侧面到第三透镜的物侧面的轴上距离为d4,且满足下列关系式:
2.10≤d3/d4≤5.00。
优选的,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,且满足下列关系式:
2.00≤(R3+R4)/(R3-R4)≤10.00。
优选的,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-6.86≤(R1+R2)/(R1-R2)≤-0.19;
0.04≤d1/TTL≤0.14。
优选的,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-9.25≤f2/f≤-1.06;
0.03≤d3/TTL≤0.13。
优选的,所述第三透镜的焦距为f3,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-70.66≤f3/f≤-6.49;
0.01≤d5/TTL≤0.06。
优选的,所述第四透镜的焦距为f4,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
2.37≤f4/f≤63.42;
-0.45≤(R7+R8)/(R7-R8)≤1.86;
0.02≤d7/TTL≤0.15。
优选的,所述第五透镜的焦距为f5,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
2.08≤f5/f≤16.17;
-18.68≤(R9+R10)/(R9-R10)≤5.72;
0.02≤d9/TTL≤0.11。
优选的,所述第六透镜的焦距为f6,所述第六透镜物侧面的曲率半径为R11,所述第六透镜像侧面的曲率半径为R12,所述第六透镜的轴上厚度为d11,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-5.83≤f6/f≤458.08;
-306.37≤(R11+R12)/(R11-R12)≤84.83;
0.02≤d11/TTL≤0.09。
优选的,所述第七透镜的焦距为f7,所述第七透镜物侧面的曲率半径为R13,所述第七透镜像侧面的曲率半径为R14,所述第七透镜的轴上厚度为d13,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.56≤f7/f≤2.97;
-9.7≤(R13+R14)/(R13-R14)≤-0.45;
0.06≤d13/TTL≤0.24。
优选的,所述第八透镜的焦距为f8,所述第八透镜物侧面的曲率半径为R15,所述第八透镜像侧面的曲率半径为R16,所述第八透镜的轴上厚度为d15,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-3.81≤f8/f≤-0.57;
0.67≤(R15+R16)/(R15-R16)≤4.12;
0.04≤d15/TTL≤0.19。
本发明的有益效果在于:根据本发明的摄像光学镜头具有优秀的光学特性,满足大光圈、超薄化和广角化的要求,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
附图说明
图1是本发明第一实施方式的摄像光学镜头的结构示意图;
图2是图1所示摄像光学镜头的轴向像差示意图;
图3是图1所示摄像光学镜头的倍率色差示意图;
图4是图1所示摄像光学镜头的场曲及畸变示意图;
图5是本发明第二实施方式的摄像光学镜头的结构示意图;
图6是图5所示摄像光学镜头的轴向像差示意图;
图7是图5所示摄像光学镜头的倍率色差示意图;
图8是图5所示摄像光学镜头的场曲及畸变示意图;
图9是本发明第三实施方式的摄像光学镜头的结构示意图;
图10是图9所示摄像光学镜头的轴向像差示意图;
图11是图9所示摄像光学镜头的倍率色差示意图;
图12是图9所示摄像光学镜头的场曲及畸变示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
(第一实施方式)
参考附图,本发明提供了一种摄像光学镜头10。图1所示为本发明第一实施方式的摄像光学镜头10,该摄像光学镜头10包括八个透镜。具体的,所述摄像光学镜头10,由物侧至像侧依序包括:光圈S1、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8。第八透镜L8和像面Si之间可设置有光学过滤片(filter)GF等光学元件。
定义整体摄像光学镜头10的焦距为f,所述第一透镜L1的焦距为f1,0.60≤f1/f≤1.90,规定了第一透镜L1焦距与系统总焦距的比值,可以有效地平衡系统的球差以及场曲量。优选地,满足0.70≤f1/f≤1.79。
定义所述第二透镜L2的焦距为f2,f2≤0.00,规定了第二透镜L2的焦距,有助于系统像差校正,提高成像质量。优选地,满足f2≤-3.00。
定义所述所述第三透镜L3物侧面的曲率半径为R5,所述第三透镜L3像侧面的曲率半径为R6,8.20≤(R5+R6)/(R5-R6)≤28.00,规定了第三透镜L3的形状,有助于减小光线偏折程度,减小像差。优选地,满足8.60≤(R5+R6)/(R5-R6)≤27.59。
当本发明所述摄像光学镜头10的焦距、各透镜的焦距、相关透镜像侧面到物侧面的轴上距离、轴上厚度满足上述关系式时,可以使摄像光学镜头10具有高性能,且满足低TTL的设计需求。
所述第二透镜L2的轴上厚度为d3,所述第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离为d4,2.10≤d3/d4≤5.00,当d3/d4满足条件时,有助于镜片加工和镜头组装。
所述第二透镜L2物侧面的曲率半径为R3,所述第二透镜L2像侧面的曲率半径为R4,2.00≤(R3+R4)/(R3-R4)≤10.00,规定了第二透镜L2的形状,有助于减小光线偏折程度,减小像差。优选地,满足2.36≤(R3+R4)/(R3-R4)≤9.52。
所述第一透镜L1物侧面的曲率半径为R1,所述第一透镜L1像侧面的曲率半径为R2,-6.86≤(R1+R2)/(R1-R2)≤-0.19,合理控制第一透镜L1的形状,使得第一透镜L1能够有效地校正系统球差。优选地,满足-4.29≤(R1+R2)/(R1-R2)≤-0.86。
所述第一透镜L1的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,满足下列关系式:0.04≤d1/TTL≤0.14,有利于实现超薄化。优选地,满足0.06≤d1/TTL≤0.12。
整体摄像光学镜头10的焦距为f,第二透镜L2的焦距为f2,满足下列关系式:-9.25≤f2/f≤-1.06,通过将第二透镜L2的负光焦度控制在合理范围,有利于矫正光学系统的像差。优选地,满足-5.78≤f2/f≤-1.32。
第二透镜L2的轴上厚度为d3,满足下列关系式:0.03≤d3/TTL≤0.13,有利于实现超薄化。优选地,满足0.05≤d3/TTL≤0.11。
整体摄像光学镜头10的焦距为f,第三透镜L3焦距f3,以及满足下列关系式:-70.66≤f3/f≤-6.49,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-44.16≤f3/f≤-8.11。
第三透镜L3的轴上厚度为d5,满足下列关系式:0.01≤d5/TTL≤0.06,有利于实现超薄化。优选地,满足0.02≤d5/TTL≤0.05。
整体摄像光学镜头10的焦距为f,第四透镜L4焦距f4,满足下列关系式:2.37≤f4/f≤63.42,规定了第四透镜焦距与系统焦距的比值,在条件式范围内有助于提高光学系统性能。优选地,满足3.78≤f4/f≤50.73。
第四透镜L4物侧面的曲率半径R7,第四透镜L4像侧面的曲率半径R8,满足下列关系式:-0.45≤(R7+R8)/(R7-R8)≤1.86,规定的是第四透镜L4的形状,在条件范围内时,随着超薄广角化发展,有利于补正轴外画角的像差等问题。优选地,满足-0.28≤(R7+R8)/(R7-R8)≤1.48。
第四透镜L4的轴上厚度为d7,满足下列关系式:0.02≤d7/TTL≤0.15,有利于实现超薄化。优选地,满足0.03≤d7/TTL≤0.12。
整体摄像光学镜头10的焦距为f,第五透镜L5焦距f5,满足下列关系式:2.08≤f5/f≤16.17,对第五透镜L5的限定可有效的使得摄像镜头的光线角度平缓,降低公差敏感度。优选地,满足3.32≤f5/f≤12.93。
第五透镜L5物侧面的曲率半径R9,第五透镜L5像侧面的曲率半径R10,满足下列关系式:-18.68≤(R9+R10)/(R9-R10)≤5.72,规定的是第五透镜L5的形状,在条件范围内时,随着超薄广角化发展,有利于补正轴外画角的像差等问题。优选地,满足-11.68≤(R9+R10)/(R9-R10)≤4.58。
第五透镜L5的轴上厚度为d9,满足下列关系式:0.02≤d9/TTL≤0.11,有利于实现超薄化。优选地,满足0.03≤d9/TTL≤0.09。
整体摄像光学镜头10的焦距为f,第六透镜L6焦距f6,满足下列关系式:-5.83≤f6/f≤458.08,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-3.64≤f6/f≤366.47。
第六透镜L6物侧面的曲率半径R11,第六透镜L6像侧面的曲率半径R12,满足下列关系式:-306.37≤(R11+R12)/(R11-R12)≤84.83,规定的是第六透镜L6的形状,在条件范围内时,随着超薄广角化发展,有利于补正轴外画角的像差等问题。优选地,满足-191.48≤(R11+R12)/(R11-R12)≤67.86。
第六透镜L6的轴上厚度为d11,满足下列关系式:0.02≤d11/TTL≤0.09,有利于实现超薄化。优选地,满足0.03≤d11/TTL≤0.08。
本实施方式中,第七透镜L7具有负屈折力。
整体摄像光学镜头10的焦距为f,第七透镜L7焦距f7,满足下列关系式:0.56≤f7/f≤2.97,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足0.89≤f7/f≤2.38。
第七透镜L7物侧面的曲率半径R13,第七透镜L7像侧面的曲率半径R14,满足下列关系式:-9.7≤(R13+R14)/(R13-R14)≤-0.45,规定的是第七透镜L7的形状,在条件范围内时,随着超薄广角化发展,有利于补正轴外画角的像差等问题。优选地,满足-6.07≤(R13+R14)/(R13-R14)≤-0.57。
第七透镜L7的轴上厚度为d13,满足下列关系式:0.06≤d13/TTL≤0.24,有利于实现超薄化。优选地,满足0.10≤d13/TTL≤0.19。
整体摄像光学镜头10的焦距为f,第八透镜L8焦距f8,满足下列关系式:-3.81≤f8/f≤-0.57,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-2.38≤f8/f≤-0.71。
第八透镜L8物侧面的曲率半径R15,第八透镜L8像侧面的曲率半径R16,满足下列关系式:0.67≤(R15+R16)/(R15-R16)≤4.12,规定的是第八透镜L8的形状,在条件范围内时,随着超薄广角化发展,有利于补正轴外画角的像差等问题。优选地,满足1.07≤(R15+R16)/(R15-R16)≤3.30。
第八透镜L8的轴上厚度为d15,满足下列关系式:0.04≤d15/TTL≤0.19,有利于实现超薄化。优选地,满足0.06≤d15/TTL≤0.15。
本实施方式中,摄像光学镜头10的TTL/IH(光学总长TTL和像高IH之比)小于或等于0.90毫米,有利于实现超薄化。
本实施方式中,摄像光学镜头10的光圈F数小于或等于1.91。大光圈,成像性能好。
如此设计,能够使得整体摄像光学镜头10的光学总长TTL尽量变短,维持小型化的特性。
下面将用实例进行说明本发明的摄像光学镜头10。各实例中所记载的符号如下所示。焦距、轴上距离、曲率半径、轴上厚度、反曲点位置、驻点位置的单位为mm。
TTL:光学总长(第一透镜L1的物侧面到成像面的轴上距离),单位为mm;
优选的,所述透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
表1、表2示出本发明第一实施方式的摄像光学镜头10的设计数据。
【表1】
其中,各符号的含义如下。
S1:光圈;
R:光学面的曲率半径、透镜时为中心曲率半径;
R1:第一透镜L1的物侧面的曲率半径;
R2:第一透镜L1的像侧面的曲率半径;
R3:第二透镜L2的物侧面的曲率半径;
R4:第二透镜L2的像侧面的曲率半径;
R5:第三透镜L3的物侧面的曲率半径;
R6:第三透镜L3的像侧面的曲率半径;
R7:第四透镜L4的物侧面的曲率半径;
R8:第四透镜L4的像侧面的曲率半径;
R9:第五透镜L5的物侧面的曲率半径;
R10:第五透镜L5的像侧面的曲率半径;
R11:第六透镜L6的物侧面的曲率半径;
R12:第六透镜L6的像侧面的曲率半径;
R13:第七透镜L7的物侧面的曲率半径;
R14:第七透镜L7的像侧面的曲率半径;
R15:第八透镜L8的物侧面的曲率半径;
R16:第八透镜L8的像侧面的曲率半径;
R17:光学过滤片GF的物侧面的曲率半径;
R18:光学过滤片GF的像侧面的曲率半径;
d:透镜的轴上厚度与透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度;
d10:第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离;
d11:第六透镜L6的轴上厚度;
d12:第六透镜L6的像侧面到第七透镜L7的物侧面的轴上距离;
d13:第七透镜L7的轴上厚度;
d14:第七透镜L7的像侧面到第八透镜L8的物侧面的轴上距离;
d15:第八透镜L8的轴上厚度;
d16:第八透镜L8的像侧面到光学过滤片GF的物侧面的轴上距离;
d17:光学过滤片GF的轴上厚度;
d18:光学过滤片GF的像侧面到像面的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
nd5:第五透镜L5的d线的折射率;
nd6:第六透镜L6的d线的折射率;
nd7:第七透镜L7的d线的折射率;
nd8:第八透镜L8的d线的折射率;
ndg:光学过滤片GF的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数;
v6:第六透镜L6的阿贝数;
v7:第七透镜L7的阿贝数;
v8:第八透镜L8的阿贝数;
vg:光学过滤片GF的阿贝数。
表2示出本发明第一实施方式的摄像光学镜头10中各透镜的非球面数据。
【表2】
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16是非球面系数。
IH:像高
y=(x2/R)/[1+{1-(k+1)(x2/R2)}1/2]+A4x4+A6x6+A8x8+A10x10+A12x12+A14x14+A16x16 (1)
为方便起见,各个透镜面的非球面使用上述公式(1)中所示的非球面。但是,本发明不限于该公式(1)表示的非球面多项式形式。
表3、表4示出本发明第一实施方式的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P1R2分别代表第一透镜L1的物侧面和像侧面,P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代表第四透镜L4的物侧面和像侧面,P5R1、P5R2分别代表第五透镜L5的物侧面和像侧面,P6R1、P6R2分别代表第六透镜L6的物侧面和像侧面,P7R1、P7R2分别代表第七透镜L7的物侧面和像侧面,P8R1、P8R2分别代表第八透镜L8的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。
【表3】
反曲点个数 | 反曲点位置1 | 反曲点位置2 | 反曲点位置3 | |
P1R1 | ||||
P1R2 | 3 | 0.095 | 0.515 | 0.935 |
P2R1 | 1 | 0.855 | ||
P2R2 | ||||
P3R1 | ||||
P3R2 | ||||
P4R1 | ||||
P4R2 | ||||
P5R1 | ||||
P5R2 | ||||
P6R1 | ||||
P6R2 | 1 | 1.385 | ||
P7R1 | 1 | 0.715 | ||
P7R2 | ||||
P8R1 | 3 | 0.165 | 1.275 | 2.115 |
P8R2 | 1 | 0.505 |
【表4】
图2、图3分别示出了波长为486nm、588nm和656nm的光经过第一实施方式的摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了,波长为588nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图,图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
后出现的表13示出各实例1、2、3中各种数值与条件式中已规定的参数所对应的值。
如表13所示,第一实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为1.993mm,全视场像高为5.800mm,对角线方向的视场角为73.40°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第二实施方式)
第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表5、表6示出本发明第二实施方式的摄像光学镜头20的设计数据。
【表5】
表6示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。
【表6】
表7、表8示出本发明第二实施方式的摄像光学镜头20中各透镜的反曲点以及驻点设计数据。
【表7】
反曲点个数 | 反曲点位置1 | 反曲点位置2 | 反曲点位置3 | 反曲点位置4 | |
P1R1 | |||||
P1R2 | 3 | 0.315 | 0.525 | 0.885 | |
P2R1 | 1 | 0.435 | |||
P2R2 | 1 | 0.765 | |||
P3R1 | |||||
P3R2 | |||||
P4R1 | 1 | 0.085 | |||
P4R2 | |||||
P5R1 | 1 | 0.565 | |||
P5R2 | 1 | 0.195 | |||
P6R1 | 1 | 0.845 | |||
P6R2 | 1 | 0.385 | |||
P7R1 | 1 | 0.615 | |||
P7R2 | 1 | 0.575 | |||
P8R1 | 4 | 0.265 | 1.215 | 1.935 | 2.135 |
P8R2 | 3 | 0.475 | 2.105 | 2.415 |
【表8】
驻点个数 | 驻点位置1 | |
P1R1 | ||
P1R2 | ||
P2R1 | 1 | 0.835 |
P2R2 | ||
P3R1 | ||
P3R2 | ||
P4R1 | 1 | 0.135 |
P4R2 | ||
P5R1 | 1 | 0.915 |
P5R2 | 1 | 0.425 |
P6R1 | 1 | 1.105 |
P6R2 | 1 | 0.765 |
P7R1 | 1 | 1.035 |
P7R2 | 1 | 1.125 |
P8R1 | 1 | 0.475 |
P8R2 | 1 | 1.005 |
图6、图7分别示出了波长为486nm、588nm和656nm的光经过第二实施方式的摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了,波长为588nm的光经过第二实施方式的摄像光学镜头20后的场曲及畸变示意图。
如表13所示,第二实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为1.890mm,全视场像高为5.800mm,对角线方向的视场角为74.80°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第三实施方式)
第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表9、表10示出本发明第三实施方式的摄像光学镜头30的设计数据。
【表9】
表10示出本发明第三实施方式的摄像光学镜头30中各透镜的非球面数据。
【表10】
表11、表12示出本发明第三实施方式的摄像光学镜头30中各透镜的反曲点以及驻点设计数据。
【表11】
【表12】
驻点个数 | 驻点位置1 | 驻点位置2 | |
P1R1 | |||
P1R2 | |||
P2R1 | 1 | 0.925 | |
P2R2 | |||
P3R1 | |||
P3R2 | |||
P4R1 | 1 | 0.115 | |
P4R2 | |||
P5R1 | 1 | 0.815 | |
P5R2 | 1 | 0.505 | |
P6R1 | 2 | 1.085 | 1.255 |
P6R2 | 1 | 0.895 | |
P7R1 | 1 | 1.065 | |
P7R2 | 1 | 1.355 | |
P8R1 | 2 | 0.485 | 1.775 |
P8R2 | 2 | 0.885 | 2.265 |
图10、图11分别示出了波长为486nm、588nm和656nm的光经过第三实施方式的摄像光学镜头30后的轴向像差以及倍率色差示意图。图12则示出了,波长为588nm的光经过第三实施方式的摄像光学镜头30后的场曲及畸变示意图。
以下表13按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学系统满足上述的条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为2.123mm,全视场像高为5.800mm,对角线方向的视场角为69.00°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
【表13】
参数及条件式 | 实施例1 | 实施例2 | 实施例3 |
f1/f | 0.80 | 1.67 | 1.31 |
f2 | -6.01 | -16.61 | -15.02 |
(R5+R6)/(R5-R6) | 9.01 | 27.19 | 15.00 |
f | 3.786 | 3.592 | 4.034 |
f1 | 3.031 | 5.963 | 5.278 |
f3 | -133.750 | -89.065 | -39.266 |
f4 | 17.909 | 151.863 | 156.609 |
f5 | 40.809 | 14.911 | 19.009 |
f6 | -11.033 | 168.331 | 1231.935 |
f7 | 4.204 | 6.455 | 8.000 |
f8 | -3.227 | -5.933 | -7.679 |
f12 | 4.779 | 7.729 | 6.756 |
Fno | 1.90 | 1.90 | 1.90 |
FNO为摄像光学镜头的光圈F数。
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。
Claims (11)
1.一种摄像光学镜头,其特征在于,所述摄像光学镜头共包含八片透镜,所述八片透镜自物侧至像侧依序为:具有正屈折力的第一透镜,具有负屈折力的第二透镜,具有负屈折力的第三透镜,具有正屈折力的第四透镜,具有正屈折力的第五透镜,第六透镜,具有正屈折力的第七透镜,以及具有负屈折力的第八透镜;
所述摄像光学镜头的焦距为f,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第五透镜的焦距为f5,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,满足下列关系式:
0.60≤f1/f≤1.90;
2.08≤f5/f≤16.17;
f2≤0.00;
8.20≤(R5+R6)/(R5-R6)≤28.00。
2.根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜的轴上厚度为d3,所述第二透镜的像侧面到第三透镜的物侧面的轴上距离为d4,且满足下列关系式:
2.10≤d3/d4≤5.00。
3.根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,且满足下列关系式:
2.00≤(R3+R4)/(R3-R4)≤10.00。
4.根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-6.86≤(R1+R2)/(R1-R2)≤-0.19;
0.04≤d1/TTL≤0.14。
5.根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-9.25≤f2/f≤-1.06;
0.03≤d3/TTL≤0.13。
6.根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的焦距为f3,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-70.66≤f3/f≤-6.49;
0.01≤d5/TTL≤0.06。
7.根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜的焦距为f4,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
2.37≤f4/f≤63.42;
-0.45≤(R7+R8)/(R7-R8)≤1.86;
0.02≤d7/TTL≤0.15。
8.根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-18.68≤(R9+R10)/(R9-R10)≤5.72;
0.02≤d9/TTL≤0.11。
9.根据权利要求1所述的摄像光学镜头,其特征在于,所述第六透镜的焦距为f6,所述第六透镜物侧面的曲率半径为R11,所述第六透镜像侧面的曲率半径为R12,所述第六透镜的轴上厚度为d11,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-5.83≤f6/f≤458.08;
-306.37≤(R11+R12)/(R11-R12)≤84.83;
0.02≤d11/TTL≤0.09。
10.根据权利要求1所述的摄像光学镜头,其特征在于,所述第七透镜的焦距为f7,所述第七透镜物侧面的曲率半径为R13,所述第七透镜像侧面的曲率半径为R14,所述第七透镜的轴上厚度为d13,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.56≤f7/f≤2.97;
-9.7≤(R13+R14)/(R13-R14)≤-0.45;
0.06≤d13/TTL≤0.24。
11.根据权利要求1所述的摄像光学镜头,其特征在于,所述第八透镜的焦距为f8,所述第八透镜物侧面的曲率半径为R15,所述第八透镜像侧面的曲率半径为R16,所述第八透镜的轴上厚度为d15,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-3.81≤f8/f≤-0.57;
0.67≤(R15+R16)/(R15-R16)≤4.12;
0.04≤d15/TTL≤0.19。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911340710.8A CN110955025B (zh) | 2019-12-23 | 2019-12-23 | 摄像光学镜头 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911340710.8A CN110955025B (zh) | 2019-12-23 | 2019-12-23 | 摄像光学镜头 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110955025A CN110955025A (zh) | 2020-04-03 |
CN110955025B true CN110955025B (zh) | 2021-08-20 |
Family
ID=69983662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911340710.8A Active CN110955025B (zh) | 2019-12-23 | 2019-12-23 | 摄像光学镜头 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110955025B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021127851A1 (zh) * | 2019-12-23 | 2021-07-01 | 诚瑞光学(常州)股份有限公司 | 摄像光学镜头 |
CN112180540B (zh) * | 2020-09-29 | 2022-04-29 | 常州市瑞泰光电有限公司 | 摄像光学镜头 |
CN111929858B (zh) * | 2020-10-14 | 2020-12-15 | 常州市瑞泰光电有限公司 | 摄像光学镜头 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN207557562U (zh) * | 2017-11-29 | 2018-06-29 | 浙江舜宇光学有限公司 | 光学成像镜头 |
CN115616745A (zh) * | 2017-12-29 | 2023-01-17 | 玉晶光电(厦门)有限公司 | 光学成像镜头 |
CN111061039B (zh) * | 2019-12-13 | 2021-07-30 | 诚瑞光学(常州)股份有限公司 | 摄像光学镜头 |
-
2019
- 2019-12-23 CN CN201911340710.8A patent/CN110955025B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN110955025A (zh) | 2020-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111025533B (zh) | 摄像光学镜头 | |
CN110967814B (zh) | 摄像光学镜头 | |
CN111007631B (zh) | 摄像光学镜头 | |
CN111077643A (zh) | 摄像光学镜头 | |
CN110955025B (zh) | 摄像光学镜头 | |
CN111077649B (zh) | 摄像光学镜头 | |
CN110908084B (zh) | 摄像光学镜头 | |
CN110927928B (zh) | 摄像光学镜头 | |
CN110908081B (zh) | 摄像光学镜头 | |
CN110908091B (zh) | 摄像光学镜头 | |
CN111025578B (zh) | 摄像光学镜头 | |
CN111025588B (zh) | 摄像光学镜头 | |
CN112711122A (zh) | 摄像光学镜头 | |
CN111025560B (zh) | 摄像光学镜头 | |
CN111025556B (zh) | 摄像光学镜头 | |
CN111007634B (zh) | 摄像光学镜头 | |
CN111077656B (zh) | 摄像光学镜头 | |
CN111025559B (zh) | 摄像光学镜头 | |
CN110908090B (zh) | 摄像光学镜头 | |
CN111007637B (zh) | 摄像光学镜头 | |
CN111025590B (zh) | 摄像光学镜头 | |
CN111142220B (zh) | 摄像光学镜头 | |
CN111007630B (zh) | 摄像光学镜头 | |
CN111025555B (zh) | 摄像光学镜头 | |
CN111025553B (zh) | 摄像光学镜头 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: 213000 Xinwei 1st Road, Changzhou Comprehensive Bonded Zone, Jiangsu Province Applicant after: Chengrui optics (Changzhou) Co., Ltd Address before: 213000 Xinwei Road, Changzhou Export Processing Zone, Jiangsu Province Applicant before: Ruisheng Communication Technology (Changzhou) Co.,Ltd. |
|
GR01 | Patent grant | ||
GR01 | Patent grant |