CN110949436A - 一种变轨距动力转向架二系及电机横向减振器最优阻尼调控方法 - Google Patents

一种变轨距动力转向架二系及电机横向减振器最优阻尼调控方法 Download PDF

Info

Publication number
CN110949436A
CN110949436A CN201911269271.6A CN201911269271A CN110949436A CN 110949436 A CN110949436 A CN 110949436A CN 201911269271 A CN201911269271 A CN 201911269271A CN 110949436 A CN110949436 A CN 110949436A
Authority
CN
China
Prior art keywords
motor
transverse
shock absorber
vibration
yaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911269271.6A
Other languages
English (en)
Inventor
范军
戴晓超
王泽飞
刘兆金
王瑞卓
许东日
周长城
于曰伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201911269271.6A priority Critical patent/CN110949436A/zh
Publication of CN110949436A publication Critical patent/CN110949436A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/04Bolster supports or mountings
    • B61F5/12Bolster supports or mountings incorporating dampers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C17/00Arrangement or disposition of parts; Details or accessories not otherwise provided for; Use of control gear and control systems

Abstract

本发明涉及一种变轨距动力转向架二系及电机横向减振器最优阻尼调控方法,属于高速列车减振技术领域。本发明通过构建计及电机振动效应的高速列车51自由度横向振动仿真分析模型,得到变轨距后二系及电机横向减振器的阻尼系数,在此基础上,通过调节可控二系及电机横向减振器的步进电机转角,实现了变轨距动力转向架二系及电机横向减振器的最优阻尼调控。通过设计实例和实车试验可知,该方法可使变轨距后动力转向架二系及电机横向减振器的阻尼系数与列车的动力学性能达到最佳的匹配效果。利用该方法,不仅可提高变轨距高速列车的乘坐舒适性和安全性,同时,还可降低产品设计及试验费用、缩短产品设计周期,增强我国高速列车的国际市场竞争力。

Description

一种变轨距动力转向架二系及电机横向减振器最优阻尼调控 方法
技术领域
本发明涉及高速列车减振技术领域,特别是一种变轨距动力转向架二系及电机横向减振器最优阻尼调控方法。
背景技术
由于世界各国采用不同的铁路轨距制式(例如,中国的铁路轨距为1435mm,俄罗斯和大多数东欧、中亚地区国家的铁路轨距为1520mm),因此,在进行跨国联运过程中,高速列车无法直接通过,需要停车回库更换适应新轨距的转向架后才能继续运营,由此使得人力、物力成本急剧增加,耗时长,运营效率低。为了解决上述问题,实现在不停车更换转向架的情况下适应轨距变化的需求,各国轨道车辆专家研发了许多变轨距转向架系统,并进行了广泛的推广和应用。然而,这些变轨距转向架系统中,在通过改变轮距来适应轨距变化需求的同时,未曾使变轨距后的动力转向架二系横向减振器及电机横向减振器的阻尼系数与高速列车的动力学性能达到最佳的匹配效果。随着人民生活质量水平的不断提高,人们对高速列车的运行品质提出了更高的设计要求,因此,必须建立一种变轨距动力转向架二系及电机横向减振器最优阻尼调控方法,满足现下高速列车发展的需求,同时,提高变轨距高速列车悬挂系统的设计水平及产品质量,提高车辆乘坐舒适性和安全性;降低产品设计及试验费用,缩短产品设计周期,增强我国高速列车的国际市场竞争力。
发明内容
针对上述现有技术中存在的缺陷,本发明所要解决的技术问题是提供一种变轨距动力转向架二系及电机横向减振器最优阻尼调控方法,其实现过程流程图如图1所示;包含电机振动的高速列车51自由度横向振动模型的左视图如图2所示,包含电机振动的高速列车51自由度横向振动模型的俯视图如图3所示。
为解决上述技术问题,本发明所提供的一种变轨距动力转向架二系及电机横向减振器最优阻尼调控方法,其具体实现过程如下:
(1)建立包含电机振动的高速列车51自由度横向振动微分方程:
根据高速列车的单节车体的质量Mc、侧滚转动惯量Icx、摇头转动惯量Icz,每台转向架构架的质量Mt、侧滚转动惯量Itx、摇头转动惯量Itz,每一牵引电机的质量Mm、侧滚转动惯量Imx、摇头转动惯量Imz,每一轮对的质量Mw、摇头转动惯量Iwz,每一轮轴重W,每一轮对的纵向定位刚度K1x、横向定位刚度K1y,每一轮对的纵向定位等效阻尼C1x、横向定位等效阻尼C1y,一系悬挂弹簧的垂向刚度Kp,一系垂向减振器的阻尼系数Cp,二系悬挂弹簧的纵向刚度K2x、横向刚度K2y、垂向刚度Ks,二系垂向减振器的阻尼系数Cs,电机架悬部件的垂向刚度Kmz、横向刚度Kmy、摇头刚度
Figure BDA0002313710860000011
电机架悬部件的垂向等效阻尼Cmz、摇头等效阻尼
Figure BDA0002313710860000012
抗蛇行减振器的阻尼系数Csn,二系横向减振器的阻尼系数Ct,电机横向减振器的阻尼系数Cm,一系垂向减振器的端部连接刚度Kpd,二系垂向减振器的端部连接刚度Ksd,二系横向减振器的端部连接刚度Ktd,抗蛇行减振器的端部连接刚度Kds,电机横向减振器的端部连接刚度Kdm,单个抗侧滚扭杆的扭转刚度Kθ,转向架轴距的一半a,车辆定距的一半a0,电机质心至转向架构架质心的纵向距离a1,车轮和钢轨接触点横向间距的一半b,二系横向减振器纵向安装间距的一半b0,轮轴定位弹簧横向安装间距的一半b1,二系悬挂弹簧横向安装间距的一半b2,抗蛇行减振器横向安装间距的一半b3,电机架悬横向安装间距的一半b4,每一轮对的横向蠕滑系数f1、纵向蠕滑系数f2,车轮的滚动半径r,车轮的踏面斜度λ,列车的运行速度v,车轴中心线到轨道平面的高度h0,车体质心到二系弹簧上平面的高度h1,车体质心到二系横向减振器的高度h2,二系弹簧上平面到转向架构架质心的高度h3,转向架构架质心到车轴中心线的高度h4,二系横向减振器到转向架构架质心的高度h5,转向架构架质心到电机横向减振器的高度h6,电机质心到电机横向减振器的高度h7;分别以各子系统质心为原点;以第1轮对的横摆位移yw1、摇头位移
Figure BDA0002313710860000029
第2轮对的横摆位移yw2、摇头位移
Figure BDA00023137108600000210
第3轮对的横摆位移yw3、摇头位移
Figure BDA00023137108600000211
第4轮对的横摆位移yw4、摇头位移
Figure BDA00023137108600000212
前转向架构架的横摆位移yt1、摇头位移
Figure BDA00023137108600000213
侧滚位移θt1,后转向架构架的横摆位移yt2、摇头位移
Figure BDA00023137108600000214
侧滚位移θt2,第1电机的横摆位移ym1、摇头位移
Figure BDA00023137108600000215
侧滚位移θm1,第2电机的横摆位移ym2、摇头位移
Figure BDA00023137108600000216
侧滚位移θm2,第3电机的横摆位移ym3、摇头位移
Figure BDA00023137108600000217
侧滚位移θm3,第4电机的横摆位移ym4、摇头位移
Figure BDA00023137108600000218
侧滚位移θm4,车体的横摆位移yc、摇头位移
Figure BDA00023137108600000219
侧滚位移θc,一系垂向减振器的活塞杆垂向位移zp1、zp2、zp3、zp4,二系垂向减振器的活塞杆垂向位移zs1、zs2、zs3、zs4,二系横向减振器的活塞杆横向位移yd1、yd2、yd3、zd4,抗蛇行减振器的活塞杆纵向位移xs1、xs2,及电机横向减振器的活塞杆横向位移ye1、ye2、ye3、ye4、ye5、ye6、ye7、ye8为坐标;以第1轮对、第2轮对、第3轮对、第4轮对处的轨道方向不平顺随机输入ya1(t)、ya2(t)、ya3(t)、ya4(t)和水平不平顺随机输入yc1(t)、yc2(t)、yc3(t)、yc4(t)为输入激励,其中,t为时间变量;建立包含电机振动的高速列车51自由度横向振动微分方程,即:
①第1轮对的横摆振动微分方程:
Figure BDA0002313710860000021
②第1轮对的摇头振动微分方程:
Figure BDA0002313710860000022
③第2轮对的横摆振动微分方程:
Figure BDA0002313710860000023
④第2轮对的摇头振动微分方程:
Figure BDA0002313710860000024
⑤第3轮对的横摆振动微分方程:
Figure BDA0002313710860000025
⑥第3轮对的摇头振动微分方程:
Figure BDA0002313710860000026
⑦第4轮对的横摆振动微分方程:
Figure BDA0002313710860000027
⑧第4轮对的摇头振动微分方程:
Figure BDA0002313710860000028
⑨前转向架构架的横摆振动微分方程:
Figure BDA0002313710860000031
⑩前转向架构架的侧滚振动微分方程:
Figure BDA0002313710860000032
Figure BDA0002313710860000033
前转向架构架的摇头振动微分方程:
Figure BDA0002313710860000034
Figure BDA0002313710860000035
后转向架构架的横摆振动微分方程:
Figure BDA0002313710860000036
Figure BDA0002313710860000037
后转向架构架的侧滚振动微分方程:
Figure BDA0002313710860000038
Figure BDA0002313710860000039
后转向架构架的摇头振动微分方程:
Figure BDA0002313710860000041
Figure BDA0002313710860000042
第1电机的横摆振动微分方程:
Figure BDA0002313710860000043
Figure BDA0002313710860000044
第1电机的侧滚振动微分方程:
Figure BDA0002313710860000045
Figure BDA0002313710860000046
第1电机的摇头振动微分方程:
Figure BDA0002313710860000047
Figure BDA0002313710860000048
第2电机的横摆振动微分方程:
Figure BDA0002313710860000049
Figure BDA00023137108600000410
第2电机的侧滚振动微分方程:
Figure BDA00023137108600000411
Figure BDA00023137108600000412
第2电机的摇头振动微分方程:
Figure BDA00023137108600000413
Figure BDA00023137108600000414
第3电机的横摆振动微分方程:
Figure BDA00023137108600000415
Figure BDA00023137108600000416
第3电机的侧滚振动微分方程:
Figure BDA00023137108600000417
Figure BDA00023137108600000418
第3电机的摇头振动微分方程:
Figure BDA00023137108600000419
Figure BDA00023137108600000420
第4电机的横摆振动微分方程:
Figure BDA00023137108600000421
Figure BDA00023137108600000422
第4电机的侧滚振动微分方程:
Figure BDA00023137108600000423
Figure BDA00023137108600000424
第4电机的摇头振动微分方程:
Figure BDA00023137108600000425
Figure BDA00023137108600000426
车体的横摆振动微分方程:
Figure BDA00023137108600000427
Figure BDA00023137108600000428
车体的侧滚振动微分方程:
Figure BDA0002313710860000051
Figure BDA0002313710860000052
车体的摇头振动微分方程:
Figure BDA0002313710860000053
Figure BDA0002313710860000054
一系垂向减振器的端部力平衡方程:
Figure BDA0002313710860000055
Figure BDA0002313710860000056
二系垂向减振器的端部力平衡方程:
Figure BDA0002313710860000057
Figure BDA0002313710860000058
二系横向减振器的端部力平衡方程:
Figure BDA0002313710860000059
Figure BDA00023137108600000510
抗蛇行减振器的端部力平衡方程:
Figure BDA00023137108600000511
Figure BDA00023137108600000512
电机横向减振器的端部力平衡方程:
Figure BDA00023137108600000513
(2)构建计及电机振动效应的高速列车51自由度横向振动仿真分析模型:
根据步骤(1)中所建立的包含电机振动的高速列车51自由度横向振动微分方程,利用Matlab/Simulink仿真软件,构建计及电机振动效应的高速列车51自由度横向振动仿真分析模型;
(3)确定变轨距后动力转向架二系及电机横向减振器的最优阻尼系数:
I步骤:确定变轨距前车体、转向架构架及牵引电机的振动加速度均方根值根据车辆定距的一半a0,转向架轴距的一半a,列车运行速度v,及步骤(2)中所建立的计及电机振动效应的高速列车51自由度横向振动仿真分析模型,以各轮对处的轨道方向不平顺随机输入和水平不平顺随机输入为输入激励,仿真得到当前二系横向减振器及电机横向减振器阻尼系数下该列车的车体横摆振动加速度均方根值
Figure BDA00023137108600000514
前转向架构架横摆振动加速度均方根值
Figure BDA0002313710860000062
后转向架构架横摆振动加速度均方根值
Figure BDA0002313710860000063
第1电机横摆振动加速度均方根值
Figure BDA0002313710860000064
第2电机横摆振动加速度均方根值
Figure BDA0002313710860000065
第3机横摆振动加速度均方根值
Figure BDA0002313710860000066
及第4电机横摆振动加速度均方根值
Figure BDA0002313710860000067
其中,各轮对处轨道方向不平顺随机输入之间的关系为:ya2(t)=ya1(t-2a/v),ya3(t)=ya1(t-2a0/v),ya4(t)=ya1[t-2(a0+a)/v];各轮对处水平不平顺随机输入之间的关系为:yc2(t)=yc1(t-2a/v),yc3(t)=yc1(t-2a0/v),yc4(t)=yc1[t-2(a0+a)/v];
II步骤:建立变轨距后动力转向架二系及电机横向减振器的阻尼系数联合优化目标函数根据步骤(2)中所建立的计及电机振动效应的高速列车51自由度横向振动仿真分析模型,及I步骤中所确定的车体横摆振动加速度均方根值
Figure BDA0002313710860000068
前转向架构架横摆振动加速度均方根值
Figure BDA0002313710860000069
后转向架构架横摆振动加速度均方根值
Figure BDA00023137108600000612
第1电机横摆振动加速度均方根值
Figure BDA00023137108600000610
第2电机横摆振动加速度均方根值
Figure BDA00023137108600000611
第3机横摆振动加速度均方根值
Figure BDA00023137108600000613
第4电机横摆振动加速度均方根值
Figure BDA00023137108600000614
令b=br/2,其中,br为新轨距,以二系横向减振器的阻尼系数和电机横向减振器的阻尼系数为待设计变量,以各轮对处的轨道方向不平顺随机输入和水平不平顺随机输入为输入激励,利用仿真得到的车体横摆振动加速度均方根值
Figure BDA00023137108600000615
前转向架构架横摆振动加速度均方根值
Figure BDA00023137108600000616
后转向架构架横摆振动加速度均方根值
Figure BDA00023137108600000617
第1电机横摆振动加速度均方根值
Figure BDA00023137108600000618
第2电机横摆振动加速度均方根值
Figure BDA00023137108600000619
第3机横摆振动加速度均方根值
Figure BDA00023137108600000620
第4电机横摆振动加速度均方根值
Figure BDA00023137108600000621
建立变轨距后动力转向架二系及电机横向减振器的阻尼系数联合优化目标函数Io(Ct,Cm),即:
Figure BDA0002313710860000061
III步骤:确定变轨距后动力转向架二系及电机横向减振器的最优阻尼系数根据车辆定距的一半a0,转向架轴距的一半a,列车运行速度v,及步骤(2)中所建立的计及电机振动效应的高速列车51自由度横向振动仿真分析模型,以各轮对处的轨道方向不平顺随机输入ya1(t)、ya2(t)、ya3(t)、ya4(t)和水平不平顺随机输入yc1(t)、yc2(t)、yc3(t)、yc4(t)为输入激励,利用优化算法求II步骤中所建立的变轨距后动力转向架二系及电机横向减振器的阻尼系数联合优化目标函数Io(Ct,Cm)的最小值,所对应的设计变量即为变轨距后动力转向架二系横向减振器的最优阻尼系数Cto和电机横向减振器的最优阻尼系数Cmo
其中,各轮对处轨道方向不平顺随机输入之间的关系为:ya2(t)=ya1(t-2a/v),ya3(t)=ya1(t-2a0/v),ya4(t)=ya1[t-2(a0+a)/v];各轮对处水平不平顺随机输入之间的关系为:yc2(t)=yc1(t-2a/v),yc3(t)=yc1(t-2a0/v),yc4(t)=yc1[t-2(a0+a)/v];
(4)确定变轨距前后动力转向架二系及电机横向减振器的步进电机转角控制量:
将原二系横向减振器及电机横向减振器更换为步进电机调控式液压减振器,通过调节可控液压减振器的步进电机转角量使变轨距后二系横向减振器及电机横向减振器的阻尼系数与列车的动力学性能达到最佳的匹配效果,其中,变轨距前后动力转向架二系及电机横向减振器的步进电机转角控制量确定方法如下:
A步骤:确定变轨距前动力转向架二系横向减振器的步进电机转角控制量根据可控二系横向减振器的活塞缸筒内径DsH,活塞缸筒与活塞杆间的环形面积Ssr,活塞缝隙长度LsH,活塞平均间隙δsH,偏心率es,活塞孔直径dsh,活塞孔等效长度Lshe,常通节流孔面积As0,活塞孔个数nsh,液压减振器名义速度Vsr,常通节流孔口流量系数εs0,可调阻尼孔口流量系数εsv,油液动力粘度μst,油液密度ρs,可调节流孔半径rst,步进电机转动轴外半径Rsa及原列车的二系横向减振器阻尼系数Ct,建立关于二系横向减振器步进电机转角θs的变轨距前二系横向减振器的步进电机转角控制量求解数学模型,即
Figure BDA0002313710860000071
利用Matlab程序,求解上述数学模型关于θs在区间[0,2arcsin(rst/Rsa)]范围内的解,便可得到变轨距前动力转向架二系横向减振器的步进电机转角控制量,即θsb
B步骤:确定变轨距前动力转向架电机横向减振器的步进电机转角控制量根据可控电机横向减振器的活塞缸筒内径DmH,活塞缸筒与活塞杆间的环形面积Smr,活塞缝隙长度LmH,活塞平均间隙δmH,偏心率em,活塞孔直径dmh,活塞孔等效长度Lmhe,常通节流孔面积Am0,活塞孔个数nmh,液压减振器名义速度Vmr,常通节流孔口流量系数εm0,可调阻尼孔口流量系数εmv,油液动力粘度μmt,油液密度ρm,可调节流孔半径rmt,步进电机转动轴外半径Rma及原列车的电机横向减振器阻尼系数Cm,建立关于电机横向减振器步进电机转角θm的变轨距前电机横向减振器的步进电机转角控制量求解数学模型,即
Figure BDA0002313710860000072
利用Matlab程序,求解上述数学模型关于θm在区间[0,2arcsin(rmt/Rma)]范围内的解,便可得到变轨距前动力转向架电机横向减振器的步进电机转角控制量,即θmb
C步骤:确定变轨距后动力转向架二系横向减振器的步进电机转角控制量根据可控二系横向减振器的活塞缸筒内径DsH,活塞缸筒与活塞杆间的环形面积Ssr,活塞缝隙长度LsH,活塞平均间隙δsH,偏心率es,活塞孔直径dsh,活塞孔等效长度Lshe,常通节流孔面积As0,活塞孔个数nsh,液压减振器名义速度Vsr,常通节流孔口流量系数εs0,可调阻尼孔口流量系数εsv,油液动力粘度μst,油液密度ρs,可调节流孔半径rst,步进电机转动轴外半径Rsa及步骤(3)中III步骤确定的二系横向减振器阻尼系数Cto,建立关于二系横向减振器步进电机转角θs的变轨距后二系横向减振器的步进电机转角控制量求解数学模型,即
Figure BDA0002313710860000073
利用Matlab程序,求解上述数学模型关于θs在区间[0,2arcsin(rst/Rsa)]范围内的解,便可得到变轨距后动力转向架二系横向减振器的步进电机转角控制量,即θsa
D步骤:确定变轨距后动力转向架电机横向减振器的步进电机转角控制量根据可控电机横向减振器的活塞缸筒内径DmH,活塞缸筒与活塞杆间的环形面积Smr,活塞缝隙长度LmH,活塞平均间隙δmH,偏心率em,活塞孔直径dmh,活塞孔等效长度Lmhe,常通节流孔面积Am0,活塞孔个数nmh,液压减振器名义速度Vmr,常通节流孔口流量系数εm0,可调阻尼孔口流量系数εmv,油液动力粘度μmt,油液密度ρm,可调节流孔半径rmt,步进电机转动轴外半径Rma及步骤(3)中III步骤确定的电机横向减振器阻尼系数Cmo,建立关于电机横向减振器步进电机转角θm的变轨距后电机横向减振器的步进电机转角控制量求解数学模型,即
Figure BDA0002313710860000081
利用Matlab程序,求解上述数学模型关于θm在区间[0,2arcsin(rmt/Rma)]范围内的解,便可得到变轨距后动力转向架电机横向减振器的步进电机转角控制量,即θma
(5)变轨距动力转向架二系及电机横向减振器的最优阻尼调控:
当高速列车由原轨道运行至新轨道时,将步骤(4)中A步骤确定的变轨距前可控二系横向减振器的步进电机转角量θsb调节为步骤(4)中C步骤确定的变轨距后可控二系横向减振器的步进电机转角量θsa,同时,将步骤(4)中B步骤确定的变轨距前可控电机横向减振器的步进电机转角量θmb调节为步骤(4)中D步骤确定的变轨距后可控电机横向减振器的步进电机转角量θma,即可使动力转向架二系横向减振器及电机横向减振器的阻尼系数与列车的动力学性能达到最佳的匹配效果。
本发明比现有技术具有的优点:
现有的变轨距转向架系统中,在通过改变轮距来适应轨距变化需求的同时,未曾使变轨距后的动力转向架二系横向减振器及电机横向减振器的阻尼系数与高速列车的动力学性能达到最佳的匹配效果。随着人民生活质量水平的不断提高,人们对高速列车的运行品质提出了更高的设计要求,目前变轨距动力转向架二系及电机横向减振器阻尼系数的匹配方法,不能满足现下高速列车发展的需求。
本发明通过建立包含电机振动的高速列车51自由度横向振动微分方程,利用MATLAB软件中的Simulink工具箱,构建了计及电机振动效应的高速列车51自由度横向振动仿真分析模型,并利用原列车及所确定的变轨距后的二系及电机横向减振器的阻尼系数,确定了变轨距前后动力转向架可控二系及电机横向减振器的步进电机转角控制量,在此基础上,实现了变轨距动力转向架二系及电机横向减振器的最优阻尼调控。通过设计实例和实车线路运行试验可知,该方法可使变轨距后动力转向架二系横向减振器及电机横向减振器的阻尼系数与列车的动力学性能达到最佳的匹配效果。利用该方法,不仅可提高变轨距高速列车悬挂系统的设计水平和产品质量,提高车辆乘坐舒适性和安全性,同时,还可降低产品设计及试验费用、缩短产品设计周期,增强我国高速列车的国际市场竞争力。
附图说明
为了更好地理解本发明下面结合附图做进一步的说明。
图1是一种变轨距动力转向架二系及电机横向减振器最优阻尼调控方法的实现过程流程图;
图2是包含电机振动的高速列车51自由度横向振动模型的左视图;
图3是包含电机振动的高速列车51自由度横向振动模型的俯视图;
图4是实施例的计及电机振动效应的高速列车51自由度横向振动仿真分析模型;
图5是实施例的实车线路运行试验所得到的300km/h运行速度下的车体横向振动加速度时域信号图;
图6是实施例的实车线路运行试验所得到的300km/h运行速度下的转向架构架横向振动加速度时域信号图;
图7是是实施例的实车线路运行试验所得到的300km/h运行速度下的牵引电机横向振动加速度时域信号图。
具体实施方案
下面通过一实施例对本发明作进一步详细说明。
某高速列车的单节车体质量Mc=57592kg、侧滚转动惯量Icx=77200kg·m2、摇头转动惯量Icz=2887500kg·m2,每台转向架构架的质量Mt=2758kg、侧滚转动惯量Itx=2592kg·m2、摇头转动惯量Itz=3200kg·m2,每一牵引电机的质量Mm=480kg、侧滚转动惯量Imx=36.6kg·m2、摇头转动惯量Imz=36.4kg·m2,每一轮对的质量Mw=1721kg、摇头转动惯量Iwz=587kg·m2,每一轮轴重W=150000N,每一轮对的纵向定位刚度K1x=9.8×106N/m、横向定位刚度K1y=4.892×105N/m,每一轮对的纵向定位等效阻尼C1x=100N·s/m、横向定位等效阻尼C1y=100N·s/m,一系悬挂弹簧的垂向刚度Kp=1.37×106N/m,一系垂向减振器的阻尼系数Cp=14.15kN·s/m,二系悬挂弹簧的纵向刚度K2x=0.18×106N/m、横向刚度K2y=11.36×105N/m、垂向刚度Ks=5.68×105N/m,二系垂向减振器的阻尼系数Cs=43.42kN·s/m,电机架悬部件的垂向刚度Kmz=500×106N/m、横向刚度Kmy=344×103N/m、摇头刚度
Figure BDA0002313710860000091
kN.m/rad,电机架悬部件的垂向等效阻尼Cmz=100N·s/m、摇头等效阻尼
Figure BDA0002313710860000092
kN·s·m/rad,抗蛇行减振器的阻尼系数Csn=2750kN·s/m,二系横向减振器的阻尼系数Ct=56kN·s/m,电机横向减振器的阻尼系数Cm=5400N·s/m,一系垂向减振器的端部连接刚度Kpd=20×106N/m,二系垂向减振器的端部连接刚度Ksd=20×106N/m,二系横向减振器的端部连接刚度Ktd=50×106N/m,抗蛇行减振器的端部连接刚度Kds=100×106N/m,电机横向减振器的端部连接刚度Kdm=10×106N/m,单个抗侧滚扭杆的扭转刚度Kθ=2.6×106N·m/rad,转向架轴距的一半a=1.25m,车辆定距的一半a0=8.75m,电机质心至转向架构架质心的纵向距离a1=0.9m,车轮和钢轨接触点横向间距的一半b=0.7175m,二系横向减振器纵向安装间距的一半b0=0.2m,轮轴定位弹簧横向安装间距的一半b1=1.3m,二系悬挂弹簧横向安装间距的一半b2=1.15m,抗蛇行减振器横向安装间距的一半b3=1.4m,电机架悬横向安装间距的一半b4=0.4m,每一轮对的横向蠕滑系数f1=16990000N、纵向蠕滑系数f2=16990000N,车轮的滚动半径r=0.445m,车轮的踏面斜度λ=0.15,车轴中心线到轨道平面的高度h0=0.347m,车体质心到二系弹簧上平面的高度h1=0.8m,车体质心到二系横向减振器的高度h2=0.616m,二系弹簧上平面到转向架构架质心的高度h3=0.416m,转向架构架质心到车轴中心线的高度h4=0.137m,二系横向减振器到转向架构架质心的高度h5=0.6m,转向架构架质心到电机横向减振器的高度h6=0.6m,电机质心到电机横向减振器的高度h7=0.6m,变轨距后的铁路轨距br=1520mm;步进电机调控式二系横向减振器的活塞缸筒内径DsH=50×10-3m,活塞缸筒与活塞杆间的环形面积Ssr=1.6×10-3m2,活塞缝隙长度LsH=9×10-3m,活塞平均间隙δsH=0.04×10-3m,偏心率es=1,活塞孔直径dsh=2×10-3m,活塞孔等效长度Lshe=5×10-3m,常通节流孔面积As0=0.2×10-6m2,活塞孔个数nsh=6,液压减振器名义速度Vsr=0.1m/s,常通节流孔口流量系数εs0=0.82,可调阻尼孔口流量系数εsv=0.82,油液动力粘度μst=8.9×10-3m2·Ps,油液密度ρs=0.89kg/m3,可调节流孔半径rst=1×10-3m,步进电机转动轴外半径Rsa=4×10-3m;步进电机调控式电机横向减振器的活塞缸筒内径DmH=30×10-3m,活塞缸筒与活塞杆间的环形面积Smr=5.3×10-4m2,活塞缝隙长度LmH=9×10-3m,活塞平均间隙δmH=0.04×10-3m,偏心率em=1,活塞孔直径dmh=2×10-3m,活塞孔等效长度Lmhe=5×10-3m,常通节流孔面积Am0=0.2×10-6m2,活塞孔个数nmh=4,液压减振器名义速度Vmr=0.1m/s,常通节流孔口流量系数εm0=0.82,可调阻尼孔口流量系数εmv=0.82,油液动力粘度μmt=8.9×10-3m2·Ps,油液密度ρm=0.89kg/m3,可调节流孔半径rmt=1×10-3m,步进电机转动轴外半径Rma=4×10-3m;该高速列车的设计速度v=300km/h,对该高速列车变轨距动力转向架二系横向减振器的阻尼系数和电机横向减振器的阻尼系数进行调控。
本发明实例所提供的一种变轨距动力转向架二系及电机横向减振器最优阻尼调控方法,其实现过程流程图如图1所示,包含电机振动的高速列车51自由度横向振动模型的左视图如图2所示,包含电机振动的高速列车51自由度横向振动模型的俯视图如图3所示,具体步骤如下:
(1)建立包含电机振动的高速列车51自由度横向振动微分方程:
根据高速列车的单节车体的质量Mc=57592kg、侧滚转动惯量Icx=77200kg·m2、摇头转动惯量Icz=2887500kg·m2,每台转向架构架的质量Mt=2758kg、侧滚转动惯量Itx=2592kg·m2、摇头转动惯量Itz=3200kg·m2,每一牵引电机的质量Mm=480kg、侧滚转动惯量Imx=36.6kg·m2、摇头转动惯量Imz=36.4kg·m2,每一轮对的质量Mw=1721kg、摇头转动惯量Iwz=587kg·m2,每一轮轴重W=150000N,每一轮对的纵向定位刚度K1x=9.8×106N/m、横向定位刚度K1y=4.892×105N/m,每一轮对的纵向定位等效阻尼C1x=100N·s/m、横向定位等效阻尼C1y=100N·s/m,一系悬挂弹簧的垂向刚度Kp=1.37×106N/m,一系垂向减振器的阻尼系数Cp=14.15kN·s/m,二系悬挂弹簧的纵向刚度K2x=0.18×106N/m、横向刚度K2y=11.36×105N/m、垂向刚度Ks=5.68×105N/m,二系垂向减振器的阻尼系数Cs=43.42kN·s/m,电机架悬部件的垂向刚度Kmz=500×106N/m、横向刚度Kmy=344×103N/m、摇头刚度
Figure BDA00023137108600001012
kN.m/rad,电机架悬部件的垂向等效阻尼Cmz=100N·s/m、摇头等效阻尼
Figure BDA00023137108600001013
kN·s·m/rad,抗蛇行减振器的阻尼系数Csn=2750kN·s/m,二系横向减振器的阻尼系数Ct=56kN·s/m,电机横向减振器的阻尼系数Cm=5400N·s/m,一系垂向减振器的端部连接刚度Kpd=20×106N/m,二系垂向减振器的端部连接刚度Ksd=20×106N/m,二系横向减振器的端部连接刚度Ktd=50×106N/m,抗蛇行减振器的端部连接刚度Kds=100×106N/m,电机横向减振器的端部连接刚度Kdm=10×106N/m,单个抗侧滚扭杆的扭转刚度Kθ=2.6×106N·m/rad,转向架轴距的一半a=1.25m,车辆定距的一半a0=8.75m,电机质心至转向架构架质心的纵向距离a1=0.9m,车轮和钢轨接触点横向间距的一半b=0.7175m,二系横向减振器纵向安装间距的一半b0=0.2m,轮轴定位弹簧横向安装间距的一半b1=1.3m,二系悬挂弹簧横向安装间距的一半b2=1.15m,抗蛇行减振器横向安装间距的一半b3=1.4m,电机架悬横向安装间距的一半b4=0.4m,每一轮对的横向蠕滑系数f1=16990000N、纵向蠕滑系数f2=16990000N,车轮的滚动半径r=0.445m,车轮的踏面斜度λ=0.15,列车的运行速度v=300km/h,车轴中心线到轨道平面的高度h0=0.347m,车体质心到二系弹簧上平面的高度h1=0.8m,车体质心到二系横向减振器的高度h2=0.616m,二系弹簧上平面到转向架构架质心的高度h3=0.416m,转向架构架质心到车轴中心线的高度h4=0.137m,二系横向减振器到转向架构架质心的高度h5=0.6m,转向架构架质心到电机横向减振器的高度h6=0.6m,电机质心到电机横向减振器的高度h7=0.6m;分别以各子系统质心为原点;以第1轮对的横摆位移yw1、摇头位移
Figure BDA0002313710860000101
第2轮对的横摆位移yw2、摇头位移
Figure BDA0002313710860000102
第3轮对的横摆位移yw3、摇头位移
Figure BDA0002313710860000103
第4轮对的横摆位移yw4、摇头位移
Figure BDA0002313710860000104
前转向架构架的横摆位移yt1、摇头位移
Figure BDA0002313710860000106
侧滚位移θt1,后转向架构架的横摆位移yt2、摇头位移
Figure BDA0002313710860000105
侧滚位移θt2,第1电机的横摆位移ym1、摇头位移
Figure BDA0002313710860000107
侧滚位移θm1,第2电机的横摆位移ym2、摇头位移
Figure BDA0002313710860000108
侧滚位移θm2,第3电机的横摆位移ym3、摇头位移
Figure BDA0002313710860000109
侧滚位移θm3,第4电机的横摆位移ym4、摇头位移
Figure BDA00023137108600001010
侧滚位移θm4,车体的横摆位移yc、摇头位移
Figure BDA00023137108600001011
侧滚位移θc,一系垂向减振器的活塞杆垂向位移zp1、zp2、zp3、zp4,二系垂向减振器的活塞杆垂向位移zs1、zs2、zs3、zs4,二系横向减振器的活塞杆横向位移yd1、yd2、yd3、zd4,抗蛇行减振器的活塞杆纵向位移xs1、xs2,及电机横向减振器的活塞杆横向位移ye1、ye2、ye3、ye4、ye5、ye6、ye7、ye8为坐标;以第1轮对、第2轮对、第3轮对、第4轮对处的轨道方向不平顺随机输入ya1(t)、ya2(t)、ya3(t)、ya4(t)和水平不平顺随机输入yc1(t)、yc2(t)、yc3(t)、yc4(t)为输入激励,其中,t为时间变量;建立包含电机振动的高速列车51自由度横向振动微分方程,即:
①第1轮对的横摆振动微分方程:
Figure BDA0002313710860000111
②第1轮对的摇头振动微分方程:
Figure BDA0002313710860000112
③第2轮对的横摆振动微分方程:
Figure BDA0002313710860000113
④第2轮对的摇头振动微分方程:
Figure BDA0002313710860000114
⑤第3轮对的横摆振动微分方程:
Figure BDA0002313710860000115
⑥第3轮对的摇头振动微分方程:
Figure BDA0002313710860000116
⑦第4轮对的横摆振动微分方程:
Figure BDA0002313710860000117
⑧第4轮对的摇头振动微分方程:
Figure BDA0002313710860000118
⑨前转向架构架的横摆振动微分方程:
Figure BDA0002313710860000119
⑩前转向架构架的侧滚振动微分方程:
Figure BDA00023137108600001110
Figure BDA00023137108600001111
前转向架构架的摇头振动微分方程:
Figure BDA0002313710860000121
Figure BDA00023137108600001210
后转向架构架的横摆振动微分方程:
Figure BDA0002313710860000122
Figure BDA00023137108600001211
后转向架构架的侧滚振动微分方程:
Figure BDA0002313710860000123
Figure BDA00023137108600001212
后转向架构架的摇头振动微分方程:
Figure BDA0002313710860000124
Figure BDA00023137108600001213
第1电机的横摆振动微分方程:
Figure BDA0002313710860000125
Figure BDA00023137108600001214
第1电机的侧滚振动微分方程:
Figure BDA0002313710860000126
Figure BDA00023137108600001215
第1电机的摇头振动微分方程:
Figure BDA0002313710860000127
Figure BDA00023137108600001216
第2电机的横摆振动微分方程:
Figure BDA0002313710860000128
Figure BDA00023137108600001217
第2电机的侧滚振动微分方程:
Figure BDA0002313710860000129
Figure BDA00023137108600001218
第2电机的摇头振动微分方程:
Figure BDA0002313710860000131
Figure BDA00023137108600001314
第3电机的横摆振动微分方程:
Figure BDA0002313710860000132
Figure BDA00023137108600001315
第3电机的侧滚振动微分方程:
Figure BDA0002313710860000133
Figure BDA00023137108600001316
第3电机的摇头振动微分方程:
Figure BDA0002313710860000134
Figure BDA00023137108600001317
第4电机的横摆振动微分方程:
Figure BDA0002313710860000135
Figure BDA00023137108600001318
第4电机的侧滚振动微分方程:
Figure BDA0002313710860000136
Figure BDA00023137108600001319
第4电机的摇头振动微分方程:
Figure BDA0002313710860000137
Figure BDA00023137108600001320
车体的横摆振动微分方程:
Figure BDA0002313710860000138
Figure BDA00023137108600001321
车体的侧滚振动微分方程:
Figure BDA0002313710860000139
Figure BDA00023137108600001322
车体的摇头振动微分方程:
Figure BDA00023137108600001310
Figure BDA00023137108600001323
一系垂向减振器的端部力平衡方程:
Figure BDA00023137108600001311
Figure BDA00023137108600001324
二系垂向减振器的端部力平衡方程:
Figure BDA00023137108600001312
Figure BDA00023137108600001326
二系横向减振器的端部力平衡方程:
Figure BDA00023137108600001313
Figure BDA00023137108600001325
抗蛇行减振器的端部力平衡方程:
Figure BDA0002313710860000141
Figure BDA0002313710860000143
电机横向减振器的端部力平衡方程:
Figure BDA0002313710860000142
(2)构建计及电机振动效应的高速列车51自由度横向振动仿真分析模型:
根据步骤(1)中所建立的包含电机振动的高速列车51自由度横向振动微分方程,利用Matlab/Simulink仿真软件,构建计及电机振动效应的高速列车51自由度横向振动仿真分析模型,如图4所示;
(3)确定变轨距后动力转向架二系及电机横向减振器的最优阻尼系数:
I步骤:确定变轨距前车体、转向架构架及牵引电机的振动加速度均方根值根据转向架轴距的一半a=1.25m,车辆定距的一半a0=8.75m,列车运行速度v=300km/h,及步骤(2)中所建立的计及电机振动效应的高速列车51自由度横向振动仿真分析模型,以各轮对处的轨道方向不平顺随机输入和水平不平顺随机输入为输入激励,仿真得到当前二系横向减振器及电机横向减振器阻尼系数下该列车的车体横摆振动加速度均方根值
Figure BDA0002313710860000144
前转向架构架横摆振动加速度均方根值
Figure BDA0002313710860000145
后转向架构架横摆振动加速度均方根值
Figure BDA0002313710860000146
第1电机横摆振动加速度均方根值
Figure BDA0002313710860000147
第2电机横摆振动加速度均方根值
Figure BDA0002313710860000148
第3机横摆振动加速度均方根值
Figure BDA0002313710860000149
及第4电机横摆振动加速度均方根值
Figure BDA00023137108600001410
其中,各轮对处轨道方向不平顺随机输入之间的关系为:ya2(t)=ya1(t-0.03s),ya3(t)=ya1(t-0.21s),ya4(t)=ya1[t-0.24s];各轮对处水平不平顺随机输入之间的关系为:yc2(t)=yc1(t-0.03s),yc3(t)=yc1(t-0.21s),yc4(t)=yc1[t-0.24s];
II步骤:建立变轨距后动力转向架二系及电机横向减振器的阻尼系数联合优化目标函数根据步骤(2)中所建立的计及电机振动效应的高速列车51自由度横向振动仿真分析模型,及I步骤中所确定的车体横摆振动加速度均方根值
Figure BDA00023137108600001411
前转向架构架横摆振动加速度均方根值
Figure BDA00023137108600001412
后转向架构架横摆振动加速度均方根值
Figure BDA00023137108600001413
第1电机横摆振动加速度均方根值
Figure BDA00023137108600001414
第2电机横摆振动加速度均方根值
Figure BDA00023137108600001415
第3机横摆振动加速度均方根值
Figure BDA00023137108600001416
第4电机横摆振动加速度均方根值
Figure BDA00023137108600001417
令b=br/2=0.76m,以二系横向减振器的阻尼系数和电机横向减振器的阻尼系数为待设计变量,以各轮对处的轨道方向不平顺随机输入和水平不平顺随机输入为输入激励,利用仿真得到的车体横摆振动加速度均方根值
Figure BDA00023137108600001418
前转向架构架横摆振动加速度均方根值
Figure BDA00023137108600001419
后转向架构架横摆振动加速度均方根值
Figure BDA00023137108600001420
第1电机横摆振动加速度均方根值
Figure BDA00023137108600001421
第2电机横摆振动加速度均方根值
Figure BDA00023137108600001422
第3机横摆振动加速度均方根值
Figure BDA00023137108600001423
第4电机横摆振动加速度均方根值
Figure BDA00023137108600001424
建立变轨距后动力转向架二系及电机横向减振器的阻尼系数联合优化目标函数Io(Ct,Cm),即:
Figure BDA0002313710860000151
III步骤:确定变轨距后动力转向架二系及电机横向减振器的最优阻尼系数根据转向架轴距的一半a=1.25m,车辆定距的一半a0=8.75m,列车运行速度v=300km/h,及步骤(2)中所建立的计及电机振动效应的高速列车51自由度横向振动仿真分析模型,以各轮对处的轨道方向不平顺随机输入ya1(t)、ya2(t)、ya3(t)、ya4(t)和水平不平顺随机输入yc1(t)、yc2(t)、yc3(t)、yc4(t)为输入激励,利用优化算法求II步骤中所建立的变轨距后动力转向架二系及电机横向减振器的阻尼系数联合优化目标函数Io(Ct,Cm)的最小值,所得到的变轨距后动力转向架二系横向减振器的最优阻尼系数Cto=61.5kN·s/m,电机横向减振器的最优阻尼系数Cmo=6320N·s/m;
其中,各轮对处轨道方向不平顺随机输入之间的关系为:ya2(t)=ya1(t-0.03s),ya3(t)=ya1(t-0.21s),ya4(t)=ya1[t-0.24s];各轮对处水平不平顺随机输入之间的关系为:yc2(t)=yc1(t-0.03s),yc3(t)=yc1(t-0.21s),yc4(t)=yc1[t-0.24s];
(4)确定变轨距前后动力转向架二系及电机横向减振器的步进电机转角控制量:
将原二系横向减振器及电机横向减振器更换为步进电机调控式液压减振器,通过调节可控液压减振器的步进电机转角量使变轨距后二系横向减振器及电机横向减振器的阻尼系数与列车的动力学性能达到最佳的匹配效果,其中,变轨距前后动力转向架二系及电机横向减振器的步进电机转角控制量确定方法如下:
A步骤:确定变轨距前动力转向架二系横向减振器的步进电机转角控制量根据可控二系横向减振器的活塞缸筒内径DsH=50×10-3m,活塞缸筒与活塞杆间的环形面积Ssr=1.6×10-3m2,活塞缝隙长度LsH=9×10-3m,活塞平均间隙δsH=0.04×10-3m,偏心率es=1,活塞孔直径dsh=2×10-3m,活塞孔等效长度Lshe=5×10-3m,常通节流孔面积As0=0.2×10-6m2,活塞孔个数nsh=6,液压减振器名义速度Vsr=0.1m/s,常通节流孔口流量系数εs0=0.82,可调阻尼孔口流量系数εsv=0.82,油液动力粘度μst=8.9×10-3m2·Ps,油液密度ρs=0.89kg/m3,可调节流孔半径rst=1×10-3m,步进电机转动轴外半径Rsa=4×10-3m及原列车的二系横向减振器阻尼系数Ct=56kN·s/m,建立关于二系横向减振器步进电机转角θs的变轨距前二系横向减振器的步进电机转角控制量求解数学模型,即
Figure BDA0002313710860000152
利用Matlab程序,求解上述数学模型关于θs在区间[0,2arcsin(rst/Rsa)]范围内的解,所得到的变轨距前动力转向架二系横向减振器的步进电机转角控制量θsb=17.80(°);
B步骤:确定变轨距前动力转向架电机横向减振器的步进电机转角控制量
根据可控电机横向减振器的活塞缸筒内径DmH=30×10-3m,活塞缸筒与活塞杆间的环形面积Smr=5.3×10-4m2,活塞缝隙长度LmH=9×10-3m,活塞平均间隙δmH=0.04×10- 3m,偏心率em=1,活塞孔直径dmh=2×10-3m,活塞孔等效长度Lmhe=5×10-3m,常通节流孔面积Am0=0.2×10-6m2,活塞孔个数nmh=4,液压减振器名义速度Vmr=0.1m/s,常通节流孔口流量系数εm0=0.82,可调阻尼孔口流量系数εmv=0.82,油液动力粘度μmt=8.9×10-3m2·Ps,油液密度ρm=0.89kg/m3,可调节流孔半径rmt=1×10-3m,步进电机转动轴外半径Rma=4×10-3m及原列车的电机横向减振器阻尼系数Cm=5400N·s/m,建立关于电机横向减振器步进电机转角θm的变轨距前电机横向减振器的步进电机转角控制量求解数学模型,即
Figure BDA0002313710860000161
利用Matlab程序,求解上述数学模型关于θm在区间[0,2arcsin(rmt/Rma)]范围内的解,所得到的变轨距前动力转向架电机横向减振器的步进电机转角控制量θmb=18.91(°);
C步骤:确定变轨距后动力转向架二系横向减振器的步进电机转角控制量根据可控二系横向减振器的活塞缸筒内径DsH=50×10-3m,活塞缸筒与活塞杆间的环形面积Ssr=1.6×10-3m2,活塞缝隙长度LsH=9×10-3m,活塞平均间隙δsH=0.04×10-3m,偏心率es=1,活塞孔直径dsh=2×10-3m,活塞孔等效长度Lshe=5×10-3m,常通节流孔面积As0=0.2×10-6m2,活塞孔个数nsh=6,液压减振器名义速度Vsr=0.1m/s,常通节流孔口流量系数εs0=0.82,可调阻尼孔口流量系数εsv=0.82,油液动力粘度μst=8.9×10-3m2·Ps,油液密度ρs=0.89kg/m3,可调节流孔半径rst=1×10-3m,步进电机转动轴外半径Rsa=4×10-3m及步骤(3)中III步骤确定的二系横向减振器阻尼系数Cto=61.5kN·s/m,建立关于二系横向减振器步进电机转角θs的变轨距后二系横向减振器的步进电机转角控制量求解数学模型,即
Figure BDA0002313710860000162
利用Matlab程序,求解上述数学模型关于θs在区间[0,2arcsin(rst/Rsa)]范围内的解,所得到的变轨距后动力转向架二系横向减振器的步进电机转角控制量θsa=19.34(°);
D步骤:确定变轨距后动力转向架电机横向减振器的步进电机转角控制量根据可控电机横向减振器的活塞缸筒内径DmH=30×10-3m,活塞缸筒与活塞杆间的环形面积Smr=5.3×10-4m2,活塞缝隙长度LmH=9×10-3m,活塞平均间隙δmH=0.04×10-3m,偏心率em=1,活塞孔直径dmh=2×10-3m,活塞孔等效长度Lmhe=5×10-3m,常通节流孔面积Am0=0.2×10-6m2,活塞孔个数nmh=4,液压减振器名义速度Vmr=0.1m/s,常通节流孔口流量系数εm0=0.82,可调阻尼孔口流量系数εmv=0.82,油液动力粘度μmt=8.9×10-3m2·Ps,油液密度ρm=0.89kg/m3,可调节流孔半径rmt=1×10-3m,步进电机转动轴外半径Rma=4×10-3m及步骤(3)中III步骤确定的电机横向减振器阻尼系数Cmo=6320N·s/m,建立关于电机横向减振器步进电机转角θm的变轨距后电机横向减振器的步进电机转角控制量求解数学模型,即
Figure BDA0002313710860000163
利用Matlab程序,求解上述数学模型关于θm在区间[0,2arcsin(rmt/Rma)]范围内的解,所得到的变轨距后动力转向架电机横向减振器的步进电机转角控制量θma=20.22(°);
(5)变轨距动力转向架二系及电机横向减振器的最优阻尼调控:
当高速列车由原轨道运行至新轨道时,将步骤(4)中A步骤确定的变轨距前可控二系横向减振器的步进电机转角量θsb=17.80(°)调节为步骤(4)中C步骤确定的变轨距后可控二系横向减振器的步进电机转角量θsa=19.34(°),同时,将步骤(4)中B步骤确定的变轨距前可控电机横向减振器的步进电机转角量θmb=18.91(°)调节为步骤(4)中D步骤确定的变轨距后可控电机横向减振器的步进电机转角量θma=20.22(°),即可使动力转向架二系横向减振器及电机横向减振器的阻尼系数与列车的动力学性能达到最佳的匹配效果。
通过实车线路运行试验可知,使用本发明所提供的变轨距动力转向架二系及电机横向减振器最优阻尼调控方法可以显著改善变轨距后高速列车的动力学性能,表明本发明所提供的一种变轨距动力转向架二系及电机横向减振器最优阻尼调控方法是可靠的,其中,实施例的实车线路运行试验所得到的300km/h运行速度下的车体横向振动加速度、转向架构架横向振动加速度及牵引电机横向振动加速度时域信号曲线,分别如图5、图6和图7所示。

Claims (1)

1.一种变轨距动力转向架二系及电机横向减振器最优阻尼调控方法,其具体实现过程如下:
(1)建立包含电机振动的高速列车51自由度横向振动微分方程:
根据高速列车的单节车体的质量Mc、侧滚转动惯量Icx、摇头转动惯量Icz,每台转向架构架的质量Mt、侧滚转动惯量Itx、摇头转动惯量Itz,每一牵引电机的质量Mm、侧滚转动惯量Imx、摇头转动惯量Imz,每一轮对的质量Mw、摇头转动惯量Iwz,每一轮轴重W,每一轮对的纵向定位刚度K1x、横向定位刚度K1y,每一轮对的纵向定位等效阻尼C1x、横向定位等效阻尼C1y,一系悬挂弹簧的垂向刚度Kp,一系垂向减振器的阻尼系数Cp,二系悬挂弹簧的纵向刚度K2x、横向刚度K2y、垂向刚度Ks,二系垂向减振器的阻尼系数Cs,电机架悬部件的垂向刚度Kmz、横向刚度Kmy、摇头刚度
Figure FDA0002313710850000014
电机架悬部件的垂向等效阻尼Cmz、摇头等效阻尼
Figure FDA0002313710850000015
抗蛇行减振器的阻尼系数Csn,二系横向减振器的阻尼系数Ct,电机横向减振器的阻尼系数Cm,一系垂向减振器的端部连接刚度Kpd,二系垂向减振器的端部连接刚度Ksd,二系横向减振器的端部连接刚度Ktd,抗蛇行减振器的端部连接刚度Kds,电机横向减振器的端部连接刚度Kdm,单个抗侧滚扭杆的扭转刚度Kθ,转向架轴距的一半a,车辆定距的一半a0,电机质心至转向架构架质心的纵向距离a1,车轮和钢轨接触点横向间距的一半b,二系横向减振器纵向安装间距的一半b0,轮轴定位弹簧横向安装间距的一半b1,二系悬挂弹簧横向安装间距的一半b2,抗蛇行减振器横向安装间距的一半b3,电机架悬横向安装间距的一半b4,每一轮对的横向蠕滑系数f1、纵向蠕滑系数f2,车轮的滚动半径r,车轮的踏面斜度λ,列车的运行速度v,车轴中心线到轨道平面的高度h0,车体质心到二系弹簧上平面的高度h1,车体质心到二系横向减振器的高度h2,二系弹簧上平面到转向架构架质心的高度h3,转向架构架质心到车轴中心线的高度h4,二系横向减振器到转向架构架质心的高度h5,转向架构架质心到电机横向减振器的高度h6,电机质心到电机横向减振器的高度h7;分别以各子系统质心为原点;以第1轮对的横摆位移yw1、摇头位移
Figure FDA0002313710850000016
第2轮对的横摆位移yw2、摇头位移
Figure FDA00023137108500000112
第3轮对的横摆位移yw3、摇头位移
Figure FDA0002313710850000017
第4轮对的横摆位移yw4、摇头位移
Figure FDA00023137108500000113
前转向架构架的横摆位移yt1、摇头位移
Figure FDA0002313710850000018
侧滚位移θt1,后转向架构架的横摆位移yt2、摇头位移
Figure FDA00023137108500000114
侧滚位移θt2,第1电机的横摆位移ym1、摇头位移
Figure FDA0002313710850000019
侧滚位移θm1,第2电机的横摆位移ym2、摇头位移
Figure FDA00023137108500000110
侧滚位移θm2,第3电机的横摆位移ym3、摇头位移
Figure FDA00023137108500000111
侧滚位移θm3,第4电机的横摆位移ym4、摇头位移
Figure FDA00023137108500000115
侧滚位移θm4,车体的横摆位移yc、摇头位移
Figure FDA00023137108500000116
侧滚位移θc,一系垂向减振器的活塞杆垂向位移zp1、zp2、zp3、zp4,二系垂向减振器的活塞杆垂向位移zs1、zs2、zs3、zs4,二系横向减振器的活塞杆横向位移yd1、yd2、yd3、zd4,抗蛇行减振器的活塞杆纵向位移xs1、xs2,及电机横向减振器的活塞杆横向位移ye1、ye2、ye3、ye4、ye5、ye6、ye7、ye8为坐标;以第1轮对、第2轮对、第3轮对、第4轮对处的轨道方向不平顺随机输入ya1(t)、ya2(t)、ya3(t)、ya4(t)和水平不平顺随机输入yc1(t)、yc2(t)、yc3(t)、yc4(t)为输入激励,其中,t为时间变量;建立包含电机振动的高速列车51自由度横向振动微分方程,即:
①第1轮对的横摆振动微分方程:
Figure FDA0002313710850000011
②第1轮对的摇头振动微分方程:
Figure FDA0002313710850000012
③第2轮对的横摆振动微分方程:
Figure FDA0002313710850000013
④第2轮对的摇头振动微分方程:
Figure FDA0002313710850000021
⑤第3轮对的横摆振动微分方程:
Figure FDA0002313710850000022
⑥第3轮对的摇头振动微分方程:
Figure FDA0002313710850000023
⑦第4轮对的横摆振动微分方程:
Figure FDA0002313710850000024
⑧第4轮对的摇头振动微分方程:
Figure FDA0002313710850000025
⑨前转向架构架的横摆振动微分方程:
Figure FDA0002313710850000026
⑩前转向架构架的侧滚振动微分方程:
Figure FDA0002313710850000027
Figure FDA00023137108500000210
前转向架构架的摇头振动微分方程:
Figure FDA0002313710850000028
Figure FDA00023137108500000211
后转向架构架的横摆振动微分方程:
Figure FDA0002313710850000029
Figure FDA00023137108500000313
后转向架构架的侧滚振动微分方程:
Figure FDA0002313710850000031
Figure FDA00023137108500000314
后转向架构架的摇头振动微分方程:
Figure FDA0002313710850000032
Figure FDA00023137108500000315
第1电机的横摆振动微分方程:
Figure FDA0002313710850000033
Figure FDA00023137108500000316
第1电机的侧滚振动微分方程:
Figure FDA0002313710850000034
Figure FDA00023137108500000317
第1电机的摇头振动微分方程:
Figure FDA0002313710850000035
Figure FDA00023137108500000318
第2电机的横摆振动微分方程:
Figure FDA0002313710850000036
Figure FDA00023137108500000319
第2电机的侧滚振动微分方程:
Figure FDA0002313710850000037
Figure FDA00023137108500000320
第2电机的摇头振动微分方程:
Figure FDA0002313710850000038
Figure FDA00023137108500000321
第3电机的横摆振动微分方程:
Figure FDA0002313710850000039
Figure FDA00023137108500000322
第3电机的侧滚振动微分方程:
Figure FDA00023137108500000310
Figure FDA00023137108500000323
第3电机的摇头振动微分方程:
Figure FDA00023137108500000311
Figure FDA00023137108500000324
第4电机的横摆振动微分方程:
Figure FDA00023137108500000312
Figure FDA00023137108500000325
第4电机的侧滚振动微分方程:
Figure FDA0002313710850000041
Figure FDA00023137108500000411
第4电机的摇头振动微分方程:
Figure FDA0002313710850000042
Figure FDA00023137108500000412
车体的横摆振动微分方程:
Figure FDA0002313710850000043
Figure FDA00023137108500000413
车体的侧滚振动微分方程:
Figure FDA0002313710850000044
Figure FDA00023137108500000414
车体的摇头振动微分方程:
Figure FDA0002313710850000045
Figure FDA00023137108500000415
一系垂向减振器的端部力平衡方程:
Figure FDA0002313710850000046
Figure FDA00023137108500000416
二系垂向减振器的端部力平衡方程:
Figure FDA0002313710850000047
Figure FDA00023137108500000417
二系横向减振器的端部力平衡方程:
Figure FDA0002313710850000048
Figure FDA00023137108500000418
抗蛇行减振器的端部力平衡方程:
Figure FDA0002313710850000049
Figure FDA00023137108500000419
电机横向减振器的端部力平衡方程:
Figure FDA00023137108500000410
(2)构建计及电机振动效应的高速列车51自由度横向振动仿真分析模型:
根据步骤(1)中所建立的包含电机振动的高速列车51自由度横向振动微分方程,利用Matlab/Simulink仿真软件,构建计及电机振动效应的高速列车51自由度横向振动仿真分析模型;
(3)确定变轨距后动力转向架二系及电机横向减振器的最优阻尼系数:
I步骤:确定变轨距前车体、转向架构架及牵引电机的振动加速度均方根值
根据车辆定距的一半a0,转向架轴距的一半a,列车运行速度v,及步骤(2)中所建立的计及电机振动效应的高速列车51自由度横向振动仿真分析模型,以各轮对处的轨道方向不平顺随机输入和水平不平顺随机输入为输入激励,仿真得到当前二系横向减振器及电机横向减振器阻尼系数下该列车的车体横摆振动加速度均方根值
Figure FDA0002313710850000051
前转向架构架横摆振动加速度均方根值
Figure FDA0002313710850000052
后转向架构架横摆振动加速度均方根值
Figure FDA0002313710850000053
第1电机横摆振动加速度均方根值
Figure FDA0002313710850000054
第2电机横摆振动加速度均方根值
Figure FDA0002313710850000055
第3机横摆振动加速度均方根值
Figure FDA0002313710850000056
及第4电机横摆振动加速度均方根值
Figure FDA0002313710850000057
其中,各轮对处轨道方向不平顺随机输入之间的关系为:ya2(t)=ya1(t-2a/v),ya3(t)=ya1(t-2a0/v),ya4(t)=ya1[t-2(a0+a)/v];各轮对处水平不平顺随机输入之间的关系为:yc2(t)=yc1(t-2a/v),yc3(t)=yc1(t-2a0/v),yc4(t)=yc1[t-2(a0+a)/v];
II步骤:建立变轨距后动力转向架二系及电机横向减振器的阻尼系数联合优化目标函数
根据步骤(2)中所建立的计及电机振动效应的高速列车51自由度横向振动仿真分析模型,及I步骤中所确定的车体横摆振动加速度均方根值
Figure FDA0002313710850000058
前转向架构架横摆振动加速度均方根值
Figure FDA0002313710850000059
后转向架构架横摆振动加速度均方根值
Figure FDA00023137108500000510
第1电机横摆振动加速度均方根值
Figure FDA00023137108500000511
第2电机横摆振动加速度均方根值
Figure FDA00023137108500000512
第3机横摆振动加速度均方根值
Figure FDA00023137108500000513
第4电机横摆振动加速度均方根值
Figure FDA00023137108500000514
令b=br/2,其中,br为新轨距,以二系横向减振器的阻尼系数和电机横向减振器的阻尼系数为待设计变量,以各轮对处的轨道方向不平顺随机输入和水平不平顺随机输入为输入激励,利用仿真得到的车体横摆振动加速度均方根值
Figure FDA00023137108500000515
前转向架构架横摆振动加速度均方根值
Figure FDA00023137108500000516
后转向架构架横摆振动加速度均方根值
Figure FDA00023137108500000517
第1电机横摆振动加速度均方根值
Figure FDA00023137108500000518
第2电机横摆振动加速度均方根值
Figure FDA00023137108500000519
第3机横摆振动加速度均方根值
Figure FDA00023137108500000520
第4电机横摆振动加速度均方根值
Figure FDA00023137108500000521
建立变轨距后动力转向架二系及电机横向减振器的阻尼系数联合优化目标函数Io(Ct,Cm),即:
Figure FDA00023137108500000522
III步骤:确定变轨距后动力转向架二系及电机横向减振器的最优阻尼系数
根据车辆定距的一半a0,转向架轴距的一半a,列车运行速度v,及步骤(2)中所建立的计及电机振动效应的高速列车51自由度横向振动仿真分析模型,以各轮对处的轨道方向不平顺随机输入ya1(t)、ya2(t)、ya3(t)、ya4(t)和水平不平顺随机输入yc1(t)、yc2(t)、yc3(t)、yc4(t)为输入激励,利用优化算法求II步骤中所建立的变轨距后动力转向架二系及电机横向减振器的阻尼系数联合优化目标函数Io(Ct,Cm)的最小值,所对应的设计变量即为变轨距后动力转向架二系横向减振器的最优阻尼系数Cto和电机横向减振器的最优阻尼系数Cmo
其中,各轮对处轨道方向不平顺随机输入之间的关系为:ya2(t)=ya1(t-2a/v),ya3(t)=ya1(t-2a0/v),ya4(t)=ya1[t-2(a0+a)/v];各轮对处水平不平顺随机输入之间的关系为:yc2(t)=yc1(t-2a/v),yc3(t)=yc1(t-2a0/v),yc4(t)=yc1[t-2(a0+a)/v];
(4)确定变轨距前后动力转向架二系及电机横向减振器的步进电机转角控制量:
将原二系横向减振器及电机横向减振器更换为步进电机调控式液压减振器,通过调节可控液压减振器的步进电机转角量使变轨距后二系横向减振器及电机横向减振器的阻尼系数与列车的动力学性能达到最佳的匹配效果,其中,变轨距前后动力转向架二系及电机横向减振器的步进电机转角控制量确定方法如下:
A步骤:确定变轨距前动力转向架二系横向减振器的步进电机转角控制量
根据可控二系横向减振器的活塞缸筒内径DsH,活塞缸筒与活塞杆间的环形面积Ssr,活塞缝隙长度LsH,活塞平均间隙δsH,偏心率es,活塞孔直径dsh,活塞孔等效长度Lshe,常通节流孔面积As0,活塞孔个数nsh,液压减振器名义速度Vsr,常通节流孔口流量系数εs0,可调阻尼孔口流量系数εsv,油液动力粘度μst,油液密度ρs,可调节流孔半径rst,步进电机转动轴外半径Rsa及原列车的二系横向减振器阻尼系数Ct,建立关于二系横向减振器步进电机转角θs的变轨距前二系横向减振器的步进电机转角控制量求解数学模型,即
Figure FDA0002313710850000061
利用Matlab程序,求解上述数学模型关于θs在区间[0,2arcsin(rst/Rsa)]范围内的解,便可得到变轨距前动力转向架二系横向减振器的步进电机转角控制量,即θsb
B步骤:确定变轨距前动力转向架电机横向减振器的步进电机转角控制量
根据可控电机横向减振器的活塞缸筒内径DmH,活塞缸筒与活塞杆间的环形面积Smr,活塞缝隙长度LmH,活塞平均间隙δmH,偏心率em,活塞孔直径dmh,活塞孔等效长度Lmhe,常通节流孔面积Am0,活塞孔个数nmh,液压减振器名义速度Vmr,常通节流孔口流量系数εm0,可调阻尼孔口流量系数εmv,油液动力粘度μmt,油液密度ρm,可调节流孔半径rmt,步进电机转动轴外半径Rma及原列车的电机横向减振器阻尼系数Cm,建立关于电机横向减振器步进电机转角θm的变轨距前电机横向减振器的步进电机转角控制量求解数学模型,即
Figure FDA0002313710850000062
利用Matlab程序,求解上述数学模型关于θm在区间[0,2arcsin(rmt/Rma)]范围内的解,便可得到变轨距前动力转向架电机横向减振器的步进电机转角控制量,即θmb
C步骤:确定变轨距后动力转向架二系横向减振器的步进电机转角控制量
根据可控二系横向减振器的活塞缸筒内径DsH,活塞缸筒与活塞杆间的环形面积Ssr,活塞缝隙长度LsH,活塞平均间隙δsH,偏心率es,活塞孔直径dsh,活塞孔等效长度Lshe,常通节流孔面积As0,活塞孔个数nsh,液压减振器名义速度Vsr,常通节流孔口流量系数εs0,可调阻尼孔口流量系数εsv,油液动力粘度μst,油液密度ρs,可调节流孔半径rst,步进电机转动轴外半径Rsa及步骤(3)中III步骤确定的二系横向减振器阻尼系数Cto,建立关于二系横向减振器步进电机转角θs的变轨距后二系横向减振器的步进电机转角控制量求解数学模型,即
Figure FDA0002313710850000063
利用Matlab程序,求解上述数学模型关于θs在区间[0,2arcsin(rst/Rsa)]范围内的解,便可得到变轨距后动力转向架二系横向减振器的步进电机转角控制量,即θsa
D步骤:确定变轨距后动力转向架电机横向减振器的步进电机转角控制量
根据可控电机横向减振器的活塞缸筒内径DmH,活塞缸筒与活塞杆间的环形面积Smr,活塞缝隙长度LmH,活塞平均间隙δmH,偏心率em,活塞孔直径dmh,活塞孔等效长度Lmhe,常通节流孔面积Am0,活塞孔个数nmh,液压减振器名义速度Vmr,常通节流孔口流量系数εm0,可调阻尼孔口流量系数εmv,油液动力粘度μmt,油液密度ρm,可调节流孔半径rmt,步进电机转动轴外半径Rma及步骤(3)中III步骤确定的电机横向减振器阻尼系数Cmo,建立关于电机横向减振器步进电机转角θm的变轨距后电机横向减振器的步进电机转角控制量求解数学模型,即
Figure FDA0002313710850000071
利用Matlab程序,求解上述数学模型关于θm在区间[0,2arcsin(rmt/Rma)]范围内的解,便可得到变轨距后动力转向架电机横向减振器的步进电机转角控制量,即θma
(5)变轨距动力转向架二系及电机横向减振器的最优阻尼调控:
当高速列车由原轨道运行至新轨道时,将步骤(4)中A步骤确定的变轨距前可控二系横向减振器的步进电机转角量θsb调节为步骤(4)中C步骤确定的变轨距后可控二系横向减振器的步进电机转角量θsa,同时,将步骤(4)中B步骤确定的变轨距前可控电机横向减振器的步进电机转角量θmb调节为步骤(4)中D步骤确定的变轨距后可控电机横向减振器的步进电机转角量θma,即可使动力转向架二系横向减振器及电机横向减振器的阻尼系数与列车的动力学性能达到最佳的匹配效果。
CN201911269271.6A 2019-12-11 2019-12-11 一种变轨距动力转向架二系及电机横向减振器最优阻尼调控方法 Pending CN110949436A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911269271.6A CN110949436A (zh) 2019-12-11 2019-12-11 一种变轨距动力转向架二系及电机横向减振器最优阻尼调控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911269271.6A CN110949436A (zh) 2019-12-11 2019-12-11 一种变轨距动力转向架二系及电机横向减振器最优阻尼调控方法

Publications (1)

Publication Number Publication Date
CN110949436A true CN110949436A (zh) 2020-04-03

Family

ID=69980998

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911269271.6A Pending CN110949436A (zh) 2019-12-11 2019-12-11 一种变轨距动力转向架二系及电机横向减振器最优阻尼调控方法

Country Status (1)

Country Link
CN (1) CN110949436A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114670886A (zh) * 2021-10-15 2022-06-28 合肥工业大学 一种轨道车辆互联式二系悬挂横向减振系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114670886A (zh) * 2021-10-15 2022-06-28 合肥工业大学 一种轨道车辆互联式二系悬挂横向减振系统
CN114670886B (zh) * 2021-10-15 2023-11-07 合肥工业大学 一种轨道车辆互联式二系悬挂横向减振系统

Similar Documents

Publication Publication Date Title
CN105069261B (zh) 低速轨道车辆二系横向减振器最优阻尼系数的设计方法
CN105117556B (zh) 高铁一系和二系及端部减振器阻尼系数的协同优化方法
Huang et al. Carbody hunting investigation of a high speed passenger car
CN104627196A (zh) 一种高速轨道车辆转向架
CN204605835U (zh) 一种高速轨道车辆转向架
CN108639089A (zh) 一种轨道车辆的转向架
CN203372249U (zh) 大轴重轨道车辆转向架
CN103674583A (zh) 轨道车辆垂向减震性能测试方法
CN105138783B (zh) 高速轨道车辆车体端部横向减振器阻尼系数的设计方法
CN205971343U (zh) 一种轨道交通用的抗侧滚扭杆装置
CN107588969A (zh) 六锅一鼓式整体六自由度激振轨道客车转向架试验台
CN204666326U (zh) 具有环形轨道的车-桥耦合振动试验装置
CN110949436A (zh) 一种变轨距动力转向架二系及电机横向减振器最优阻尼调控方法
CN106184268A (zh) 一种轨道交通用的抗侧滚扭杆装置及主动控制抗侧滚方法
CN104648433A (zh) 一种高速轨道车辆转向架
CN104568355A (zh) 具有环形轨道的车-桥耦合振动试验装置
CN110990954A (zh) 一种变轨距非动力转向架二系横向减振器最优阻尼调控方法
Yue et al. Simulation and experimental study on the active stability of high-speed trains
CN106043324B (zh) 空中巴士的台车结构及其运行轨道
CN205706704U (zh) 一种铁路轨道几何不平顺动态特性试验台
CN208376773U (zh) 一种轨道车辆的转向架
Lee et al. Roller rig tests of a semi-active suspension system for a railway vehicle
Bosso et al. Simulation of narrow gauge railway vehicles and experimental validation by mean of scaled tests on roller rig
CN212386492U (zh) 具有可测温轴箱的横纵一体式非动力构架装置
CN211893230U (zh) 一种铁路车辆的一系悬挂装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200403