CN110948981B - PVDF (polyvinylidene fluoride) high-energy-density composite film material with sandwich structure and preparation method thereof - Google Patents

PVDF (polyvinylidene fluoride) high-energy-density composite film material with sandwich structure and preparation method thereof Download PDF

Info

Publication number
CN110948981B
CN110948981B CN201911235687.6A CN201911235687A CN110948981B CN 110948981 B CN110948981 B CN 110948981B CN 201911235687 A CN201911235687 A CN 201911235687A CN 110948981 B CN110948981 B CN 110948981B
Authority
CN
China
Prior art keywords
pvdf
composite film
energy storage
dimensional
sandwich structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911235687.6A
Other languages
Chinese (zh)
Other versions
CN110948981A (en
Inventor
杨海波
张永靖
党祯儿
林营
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Wanzhida Technology Co ltd
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201911235687.6A priority Critical patent/CN110948981B/en
Publication of CN110948981A publication Critical patent/CN110948981A/en
Application granted granted Critical
Publication of CN110948981B publication Critical patent/CN110948981B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0092Drying moulded articles or half products, e.g. preforms, during or after moulding or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/46Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/52Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

The invention provides a PVDF high energy storage density composite film material with a sandwich structure and a preparation method thereof. Preparation of one-dimensional Na by two-step molten salt method0.5Bi0.5TiO3And dispersing the whisker precursor and PVDF powder in a DMF solvent, preparing a sandwich structure PVDF composite film with a one-dimensional NBT whisker/PVDF composite layer as an intermediate layer and a pure PVDF layer as an outer layer by a multiple tape casting method, and quenching and drying to obtain the final sandwich structure NBT/PVDF high energy storage density composite film energy storage material. The preparation process is simple, the composite film material is suitable for industrial production, the energy storage characteristic is excellent, and the energy storage density of the composite film material with high energy storage density at room temperature can reach 30.5 J.cm‑3The above.

Description

PVDF (polyvinylidene fluoride) high-energy-density composite film material with sandwich structure and preparation method thereof
Technical Field
The invention belongs to the field of polymer energy storage, and particularly relates to a PVDF high-energy-storage-density composite film material with a sandwich structure and a preparation method thereof.
Background
With the rapid development of modern science and technology, dielectric materials with more excellent performance are urgently needed in the field of power electronic systems. Microelectronic devices including gate dielectrics, high energy storage density capacitors, electroactive materials and the like require the nanocomposite material to have high dielectric constant and dielectric strength, and simultaneously still have low dielectric loss, high breakdown field strength and good toughness. Traditional polymer materials such as Polyimide (PI), polyvinylidene fluoride (PVDF), epoxy resin and the like have the characteristics of small volume, easiness in processing and the like, but the dielectric constant is very low, so that the practical use requirements are difficult to meet.
To further increase the electrical displacement and energy storage density of the polymer material, nano-ceramic particles with high dielectric constant are selected as fillers to be added into the polymer matrix, thereby forming the ceramic/polymer composite. On one hand, the high dielectric constant ceramic is selected as the filler, so that the dielectric constant of the composite material can be effectively improved, and on the other hand, the polymer matrix retains higher breakdown-resistant field intensity, so that the energy storage density is remarkably improved. Currently, the ceramic filler commonly used for the preparation of PVDF-based composites is mainly barium titanate (BaTiO)3) Titanium dioxide (TiO)2) Lead zirconate titanate (PbZrTiO)3) And the like. However, with the development of ceramic/polymer energy storage composite materials, researchers found that although the addition of ceramic can effectively increase the dielectric constant of polymer, the dielectric constant can also be reduced and higher leakage conduction loss is introduced, so that the demand for higher energy storage density cannot be met only by blending ceramic and polymer to prepare composite materials. Therefore, researchers have attempted to introduce a sandwich-type structure design into the preparation of ceramic/polymer composite materials, which includes ceramic nanoparticles added to the upper and lower layers to increase the dielectric constant, and nanofibers arranged perpendicular to the electric field direction added to the middle layer to increase the breakdown field strength. The sandwich structure can effectively combine the advantages of different layers, simultaneously obtains high dielectric constant and high breakdown field strength, and can greatly improve the energy storage density by regulating and controlling the thickness relation among the three layers on the basis.
The traditional sandwich structure adopted by most of the prior art is used for preparing the polymer composite film, the outer layer is a composite layer doped with ceramic filler, and the middle layer is a pure polymer layer with high breakdown. For example, Barium Titanate (BT) is used as ceramic filler and mixed with polyvinylidene fluoride (PVDF) polymer to form a composite film, the composite film is used as an outer layer, and a pure PVDF layer is used as an outer layerIntermediate layer at a breakdown field strength of 470MV · m-1The energy storage density is 18.8 J.cm-3The energy storage efficiency was 62.34%.
Disclosure of Invention
The invention aims to overcome the defects in the prior art and provides a PVDF high-energy-storage-density composite film material with a sandwich structure and a preparation method thereof.
The invention is realized by the following technical scheme:
the composite film material comprises an upper layer, a lower layer and a middle layer, wherein the upper layer and the lower layer are both PVDF layers, and the middle layer is a one-dimensional sodium bismuth titanate whisker/PVDF composite layer.
Preferably, the one-dimensional sodium bismuth titanate whisker in the intermediate layer accounts for 3% -12% of the PVDF in the intermediate layer in terms of volume fraction.
Preferably, the sandwich structure composite thin film material has the energy storage density of 17.86-30.55J-cm at room temperature-3In the meantime.
The preparation method of the PVDF high energy storage density composite film material with the sandwich structure comprises the following steps:
(1) adding fused salt NaCl into sodium carbonate and titanium dioxide, and heating for 1-2h at 1050-2Ti6O13Whiskers using one-dimensional Na2Ti6O13Mixing the crystal whisker as a template with sodium carbonate, bismuth oxide and fused salt NaCl, reacting the obtained mixed powder at the temperature of 900-1000 ℃ for 2-6h, washing to remove the fused salt, and drying to obtain one-dimensional Na0.5Bi0.5TiO3Whisker;
(2) adding one-dimensional Na0.5Bi0.5TiO3Dispersing whiskers and PVDF in N, N-dimethylformamide to form a stable suspension X; dispersing PVDF in N, N-dimethylformamide to obtain a solution A;
(3) sequentially carrying out primary tape casting film formation on the solution A, secondary tape casting film formation on the suspension X and tertiary tape casting film formation on the solution A on a glass plate by a tape casting method, and carrying out vacuum drying to obtain a primary product of the composite film;
(4) heating the composite film primary product at 195-205 ℃ for 5-10min, and immediately quenching in ice water to obtain Na with a compact sandwich structure0.5Bi0.5TiO3A PVDF composite film material.
Preferably, in step (1), one-dimensional Na is prepared2Ti6O13When in whisker treatment, the ratio of the total mass of the adopted sodium carbonate and titanium dioxide to the mass of the fused salt NaCl is 1: 2; preparation of one-dimensional Na0.5Bi0.5TiO3One-dimensional Na in case of whisker2Ti6O13The ratio of the total mass of the whiskers, the sodium carbonate and the bismuth oxide to the mass of the molten salt NaCl is 1: 2.
Preferably, in the step (3), the casting machine temperature is set to 185-195 ℃ and the scraper height is 15-20 μm during casting.
Preferably, in the step (3), the film forming temperature after casting is 60-80 ℃, and the film forming time is 0.5-1 h.
Preferably, in the step (3), the vacuum drying is carried out at 60-80 ℃ for 12-18 h.
Further, in the step (4), the primary product of the composite film is directly placed in a vacuum drying oven at 195-205 ℃ for heating.
Compared with the prior art, the invention has the following beneficial technical effects:
the invention adopts one-dimensional sodium bismuth titanate (NBT) whisker as ceramic filler to be doped into polyvinylidene fluoride (PVDF) polymer to prepare a composite film, the composite film layer is used as an intermediate layer, and a pure PVDF layer is used as an outer layer to form the composite film with a sandwich structure. For linear dielectrics, such as polymer dielectrics, the storage density is largely dependent on the breakdown field of the material. The breakdown voltage of the composite film is secondarily distributed in the breakdown process, so that the outer pure PVDF layer bears higher breakdown voltage, meanwhile, the one-dimensional filler of the inner layer prolongs the breakdown path of an electric tree, and the breakdown electric field of the composite film is greatly improved. Therefore, compared with the prior art, the energy storage density and the energy storage efficiency of the composite film are obviously improved, and the composite film can be rapidly charged and dischargedIs electrically and has excellent cycle stability. At a breakdown field strength of 615MV m-1The energy storage density is as high as 30.55 J.cm-3And the energy storage efficiency is as high as 80.26%.
Compared with the existing mainstream electrostatic spinning method, the method for preparing the one-dimensional NBT crystal whisker by adopting the molten salt method has the advantages of high yield and low cost. And dispersing the prepared one-dimensional NBT whisker and PVDF powder in a DMF solvent, and preparing a one-dimensional NBT whisker/PVDF composite layer by a tape casting method to finally obtain the composite film with a sandwich structure. Compared with the mainstream hot-pressing forming method at present, the method has the advantages of simple operation and low cost, and is beneficial to industrialization of the composite film.
Drawings
FIG. 1: the obtained one-dimensional Na0.5Bi0.5TiO3XRD patterns of (NBT) whiskers;
FIG. 2: the obtained one-dimensional Na0.5Bi0.5TiO3SEM pictures of (NBT) whiskers;
FIG. 3: dielectric spectrum of the sandwiched PVDF high energy storage density composite film material prepared in example 1;
FIG. 4: hysteresis loop diagrams (test frequency 10Hz) of the sandwich-structured PVDF high energy storage density composite thin film material prepared in example 1;
FIG. 5: dielectric spectrum of the PVDF high energy storage density composite thin film material with the sandwich structure prepared in example 2;
FIG. 6: the hysteresis loop diagram (test frequency is 10Hz) of the PVDF high-energy-density composite thin film material with the sandwich structure prepared in the example 2;
FIG. 7: dielectric spectrum of the PVDF high energy storage density composite thin film material with the sandwich structure prepared in example 3;
FIG. 8: the hysteresis loop diagram (test frequency is 10Hz) of the PVDF high-energy-density composite thin film material with the sandwich structure prepared in the example 3;
FIG. 9: dielectric spectrum of the PVDF high energy storage density composite thin film material with the sandwich structure prepared in example 4;
FIG. 10: example 4 hysteresis loop diagram (test frequency 10Hz) of sandwich structure PVDF high energy storage density composite thin film material prepared.
Detailed Description
The present invention will now be described in further detail with reference to specific examples, which are intended to be illustrative, but not limiting, of the invention.
A PVDF high energy storage density composite film material with a sandwich structure is prepared by preparing one-dimensional NBT whiskers by a molten salt method, dispersing the one-dimensional NBT whiskers and PVDF powder in a DMF solvent, preparing a middle-layer one-dimensional NBT whisker/PVDF composite layer by a tape casting method, and forming a pure PVDF layer on the outer layer to form the PVDF high energy storage density composite film with the sandwich structure.
The preparation method of the PVDF high energy storage density composite film material with the sandwich structure comprises the following steps:
(1) according to the chemical formula Na2Ti6O13Will analyze pure Na2CO3(>99.8%)、TiO2(>99.8 percent) is mixed, NaCl is used as molten salt, the mass ratio of the mixture to the molten salt is 1:2, absolute ethyl alcohol is used as a medium, zirconium dioxide is ball-milled for 12-18h and evenly mixed, the mixture is dried at 80 ℃ and then placed in a closed alumina crucible for calcining at 1050-1150 ℃ for 1-2h, and the obtained powder is repeatedly cleaned by distilled water until filtrate has no Cl-1Until the ion is removed, drying to obtain one-dimensional Na2Ti6O13(NTO) template.
(2) Reacting the NTO template obtained in the step (1) with analytically pure Na according to the chemical reaction formula (1)2CO3、Bi2O3Mixing, namely using NaCl as molten salt, the mass ratio of the mixed material to the molten salt is 1:2, using absolute ethyl alcohol as a medium, magnetically stirring for 12-18h, uniformly mixing, drying at 80 ℃, placing in a sealed alumina crucible, calcining at 900-1000 ℃ for 2-6h, and repeatedly cleaning the obtained powder with distilled water until filtrate is free of Cl-1Until the ion is removed, drying to obtain one-dimensional Na0.5Bi0.5TiO3(NBT) whiskers.
{Na2Ti6O13+0.5Na2CO3+1.5Bi2O3}→6{Na0.5Bi0.5TiO3}+0.5CO2↑(1)
(3) One-dimensional Na obtained in the step (2)0.5Bi0.5TiO3Adding the crystal whisker into a DMF solvent, stirring for 2h at 60 ℃, performing ultrasonic treatment for 30min alternately, repeating for 6-9 times to prepare a uniformly dispersed and stable suspension, adding PVDF solid powder into the uniform suspension according to a certain volume ratio, stirring for 2h at 60 ℃, performing ultrasonic treatment for 30min alternately, and repeating for 6-9 times to prepare one-dimensional Na0.5Bi0.5TiO3And blending the whiskers and the PVDF to obtain a uniform suspension X. Meanwhile, only PVDF solid powder is added into another DMF solvent, and the mixture is magnetically stirred at the temperature of 60 ℃ for 12-18h to be dissolved, so that pure PVDF solution A is prepared.
(4) Setting the temperature of a casting machine at 185-195 ℃, controlling the height of a scraper at 15-20 mu m, carrying out primary tape casting on the solution A prepared in the step (3), carrying out vacuum drying at 60-80 ℃ for 0.5-1h to form a film, then carrying out secondary tape casting on the suspension X prepared in the step (3) on a glass plate subjected to primary film forming, carrying out vacuum drying at 60-80 ℃ for 0.5-1h to form a film, then carrying out tertiary tape casting on the solution A prepared in the step (3) on the glass plate subjected to secondary film forming, carrying out vacuum drying at 60-80 ℃ for 0.5-1h to form a film, and finally carrying out vacuum drying on the prepared sandwich structure composite film at 60-80 ℃ for 12-18h to obtain a primary sample.
(5) And heating and preserving the prepared preliminary sample of the sandwich structure composite film for 5-10min at 195-205 ℃, and immediately quenching in ice water to obtain the compact sandwich structure composite film.
The obtained one-dimensional Na0.5Bi0.5TiO3Carrying out X-ray diffraction test on the crystal whisker;
the obtained one-dimensional Na0.5Bi0.5TiO3Carrying out SEM test on the crystal whisker;
the prepared sandwich structure composite film sample is cut into a rectangle with the diameter of 10mm multiplied by 15mm to prepare a diffraction film, a gold electrode with the diameter of 6mm is plated, and then the dielectric property of the diffraction film is tested at room temperature.
Cutting the prepared sample into 10mm × 15mm rectangles to prepare a diffraction film, plating a gold electrode with the diameter of 2mm, testing the ferroelectric property of the sample at the room temperature under the frequency of 10Hz, calculating the energy storage characteristic, and calculating the energy storage density (W)1) And energy lossSpecific loss (W)2) The calculation formula of (2) is as follows:
Figure BDA0002304813440000071
Figure BDA0002304813440000072
wherein W1And W2Respectively representing the energy storage density and energy loss density, PmaxDenotes the maximum polarization, PrIndicates remanent polarization, E indicates electric field intensity, and P indicates polarization.
The contents of the present invention will be further clarified by the examples given below, which are not intended to limit the present invention.
Example 1:
in this example, a group of sandwich-structured NBT/PVDF composite films were prepared by a solution layer-by-layer casting process. The composite film can be simplified to a 0-X-0 model, where 0 represents the pure PVDF of the outer layer and X represents the volume fraction of the 1D NBT whiskers of the middle layer. In this example, the composite film can be simplified to a 0-3-0 model, where the outer layer is a pure PVDF film and the middle layer is a NBT/PVDF high energy storage density composite film with a volume fraction of 1D NBT whisker of 3%.
The preparation method of the PVDF high energy storage density composite film material with the sandwich structure comprises the following steps:
(1) according to the chemical formula Na2Ti6O13Will analyze pure Na2CO3,TiO2Mixing materials, using NaCl as molten salt, the mass ratio of the materials to the molten salt is 1:2, using absolute ethyl alcohol as a medium, ball-milling zirconium dioxide for 12 hours, uniformly mixing, drying at 80 ℃, placing in a closed alumina crucible, calcining at 1100 ℃ for 2 hours, and repeatedly cleaning the obtained powder with distilled water until filtrate is free of Cl-1Until the ion is removed, drying to obtain one-dimensional Na2Ti6O13(NTO) template.
(2) Carrying out analysis on the NTO template obtained in the step (1) according to a chemical reaction formula (1)Pure Na2CO3,Bi2O3Mixing, using NaCl as molten salt, the mass ratio of the mixed material to the molten salt is 1:2, using absolute ethyl alcohol as a medium, magnetically stirring for 12h, uniformly mixing, drying at 80 ℃, placing in a sealed alumina crucible, calcining at 900 ℃ for 6h, repeatedly cleaning the obtained powder with distilled water until filtrate has no Cl-1Drying until ions are generated to obtain one-dimensional Na0.5Bi0.5TiO3(NBT) whiskers.
(3) One-dimensional Na obtained in the step (2)0.5Bi0.5TiO30.1515g of whisker is taken and added into 10ml of DMF solvent, stirring is carried out for 2h at 60 ℃, ultrasonic processing is carried out for 30min alternately, 6 times of repetition are carried out to prepare evenly dispersed and stable suspension, 1g of PVDF solid powder is added into the even suspension, stirring is carried out for 2h at 60 ℃, ultrasonic processing is carried out for 30min alternately, 6 times of repetition are carried out to prepare one-dimensional Na0.5Bi0.5TiO3Whisker and PVDF DMF blending uniform suspension X3. Meanwhile, 10ml of DMF solvent is added into another empty beaker, only 1g of PVDF solid powder is added, and the mixture is magnetically stirred at 60 ℃ for 12h to be dissolved, so that DMF solution A of pure PVDF is prepared0
(4) Setting the temperature of a casting machine to 186 ℃, controlling the height of a scraper to be 15 mu m, and treating the solution A prepared in the step (3)0Performing primary tape casting, performing vacuum drying at 80 ℃ for 0.5h to form a film, and then performing primary tape casting on the suspension X prepared in the step (3)3Performing secondary tape casting on a glass plate with primary film forming, performing vacuum drying at 80 ℃ for 0.5h to form a film, and then performing film forming on the solution A prepared in the step (3)0And carrying out three-time tape casting on the glass plate subjected to the secondary film forming, carrying out vacuum drying at 80 ℃ for 0.5h to form a film, and finally carrying out vacuum drying on the prepared sandwich structure composite film at 60 ℃ for 12h to obtain a primary sample.
(5) Heating and preserving the prepared primary sample of the sandwich structure composite film for 8min at 200 ℃, and immediately putting the primary sample in ice water for quenching to obtain a compact sandwich structure composite film 0-3-0.
The obtained one-dimensional Na0.5Bi0.5TiO3(NBT) whiskers were subjected to X-ray diffraction testing as shown in FIG. 1. The XRD spectrum shows that the ceramic powder obtained in the embodiment has a pure perovskite structure.
The obtained one-dimensional Na0.5Bi0.5TiO3(NBT) whiskers were SEM tested as shown in FIG. 2. As can be seen from SEM images, the ceramic powder obtained in the example has obvious whisker-like structures, the length of the whisker is 3-5 μm, and the diameter of the whisker is 0.4-0.8 μm.
The prepared sample was cut into a rectangular shape of 10mm × 15mm to prepare a diffraction film, a gold electrode having a diameter of 6mm was plated, and then a dielectric property test was performed at room temperature, as shown in fig. 3. The composite film prepared by the embodiment has the advantages that the dielectric constant is gradually reduced and the dielectric loss is gradually increased along with the increase of the frequency. When the frequency is 10kHz, the dielectric constant of the composite film prepared by the embodiment is 9.32, and the dielectric loss is 0.042.
The prepared sample is cut into a rectangle of 10mm multiplied by 15mm to prepare a diffraction film, a gold electrode with the diameter of 2mm is plated, the ferroelectric property of the sample is tested at the room temperature under the frequency of 10Hz, and the energy storage characteristic is calculated. As shown in fig. 4, the effective energy storage density of the PVDF high energy storage density composite film material with the sandwich structure in this embodiment is 650MV · m in electric field strength, which is obtained by calculating the energy storage characteristics based on the hysteresis loop measured at room temperature for the PVDF high energy storage density composite film material with the sandwich structure in this embodiment-1The time is as high as 27.98J cm-3. Table 1 shows the energy storage characteristics of the PVDF high energy storage density composite film material with the sandwich structure in this embodiment at room temperature.
Example 2:
in this example, a group of sandwich-structured NBT/PVDF composite films were prepared by a solution layer-by-layer casting process. The composite film can be simplified to a 0-X-0 model, where 0 represents the pure PVDF of the outer layer and X represents the volume fraction of the 1D NBT whiskers of the middle layer. In this example, the composite film can be simplified to a 0-6-0 model, where the outer layer is a pure PVDF film and the middle layer is a NBT/PVDF high energy storage density composite film with a 1D NBT whisker volume fraction of 6%.
The preparation method of the PVDF high energy storage density composite film material with the sandwich structure comprises the following steps:
(1) according to the chemical formula Na2Ti6O13Will analyze pure Na2CO3,TiO2Preparing materials by using NaCl as molten salt in a mass ratio of 1:2, using absolute ethyl alcohol as a medium, ball-milling zirconium dioxide for 12 hours, uniformly mixing, drying at 80 ℃, placing in a closed alumina crucible, calcining at 1100 ℃ for 2 hours, and repeatedly cleaning the obtained powder with distilled water until filtrate has no Cl-1Until the ion is removed, drying to obtain one-dimensional Na2Ti6O13(NTO) template.
(2) Reacting the NTO template obtained in the step (1) with analytically pure Na according to the chemical reaction formula (1)2CO3,Bi2O3Mixing, using NaCl as molten salt, the mass ratio of the mixed material to the molten salt is 1:2, using absolute ethyl alcohol as a medium, magnetically stirring for 12h, uniformly mixing, drying at 80 ℃, placing in a closed alumina crucible, calcining at 950 ℃ for 4h, and repeatedly cleaning the obtained powder with distilled water until filtrate has no Cl-1Until the ion is removed, drying to obtain one-dimensional Na0.5Bi0.5TiO3(NBT) whisker precursor.
(3) One-dimensional Na obtained in the step (2)0.5Bi0.5TiO3Adding 0.3031g of whisker precursor into 10ml of DMF solvent, stirring for 2h at 60 ℃, carrying out ultrasonic treatment for 30min, alternately carrying out the ultrasonic treatment, repeating the stirring for 7 times to prepare uniformly dispersed and stable suspension, adding 1g of PVDF solid powder into the uniform suspension, stirring for 2h at 60 ℃, carrying out ultrasonic treatment for 30min, alternately carrying out the ultrasonic treatment, and repeating the stirring for 7 times to prepare the one-dimensional Na0.5Bi0.5TiO3Whisker and PVDF DMF blending uniform suspension X6. Meanwhile, 10ml of DMF solvent is added into another empty beaker, only 1g of PVDF solid powder is added, and the mixture is magnetically stirred at 60 ℃ for 14h to be dissolved, so that DMF solution A of pure PVDF is prepared0
(4) Setting the temperature of a casting machine to be 193 ℃, controlling the height of a scraper to be 15 mu m, and treating the solution A prepared in the step (3)0Performing primary tape casting, performing vacuum drying at 75 ℃ for 0.6h to form a film, and then performing suspension X prepared in the step (3)6Performing secondary tape casting on a glass plate with primary film forming, performing vacuum drying at 75 ℃ for 0.6h to form a film, and then performing film forming on the solution A prepared in the step (3)0Casting for three times on a glass plate with a secondary film forming, vacuum drying at 75 ℃ for 0.6h to form a film, and finally, compounding the prepared sandwich structure filmThe membrane was dried under vacuum at 60 ℃ for 14h to obtain a preliminary sample.
(5) And heating and preserving the prepared primary sample of the sandwich structure composite film for 8min at 198 ℃, and immediately putting the primary sample in ice water for quenching to obtain the compact sandwich structure composite film 0-6-0. The prepared sample was cut into a rectangular shape of 10mm × 15mm to prepare a diffraction film, a gold electrode having a diameter of 6mm was plated, and then a dielectric property test was performed at room temperature, as shown in fig. 5. The composite film prepared by the embodiment has the advantages that the dielectric constant is gradually reduced and the dielectric loss is gradually increased along with the increase of the frequency. When the frequency is 10kHz, the dielectric constant of the composite film prepared by the embodiment is 10.75, and the dielectric loss is 0.039.
The prepared sample is cut into a rectangle of 10mm multiplied by 15mm to prepare a diffraction film, a gold electrode with the diameter of 2mm is plated, the ferroelectric property of the sample is tested at the room temperature under the frequency of 10Hz, and the energy storage characteristic is calculated. As shown in fig. 6, the effective energy storage density of the PVDF high energy storage density composite film material with the sandwich structure of this embodiment is 615MV · m of the electric field strength, which is obtained by calculating the energy storage characteristics based on the hysteresis loop measured at room temperature for the PVDF high energy storage density composite film material with the sandwich structure of this embodiment-1The time is as high as 30.55J cm-3. Table 1 shows the energy storage characteristics of the sandwiched PVDF high energy storage density composite film material at room temperature.
Example 3:
in this example, a group of sandwich-structured NBT/PVDF composite films were prepared by a solution layer-by-layer casting process. The composite film can be simplified to a 0-X-0 model, where 0 represents the pure PVDF of the outer layer and X represents the volume fraction of the 1D NBT whiskers of the middle layer. In this example, the composite film can be simplified to a 0-9-0 model, where the outer layer is a pure PVDF film and the middle layer is a NBT/PVDF high energy storage density composite film with a 1D NBT whisker volume fraction of 9%.
The preparation method of the PVDF high energy storage density composite film material with the sandwich structure comprises the following steps:
(1) according to the chemical formula Na2Ti6O13Will analyze pure Na2CO3,TiO2Proportioning, and using NaCl as molten saltThe mass ratio of the ingredients to the molten salt is 1:2, absolute ethyl alcohol is used as a medium, zirconium dioxide is ball-milled for 12 hours and uniformly mixed, the mixture is dried at 80 ℃ and then placed in a closed alumina crucible for calcining for 2 hours at 1100 ℃, and the obtained powder is repeatedly cleaned by distilled water until the filtrate is free of Cl-1Until the ion is removed, drying to obtain one-dimensional Na2Ti6O13(NTO) template.
(2) Reacting the NTO template obtained in the step (1) with analytically pure Na according to the chemical reaction formula (1)2CO3,Bi2O3Mixing, using NaCl as molten salt, the mass ratio of the mixed material to the molten salt is 1:2, using absolute ethyl alcohol as a medium, magnetically stirring for 12h, uniformly mixing, drying at 80 ℃, placing in a closed alumina crucible, calcining at 960 ℃ for 3h, repeatedly cleaning the obtained powder with distilled water until filtrate has no Cl-1Until the ion is removed, drying to obtain one-dimensional Na0.5Bi0.5TiO3(NBT) whisker precursor.
(3) One-dimensional Na obtained in the step (2)0.5Bi0.5TiO3Adding 0.4546g of whisker precursor into 10ml of DMF solvent, stirring at 60 ℃ for 2h, performing ultrasonic treatment for 30min alternately, repeating the stirring for 8 times to prepare uniformly dispersed and stable suspension, adding 1g of PVDF solid powder into the uniform suspension, stirring at 60 ℃ for 2h, performing ultrasonic treatment for 30min alternately, and repeating the stirring for 8 times to prepare one-dimensional Na0.5Bi0.5TiO3Whisker and PVDF DMF blending uniform suspension X9. Meanwhile, 10ml of DMF solvent is added into another empty beaker, only 1g of PVDF solid powder is added, and the mixture is magnetically stirred at 60 ℃ for 16h to be dissolved, so that DMF solution A of pure PVDF is prepared0
(4) Setting the temperature of a casting machine at 195 ℃, controlling the height of a scraper at 18 mu m, and treating the solution A prepared in the step (3)0Performing primary tape casting, performing vacuum drying at 70 ℃ for 0.8h to form a film, and then performing primary tape casting on the suspension X prepared in the step (3)9Performing secondary tape casting on a glass plate with primary film forming, performing vacuum drying at 70 ℃ for 0.8h to form a film, and then performing film forming on the solution A prepared in the step (3)0And performing three-time tape casting on the glass plate subjected to the secondary film forming, performing vacuum drying at 70 ℃ for 0.8h to form a film, and finally performing vacuum drying on the prepared sandwich structure composite film at 70 ℃ for 12h to obtain a primary sample.
(5) Heating the prepared preliminary sample of the sandwich structure composite film at 196 ℃ for 10min, and immediately putting the preliminary sample in ice water for quenching to obtain the compact sandwich structure composite film 0-9-0.
The prepared sample was cut into a 10mm × 15mm rectangle to prepare a diffraction film, gold electrodes having a diameter of 6mm were plated, and then dielectric property test was performed at room temperature, as shown in fig. 7. The composite film prepared by the embodiment has the advantages that the dielectric constant is gradually reduced and the dielectric loss is gradually increased along with the increase of the frequency. When the frequency is 10kHz, the dielectric constant of the composite film prepared by the embodiment is 12.17, and the dielectric loss is 0.042.
The prepared sample is cut into a rectangle of 10mm multiplied by 15mm to prepare a diffraction film, a gold electrode with the diameter of 2mm is plated, the ferroelectric property of the sample is tested at the room temperature under the frequency of 10Hz, and the energy storage characteristic is calculated. As shown in fig. 8, the effective energy storage density of the PVDF high energy storage density composite film material with the sandwich structure in this embodiment is 515MV · m in electric field strength, which is obtained by measuring the electrical hysteresis loop of the PVDF high energy storage density composite film material with the sandwich structure in this embodiment at room temperature and calculating the energy storage characteristic based on the electrical hysteresis loop-1The time is as high as 23.89J cm-3. Table 1 shows the energy storage characteristics of the PVDF high energy storage density composite film material with the sandwich structure in this embodiment at room temperature.
Example 4:
in this example, a group of sandwich-structured NBT/PVDF composite films were prepared by a solution layer-by-layer casting process. The composite film can be simplified to a 0-X-0 model, where 0 represents the pure PVDF of the outer layer and X represents the volume fraction of the 1D NBT whiskers of the middle layer. In this example, the composite film can be simplified to a 0-12-0 model, where the outer layer is pure PVDF film and the middle layer is NBT/PVDF high energy storage density composite film with a 1D NBT whisker volume fraction of 12%.
The preparation method of the PVDF high energy storage density composite film material with the sandwich structure comprises the following steps:
(1) according to the chemical formula Na2Ti6O13Will analyze pure Na2CO3,TiO2Proportioning, using NaCl as molten salt, and proportioningThe mass ratio is 1:2, absolute ethyl alcohol is used as a medium, zirconium dioxide is ball-milled for 12 hours and uniformly mixed, the mixture is dried at the temperature of 80 ℃ and then placed in a closed alumina crucible for calcining for 2 hours at the temperature of 1100 ℃, and the obtained powder is repeatedly cleaned by distilled water until the filtrate is free of Cl-1Until the ion is removed, drying to obtain one-dimensional Na2Ti6O13(NTO) template.
(2) Reacting the NTO template obtained in the step (1) with analytically pure Na according to the chemical reaction formula (1)2CO3,Bi2O3Mixing, using NaCl as molten salt, the mass ratio of the mixed material to the molten salt is 1:2, using absolute ethyl alcohol as a medium, magnetically stirring for 12h, uniformly mixing, drying at 70 ℃, placing in a closed alumina crucible, calcining at 980 ℃ for 2h, repeatedly cleaning the obtained powder with distilled water until filtrate has no Cl-1Until the ion is removed, drying to obtain one-dimensional Na0.5Bi0.5TiO3(NBT) whisker precursor.
(3) One-dimensional Na obtained in the step (2)0.5Bi0.5TiO3Adding 0.6062g of whisker precursor into 10ml of DMF solvent, stirring for 2h at 60 ℃, carrying out ultrasonic treatment for 30min, alternately carrying out the ultrasonic treatment, repeating the stirring for 9 times to prepare uniformly dispersed and stable suspension, adding 1g of PVDF solid powder into the uniform suspension, stirring for 2h at 60 ℃, carrying out the ultrasonic treatment for 30min, alternately carrying out the ultrasonic treatment, and repeating the stirring for 9 times to prepare the one-dimensional Na0.5Bi0.5TiO3Whisker and PVDF DMF blending uniform suspension X12. Meanwhile, adding 10ml of DMF solvent into another empty beaker, only adding 1g of PVDF solid powder, and magnetically stirring at 60 ℃ for 18h to dissolve to obtain a DMF solution A of pure PVDF0
(4) Setting the temperature of a casting machine to be 190 ℃, controlling the height of a scraper to be 20 mu m, and treating the solution A prepared in the step (3)0Performing primary tape casting, performing vacuum drying at 60 ℃ for 1h to form a film, and then performing suspension X prepared in the step (3)12Performing secondary tape casting on a glass plate with primary film forming, performing vacuum drying at 60 ℃ for 1h to form a film, and then performing film forming on the solution A prepared in the step (3)0And carrying out three-time tape casting on the glass plate subjected to the secondary film forming, carrying out vacuum drying at 60 ℃ for 1h to form a film, and finally carrying out vacuum drying on the prepared sandwich structure composite film at 60 ℃ for 18h to obtain a primary sample.
(5) And heating and preserving the prepared primary sample of the sandwich structure composite film for 5min at 205 ℃, and immediately putting the primary sample in ice water for quenching to obtain the compact sandwich structure composite film 0-12-0.
The prepared sample was cut into a rectangular shape of 10mm × 15mm to prepare a diffraction film, a gold electrode having a diameter of 6mm was plated, and then a dielectric property test was performed at room temperature as shown in fig. 9. The composite film prepared by the embodiment has the advantages that the dielectric constant is gradually reduced and the dielectric loss is gradually increased along with the increase of the frequency. When the frequency is 10kHz, the dielectric constant of the composite film prepared by the embodiment is 15.82, and the dielectric loss is 0.045.
The prepared sample is cut into a rectangle of 10mm multiplied by 15mm to prepare a diffraction film, a gold electrode with the diameter of 2mm is plated, the ferroelectric property of the sample is tested at the room temperature under the frequency of 10Hz, and the energy storage characteristic is calculated. As shown in fig. 10, the effective energy storage density of the PVDF high energy storage density composite film material with the sandwich structure in this embodiment is 380MV · m of the electric field strength, which is obtained by calculating the energy storage characteristic based on the hysteresis loop measured at room temperature for the PVDF high energy storage density composite film material with the sandwich structure in this embodiment-1The time is as high as 17.86 J.cm-3. Table 1 shows the energy storage characteristics of the PVDF high energy storage density composite film material with the sandwich structure in this embodiment at room temperature.
TABLE 1 energy storage characteristics of PVDF high energy storage density composite film material with sandwich structure in embodiment at room temperature
Figure BDA0002304813440000151
As can be seen from Table 1, the best overall energy storage characteristics were obtained when the amount of one-dimensional NBT whiskers added was 6%. Breakdown field strength up to 615MV m-1The highest effective energy storage density is 30.55J cm-3And the energy storage efficiency is as high as 80.26%.
Through the embodiment, the defects of low energy storage density, poor energy storage efficiency and the like of most materials caused by interface effect are effectively overcome by changing the microstructure of the filler and designing the sandwich structure of the composite film, and the prepared composite filmThe high-energy-density composite film material with the sandwich structure is expected to replace commercial biaxially oriented polypropylene (BOPP) for preparing film capacitors, wherein the BOPP is 640 MV.m-1The lower energy storage density is only 2J cm-3Left and right. The film capacitor is widely applied to the fields of power electronics and the like, for example, an energy converter in an electric automobile can quickly release energy, and the problem that a lithium battery cannot instantly release energy is effectively solved.
The contents of the present invention will be further clearly understood from the examples given above, but are not intended to limit the present invention.

Claims (7)

1. The PVDF high energy storage density composite thin film material with a sandwich structure is characterized by comprising an upper layer, a lower layer and a middle layer, wherein the upper layer and the lower layer are both PVDF layers, and the middle layer is a one-dimensional sodium bismuth titanate whisker/PVDF composite layer;
the volume fraction of the one-dimensional sodium bismuth titanate whiskers in the middle layer in the PVDF in the middle layer is 6%;
the sandwich structure composite film material has breakdown electric field intensity of 615MV m at room temperature-1The energy storage density is 30.55 J.cm-3
The preparation method of the PVDF high energy storage density composite film material with the sandwich structure comprises the following steps:
(1) adding fused salt NaCl into sodium carbonate and titanium dioxide, and heating for 1-2h at 1050-2Ti6O13Whiskers using one-dimensional Na2Ti6O13Mixing the crystal whisker as a template with sodium carbonate, bismuth oxide and fused salt NaCl, reacting the obtained mixed powder at the temperature of 900-1000 ℃ for 2-6h, washing to remove the fused salt, and drying to obtain one-dimensional Na0.5Bi0.5TiO3Whisker;
(2) adding one-dimensional Na0.5Bi0.5TiO3Dispersing whiskers and PVDF in N, N-dimethylformamide to form a stable suspension X; dispersing PVDF in N, N-dimethylformamide to obtain a solution A;
(3) sequentially carrying out primary tape casting film formation on the solution A, secondary tape casting film formation on the suspension X and tertiary tape casting film formation on the solution A on a glass plate by a tape casting method, and carrying out vacuum drying to obtain a primary product of the composite film;
(4) heating the composite film primary product at 195-205 ℃ for 5-10min, and immediately quenching in ice water to obtain Na with a compact sandwich structure0.5Bi0.5TiO3A PVDF composite film material.
2. The preparation method of the sandwiched PVDF high energy storage density composite film material as claimed in claim 1, which comprises the following steps:
(1) adding fused salt NaCl into sodium carbonate and titanium dioxide, and heating for 1-2h at 1050-2Ti6O13Whiskers using one-dimensional Na2Ti6O13The whisker is taken as a template to be mixed with sodium carbonate, bismuth oxide and fused salt NaCl, the obtained mixed powder reacts for 2 to 6 hours at the temperature of 900-1000 ℃, and then is washed to remove the fused salt and dried to obtain one-dimensional Na0.5Bi0.5TiO3Whisker;
(2) adding one-dimensional Na0.5Bi0.5TiO3Dispersing whiskers and PVDF in N, N-dimethylformamide to form a stable suspension X; dispersing PVDF in N, N-dimethylformamide to obtain a solution A;
(3) sequentially carrying out primary casting film formation of a solution A, secondary casting film formation of a suspension X and tertiary casting film formation of the solution A on a glass plate by a casting method, and carrying out vacuum drying to obtain a primary product of the composite film;
(4) heating the composite film primary product at 195-205 ℃ for 5-10min, and immediately quenching in ice water to obtain Na with a compact sandwich structure0.5Bi0.5TiO3A PVDF composite film material.
3. The method for preparing PVDF high energy storage density composite film material with sandwich structure according to claim 2, wherein in step (1), one-dimensional Na is prepared2Ti6O13When in whisker treatment, the ratio of the total mass of the adopted sodium carbonate and titanium dioxide to the mass of the fused salt NaCl is 1: 2; preparation of one-dimensional Na0.5Bi0.5TiO3In case of whiskers, one-dimensional Na2Ti6O13The ratio of the total mass of the whiskers, the sodium carbonate and the bismuth oxide to the mass of the molten salt NaCl is 1: 2.
4. The method for preparing PVDF composite film material with sandwich structure of claim 2, wherein in step (3), the casting temperature is 185-195 ℃ and the doctor blade height is 15-20 μm.
5. The PVDF high-energy-density composite film material with a sandwich structure and a preparation method thereof as claimed in claim 2, wherein in the step (3), the film forming temperature is 60-80 ℃ after casting, and the film forming time is 0.5-1 h.
6. The sandwiched PVDF high energy storage density composite film material and the preparation method thereof as claimed in claim 2, wherein in step (3), vacuum drying is performed at 60-80 ℃ for 12-18 h.
7. The sandwiched PVDF composite film material with high energy storage density as defined in claim 6 wherein in step (4), the composite film primary product is directly placed in a vacuum drying oven at 195-205 ℃ for heating.
CN201911235687.6A 2019-12-05 2019-12-05 PVDF (polyvinylidene fluoride) high-energy-density composite film material with sandwich structure and preparation method thereof Active CN110948981B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911235687.6A CN110948981B (en) 2019-12-05 2019-12-05 PVDF (polyvinylidene fluoride) high-energy-density composite film material with sandwich structure and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911235687.6A CN110948981B (en) 2019-12-05 2019-12-05 PVDF (polyvinylidene fluoride) high-energy-density composite film material with sandwich structure and preparation method thereof

Publications (2)

Publication Number Publication Date
CN110948981A CN110948981A (en) 2020-04-03
CN110948981B true CN110948981B (en) 2022-06-24

Family

ID=69980058

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911235687.6A Active CN110948981B (en) 2019-12-05 2019-12-05 PVDF (polyvinylidene fluoride) high-energy-density composite film material with sandwich structure and preparation method thereof

Country Status (1)

Country Link
CN (1) CN110948981B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112812475A (en) * 2021-02-23 2021-05-18 陕西科技大学 Flaky sodium bismuth titanate/polyvinylidene fluoride composite material and preparation method thereof
CN113459542A (en) * 2021-06-28 2021-10-01 陕西科技大学 PVDF (polyvinylidene fluoride) -based composite film with double-layer structure and preparation method thereof
CN114559721A (en) * 2022-03-04 2022-05-31 西南科技大学 Sandwich-structure high-energy-storage-density polyimide-based composite film and preparation method thereof
CN114989469A (en) * 2022-05-19 2022-09-02 乌镇实验室 Three-layer PEI flexible composite film with high-temperature energy storage performance and preparation method thereof
CN114919116A (en) * 2022-05-26 2022-08-19 陕西科技大学 PVDF (polyvinylidene fluoride) -based composite film with five-layer structure and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004028875A (en) * 2002-06-27 2004-01-29 Denka Seiken Co Ltd Handy membrane assay method, and kit therefor
CN107311649A (en) * 2017-07-26 2017-11-03 中南大学 A kind of bismuth-sodium titanate strontium titanates sub-micrometer rod and its preparation method and application
CN108101384A (en) * 2017-12-07 2018-06-01 陕西科技大学 A kind of bismuth-sodium titanate/Kynoar three-decker composite material for energy storage and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1520037A4 (en) * 2002-02-27 2006-06-07 Miragene Inc Improved substrate chemistry for protein immobilization on a rigid support

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004028875A (en) * 2002-06-27 2004-01-29 Denka Seiken Co Ltd Handy membrane assay method, and kit therefor
CN107311649A (en) * 2017-07-26 2017-11-03 中南大学 A kind of bismuth-sodium titanate strontium titanates sub-micrometer rod and its preparation method and application
CN108101384A (en) * 2017-12-07 2018-06-01 陕西科技大学 A kind of bismuth-sodium titanate/Kynoar three-decker composite material for energy storage and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Excellent Energy Storage of Sandwich-Structured PVDF-Based Composite at Low Electric Field by Introduction of the Hybrid CoFe2O4@BZT−BCT Nanofibers;Qingguo Chi等;《ACS Sustainable Chem. Eng》;20180630(第6期);第403-412页 *

Also Published As

Publication number Publication date
CN110948981A (en) 2020-04-03

Similar Documents

Publication Publication Date Title
CN110948981B (en) PVDF (polyvinylidene fluoride) high-energy-density composite film material with sandwich structure and preparation method thereof
Chi et al. Significantly enhanced energy storage density for poly (vinylidene fluoride) composites by induced PDA-coated 0.5 Ba (Zr 0.2 Ti 0.8) O 3–0.5 (Ba 0.7 Ca 0.3) TiO 3 nanofibers
Fu et al. Improving dielectric properties of PVDF composites by employing surface modified strong polarized BaTiO3 particles derived by molten salt method
Li et al. Enhanced energy storage density and discharge efficiency in potassium sodium niobite-based ceramics prepared using a new scheme
Zhang et al. Achieving ultrahigh energy storage performance over a broad temperature range in (Bi0. 5Na0. 5) TiO3-based eco-friendly relaxor ferroelectric ceramics via multiple engineering processes
CN106946566B (en) Preparation method of flaky barium strontium titanate powder material
Ling et al. Comparative study of solid-state reaction and sol-gel process for synthesis of Zr-doped Li 0.5 La 0.5 TiO 3 solid electrolytes
CN110164694B (en) Organic/inorganic ferroelectric composite material with ultrahigh dielectric constant, preparation method and application thereof
CN108751982A (en) A kind of unleaded high energy storage density ceramic material and preparation method thereof
CN101619494A (en) Method for preparing perovskite structure lead titanate monocrystal nano rod
Liu et al. Topologically distributed one-dimensional TiO 2 nanofillers maximize the dielectric energy density in a P (VDF-HFP) nanocomposite
ZHANG et al. Microstructure and electrical properties of sol–gel derived Ni-doped CaCu3Ti4O12 ceramics
CN111574220A (en) Pulse energy storage ceramic material and preparation method thereof
Chen et al. Laminated ferroelectric polymer composites exhibit synchronous ultrahigh discharge efficiency and energy density via utilizing multiple-interface barriers
CN103570959A (en) Preparation method of polyvinylidene fluoride/one-dimensional columnar structural lead titanate monocrystal nanofiber composite film
Singh et al. Boosting energy storage of poly (vinylidene difluoride) nanocomposite based flexible self-standing film with low amount of hydroxylated V2O5
CN106478089B (en) A kind of preferred orientation BaTiO3/SrTiO3The preparation method of nano composite ceramic
Corral-Flores et al. Flexible ferroelectric BaTiO3–PVDF nanocomposites
CN113459542A (en) PVDF (polyvinylidene fluoride) -based composite film with double-layer structure and preparation method thereof
CN114919116A (en) PVDF (polyvinylidene fluoride) -based composite film with five-layer structure and preparation method thereof
CN117087277A (en) Polymer-based composite film with multilayer structure and preparation method thereof
CN108997684B (en) High dielectric ceramic/PVDF composite material and preparation method thereof
Xiao et al. Modulation of capacitive energy storage performance in 0.9 (Na0. 5Bi0. 5)(Fe0. 02Ti0. 98) O3-0.1 SrTiO3 relaxor ferroelectric thin film via sol-gel optimizing strategy
CN110203970A (en) A kind of plate bismuth-sodium titanate powder and preparation method thereof of molten-salt growth method preparation
CN116619861A (en) PVDF-based composite film with asymmetric sandwich structure and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231213

Address after: 518000 1002, Building A, Zhiyun Industrial Park, No. 13, Huaxing Road, Henglang Community, Longhua District, Shenzhen, Guangdong Province

Patentee after: Shenzhen Wanzhida Technology Co.,Ltd.

Address before: 710021 Shaanxi province Xi'an Weiyang University Park

Patentee before: SHAANXI University OF SCIENCE & TECHNOLOGY

TR01 Transfer of patent right